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Determination of the gravitational constant with a lake experiment:
New constraints for non-Newtonian gravity
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The gravitational constant G has been determined at two effective interaction distances 88 m
and 112 m, respectively. The 1/r dependence of the Newtonian gravitational force law is tested
by comparing these results with the currently accepted laboratory determination of G. A high-
precision balance was used to measure the weight difference of two I-kg stainless steel masses as
a function of the variable water level of a pumped-storage lake. Water-level changes up to 44 m
produced a maximum weight difference of 1390 pg, which could be measured with a resolution of
0.5 pg. The difference measurement was carried out to diminish several systematic effects; e.g. , tides
and balance drifts become negligible. Basically, the measurement directly yields the gravitational
interaction between the test masses and the locally moved mass (water and air). Data of weight
difference and water level were recorded over several months of the last three years. They yield values
for G of (6.669 + 0.005) x 10 m kg s at 112 m and (6.678 6 0.007) x 10 m kg s

at 88 m, both in agreement with laboratory determinations. New constraints on the strength and
range of a composition-independent fifth force are set.

PACS number(s): 04.80.Cc

I. INTRODUCTION

The question whether new fundamental intermediate-
range forces ("fifth force") exist has been of theoretical
and experimental interest for many years [1]. Although
the strength was expected to be comparable to gravity,
there is as yet no conclusive evidence for such a force.
In the meantime the interest has faded away, and the
strength of possible new forces, if they exist at all, is
supposed to be outside the present experimental reach. A
new interaction is usually expressed in terms of a Yukawa
potential superimposed on the Newtonian gravitational
potential by

V(r) = —G (1+ne "~"),

4~G Errii ) ( 2)
(2)

where g is the coupling constant and the + and —signs
refer to scalar and vector interactions, respectively. A

priori the coupling charge q is of unknown nature. Con-
straints on the strength and length of a composition-
dependent interaction, which couples to the baryon and
lepton number or a mixture of them, are obtained by
torsion-balance experiments carried out by Adelberger

where o. is the strength of the new force relative to grav-
ity, A the range of the new force, and G the Newtonian
gravitational constant for r ~ oo. The strength can be
written as

et al. [2] and others.
Assuming that the interaction couples exactly to mass

or only slightly to atomic or nuclear structure, exper-
iments searching for distance-dependent deviations of
Newtonian gravity are necessary; nevertheless, they are
sensitive to any interaction mediated by particles with
nonvanishing mass. In this case, the force between two
point masses is

+(&) = G(&)

G(r) = G [1+n(1+ r/A)e "~ ],

and the gravitational "constant" becomes distance de-
pendent.

At astronomical distances no value of G can be pro-
vided because of the unknown masses. Instead of it,
Newton's law can be tested with high accuracy. The best
tests are obtained at the interaction range of 10 m from
observations of the perihelion precession for Mercury and
Mars [3]. Somewhat less stringent is the comparison
of the eBective values of GMo for difFerent planets via
Kepler's third law. In the range between 10 m and 10 m
the inverse-square law has been confirmed from a com-
parison of Earth-surface data with the orbital parameters
of the Laser Geodynamics Satellite (LAGEOS) and of the
Moon, respectively [4].

At laboratory distances (1 cm to 1 m) the best results
come from torsion-balance experiments [5] and from a
null test performed by Moody and Paik [6] by testing
Gauss's law for the gravitational field with a three-axis
superconducting gravity gradiometer. Schurr [7] has not
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found any deviation of Newton's law by using a Fabry-
Perot microwave resonator as a pair of pendulums in the
field of a periodically moved mass.

At geophysical distances (10m to 10km), in which our
experiment belongs, the less stringent constraints of non-
Newtonian gravity are set. With so-called "Airy-type"
experiments the gravity gradient towards the center of
the Earth is measured by using gravimeters. High tower
experiments [8] have put limits on the variation of G
with distance, but provide no direct estimate of G it-
self. In mines [9], in boreholes [10],and in the ocean [11],
the value of G could be determined with the density of
the traversed material. However, such experiments suf-
fer from the insufhcient knowledge of local topography
and from density anomalies in the Earth's crust. Addi-
tionally, the measurements are disturbed by moving the
gravimeters between readings.

Many of these problems can be solved by using movable
sources of known mass and fixed instruments. In "lake"
experiments the gravity as a function of a variable water
mass is measured by using gravimeters and balances in
fixed positions. With gravimeters problems result from
calibration of instruments and from instrumental drift
[12,13]. With a single balance, these problems can be re-
moved. Moore et al. [14] employed an electrostatic beam
balance in a tower of the Splityard Creek reservoir in
Australia. The test masses to be weighed were separated
by 12 m yielding an effective interaction distance of 22
m. Their value of G agrees with the laboratory value
by (0.2 + 0.8)%. The uncertainty was mainly due to
vibration of the supporting tower.

In this paper we give a more detailed account of the
Gigerwald-lake measurement of the gravitational con-
stant which was determined at an effective interaction
distance of 112 m by using an electromagnetic balance
[15]. A new result has recently been obtained at an ef-
fective interaction distance of 88 m. To distinguish we
will refer to these two experiments as the 112-m and 88-
m experiment, respectively. Together with the currently
accepted laboratory value our results of G improve the
existing upper limits of the strength of a composition-
independent fifth force in the range between 5 cm to 100
m.

II. THE GIGEBVVAI D EXPERIMENT

A. General principle

flake(h) + @Earth + Ftides (5)

as is shown in Fig. 1. Since several systematic effects
vanish by difference measurements, we have distinguished
three sources of gravitational forces: E, "'(h) is the force
from the water mass of the lake depending on the water
level, E; ' " is the net force from the Earth including
inertial forces, and E ' ' is the net force from extra-
terrestrial sources (Sun and Moon).

A balance naturally is sensitive to vertical forces, where
the vertical direction (z direction) is defined by the plumb
line. Deviations from this line caused by variations of lo-
cal gravity are of order 10 and are not detectable by the
balance. Since a single balance is used, several systematic
effects can be eliminated by measuring the weight differ-
ence AE'(h) = Pi'(h) —I"2 (h) in a short time (about 13
min in our case). Any forces which act nearly identically
on both test masses are not observed. Hence, gravita-
tional forces from extraterrestrial sources and from the
farther environment of the lake are not critical and can-
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the dam of a finite lake reduces the signal by somewhat
more than a factor of 2. It also makes the weight signal
more sensitive to the shape of the lake close to the test
masses. However, the dam contour of the Gigerwald lake
is well defined and can accurately be surveyed. If the
weight is measured with a resolution of about 1 pg and
the uncertainties of the lake geometry are small enough,
a value of G with an uncertainty of less than 0.1% should
be obtainable.

At a water level 6, the gravitational forces acting on
the test masses i = 1, 2 are

The experiment is mounted in the dam of the Giger-
wald lake, where a balance alternately measures the
weights of two 1-kg test masses located above and be-
low the variable water level of the lake. If the lake
were infinite, a plane sheet of thickness 6 = 40 m
and density p = 1000 kg m would generate, in the
case of purely Newtonian gravity, a gravitational Geld of
2vrGph —1677 @Gal (1 @Gal = 10 m s 2). This would
change the "weight" of a 1-kg test mass by about 1.7 mg.
With one test mass located above and one below the wa-
ter sheet, the total weight difference of these two sites
then is 47rGph, or 3354 pGal. Placing the test masses in

F Earth
2

FIG. 1. Forces on the upper and lower test mass.
The magnitude of the plot ted forces are not true to
scale. If Fq and F2 are the weight forces on the two
test masses 1 and 2, the double di8'erence measurement
[Er'(hl) —I'2'(hq)] —[Fr'(h2) —E2 (hq)] at two water levels
hz and 62 yields the gravitational interaction between the
locally moved mass (water and air) and the test masses.
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cel out by the difference measurement. Basically, for a
point source at a large distance r from the test masses,
AE'(h) decreases independent of the angle of direction
with d/r, where d is the test mass separation. In the
same way, a slow balance drift vanishes by the difference
measurement, which may arise from variable stresses in-
side the balance or from a slow thermal drift.

Gravity is increasing by about 300 pGalm towards
the center of the Earth. By measuring the difference
AE'(hq) —AF'(62) at two different water levels, hz
and h, 2, respectively, even the resulting difference of lo-
cal gravity at the upper and the lower mass vanishes.
Indeed, the gravity difference (due to the Earth) must
be constant in time with respect to the measuring pe-
riod. Local tidal eKects and displacements of the ground
caused by loading and unloading it by moving water may
cause a slight variation of local gravity. However, because
the test masses are moved in the same way, the changes
in erst order have the same magnitude and become negli-
gible. Finally, the interaction between the locally moved
mass (water and air) and the test masses is observed di-
rectly.

B. Experimental setup

The experimental site is at the Gigerwald lake, which is
a pumped-storage reservoir for peak-power production in
a narrow valley of eastern Switzerland (46 55' N, 9'24' E
at 1335 m above sea level). The lake is about 2.5 km
long and about 400 m wide. The utilizable capacity is
33.4 x 10 m~. A 147-m-high concrete dam of parabolic
shape con6nes the lake downstream allowing maximum
water-level changes of 90m. Except on weekends water
is released during the day with a maximum drain rate of
74 m s . The pressure line leads to the power plant at
an altitude of 850m, seven kilometers away. During the
night water is pumped back from the corresponding reser-
voir with a maximum pump rate of 36 m s . Normally,
daily water-level changes are less than 3 m depending on
power consumption and water aRux. At the beginning
of spring the water level is lowered to accommodate the
melting snow.

A cross-sectional view of the dam is shown in Fig. 2.
The balance. the electronics, and the data-acquisition
computer were set up in a small, thermally isolated room
at the top of the central plump shaft of the dam, which
is used by the power company for controlling dam move-
ments. The room is reached through a small access from
the transverse gallery 6 m above. The vertical shaft is
1 m in diameter and 108 m long. The test masses are
hung from the balance by tungsten wires, one at the top
of the shaft immediately below the balance and. one at
the bottom of the shaft. The balance itself is placed
on a massive granite plate supported by a pair of thick
aluminum girders. Additionally, the plate is damped by
three cork buyers. It protects the balance from ground
vibrations, which in fact have never been observed (ex-
cept for earthquakes).

To avoid air convection and variable buoyancy the bal-
ance and the two test masses are held in vacuum (at

Gigerwald dam

1324.4 m
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vacuum tube
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about 10 s mbar). To this end a 10-cm-diam vacuum
tube of stainless steel consisting of 3-m-long pieces was
employed. It is freely hanging on a second pair of alu-
minum girders at the top of the shaft and is guided only
with loose tube clamps. The vacuum connection to the
vessel with the balance in it is established by metal bel-
lows to avoid propagation of vibrations to the balance. A
turbomolecular pump is connected to the tube in a lower
gallery.

C. Weighing appliance

Balance deaign

The balance used in this experiment is a modified
Mettler-Toledo mass comparator. A schematic view is
shown in Fig. 3. It is a single-pan Bexure-strip balance
allowing the comparison of 1-kg masses. It works on the
substitutional principle, which means that the masses
to be compared are placed one after the other on the

parallelogram-guideway

position
flag
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optical
system
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rg ) YxYjPxYYY/AI P

beam

couple

pan

i INXtYNDIIYI/j ll

permanent magnet weighing table mass suspension

FIG. 3. Schematic side view of the Bexure-strip balance.

FIG. 2. Cross section of the Gigerwald dam. At the top of
the central plumb shaft the balance is installed in a vacuum
system consisting of a vessel and a long tube. One mass is
suspended immediately below the balance, and the other mass
at the bottom of the shaft with a long tungsten wire.
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same pan. To eliminate unfavorable torques the pan is
fixed to a parallelogram guideway, with which horizon-
tal forces are transmitted to the massive support of the
balance. The guideway is suspended by 100-pm-thick
flexure strips, and the suspension pan, where the weights
are attached, moves in the vertical direction with prac-
tically no friction. The vertical forces are transmitted
on the balance beam via a couple, which consists of two
vertical thinned flexure strips rotated to each other by
90'. The beam itself is suspended by two flexure strips
defining a sharp nonmovable pivot.

The weight of an attached mass is mainly compensated
by a Axed counterweight. Up to 2 g are electrically com-
pensated by a current through a coil in the Beld of a
permanent magnet. This current is governed by a con-
trol loop to maintain the beam in a horizontal position.
The beam position is monitored by an optical detector.
The magnitude of the measured coil current is used as a
gauge of the weight of the attached mass.

Because the balance is never arrested (the load on the
beam is held constant within 1g during the mass ex-
change, see Sec. IIC 5), the mechanical components of
the balance are only slightly moving. This avoids re-
laxation effects in the flexure strips and leads to a very
significant improvement in reproducibility of the balance.
Together with a good thermal stabilization (Sec. II C4),
it enabled us to make comparisons of 1-kg masses with a
stability of about 0.5 pg over one day.

account the masses of the suspension devices). For the
88-m experiment it was replaced by a mass of 7.00 g.

The test mass positions were determined with conven-
tional surveying techniques. On the basis of the regu-
larly surveyed traverse stations inside the dam [16], sev-
eral reference stations (fixed bolts) were surveyed at the
top and at the bottom of the plumb shaft. The aver-
age uncertainty of the test mass positions is about 3 mm
(with r'espect to the local coordinate frame). The ab-
solute altitude of the center of mass was determined to
be 1324.359(1)m for the upper mass and 1220.537(l) m
for the lower mass, respectively, yielding a separation of
103.822 m for the 112-m experiment. In the 88-m experi-
ment the distance between the test masses was shortened
by positioning the lower mass upwards to an altitude of
1261.091(1)m yielding a separation of 63.268 m.

8. Mass suspensions

The weight of the suspension devices are of 4.24 g and
of 3.04 g for the upper and the lower mass, respectively.
Each of them consists of three elements: right at the
bottom there is a suspension-wire link, in the middle a
chain-link-like gimbal where the masses are coupled to
the balance, and at the top a double-coned gimbal where
the masses are lifted from the balance (see Fig. 4).

The aim in designing the mass suspensions is to min-
imize unwanted torques on the balance beam, which for

2. Teat masses and suspension wires

The two test masses were machined of stainless steel
316L and trimmed. by grinding down the edges. Af-
terwards they were finely polished and weighed. Their
masses were determined with an accuracy of better than
10mg with a Mettler PM2000MC. The upper mass of
1.11445 kg is a hollow cylinder with a height of 4.99 cm
and an inner and outer radius of 1.25 cm and 3.25 cm, re-
spectively. The lower mass of 1.09887 kg is of cylindrical
shape, with a height of 5.87 cm and a radius of 2.75 cm.
Additionally, the latter has a small cone with a rounded
apex in the middle of the bottom side (see Fig. 4). The
test masses are equipped with small hooks of stainless
steel, which were attached to the masses by cold press-
ing (two hooks for the upper and one hook for the lower
mass, respectively). Screw holes are avoided considering
bulk diffusion or absorption, which is not well quantized
ln vacuum.

The suspension wires are of 0.1-mm-diam tungsten.
They were crimped at the ends with small tubes of stain-
less steel forming small loops in which the test masses are
hooked. The wire of the lower mass was attached to a
suspension device with a crimped small tube fitted in
a slot to define a sharp pendulum pivot. After evacu-
ation the long suspension wire was annealed. Its mass
(including crimped small tube) was determined with the
balance to be 15.72 g for the 112-m experiment and 9.58
g for the 88-m experiment. For the 112-m experiment an
additional mass of 1.00 g was placed on the lower mass
to equalize the weights of two test masses (taking into

points of
support

upper
mass

lower
mass

lifting devices

suspension
devices

upper mass

tungsten wire

hook

lower mass

cone

movable plate 5cm

FIG. 4. Schematic side view of the test masses and suspen-
sion devices.
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example may arise from nonreproducible placings of the
masses. This means, the center of gravity of the sus-
pended masses (suspension plus load) should lie on the
same vertical axis below the pan when the masses are
connected to the balance. This is achieved by a novel de-
signed chain-link-like gimbal made of stainless steel with
a saddle surface in the middle. The curvatures at the sad-
dle point are of 0.25 mm in one direction and 0.50 mm
perpendicular to it. The surfaces are well polished and
coated with layers of tungsten carbide and carbon WC/C
(in all about 5 pm). The low friction coeKcient and the
lamellar coating avoid microwelding. WC/C is a solid lu-
bricant, nevertheless very hard, and the roughness of the
surface becomes even smaller with time; in spite of this
it is well resistant against abrasion. Because of its low
friction coeKcient the displacement of the bearing point
out of its centering position is estimated to be (50pm.
This well-defined placement also limits the double-coned
lifting devices in their position; and vice versa, the same
lifting leads to the same equilibrium position of the bear-
ing point when the mass is suspended anew.

On the other hand, torques may be due to mass swings,
driven by shocks when raising or lowering a mass during
the mass exchange. Oscillations of the upper mass were
never seen. The lower mass, however, can be excited to
different oscillation modes. The suspension wire causes
a vertical spring oscillation with Tg — 1.3 sec. This
mode is damped by the electronic control loop of the bal-
ance (at 0.1 Hz). Pendulum oscillation (TJ —20.4 sec)
gives rise to a centrifugal force. A defIection of bx = 1 mm
would increase the weight by hm = m(8x) /l2 0.1 pg,
where l is the length of the suspension wire. This weight
oscillation is beyond the resolution of the balance. A de-
fIection could not be observed. Pendulum oscillations as
well as torsional oscillations (TT 19 min) are removed
by means of a movable plate covered with elastic plas-
tic foam touching the small cone of the lower mass from
below when it is not being weighed. The plate is then
smoothly removed just before the mass is to be measured.

Below the pan of the balance, two pairs of double-
crossed knife edges are placed to further reduce remaining
torques (not shown in Fig. 4). They are made of ceramics
and hardened steel.

Temper atus e stability

In any balance, a comparison between two masses re-
quires that the efFective arm lengths of the beam be con-
stant or drift uniformly by a small amount. To achieve
an accuracy of 1 part in 10 (1 pg for 1-kg masses) the
arm length of a 5-cm-long balance beam must not vary
more than 0.5A between successive readings. Thermal
expansion of the beam may also cause sudden relaxation
of strains where different materials are joined together.
For this reason a three-stage temperature control system
is employed.

Inside the dam the temperature varies between 10 C
and 15 C during a year. The small room where the bal-
ance is set up is isolated and held constant within 0.2 K
by using a controlled heater. The vessel, which contains

o 23.701

23.699

123.0
I

123.2
I i I

123.4 123.6
time (d)

123.8 124.0

FIG. 5. Temperature stability of the balance during one
day.

the balance, and the electronics governing the balance are
thermally shielded. This shield consists of copper tubing
in good contact with the vessel and a cover of a 3-cm layer
of plastic foam insulation. Water is circulated through
the copper tubes from a controlled bath with a stabil-
ity of + 0.01 K. The balance itself is surrounded with
a 2-cm-thick copper case containing a water circulation
from a second water bath placed inside the fIrst shield.
A gear-wheel pump delivers water, whose temperature is
regulated by the computer via a 500-mW heater and a
diode-temperature sensor placed at the balance. The pro-
portional integrating-difFerentiating (PID) control loop
with experimentally determined constants yields a long-
terrn stability within 1 mK (see Fig. 5). The random
uncertainty is only 0.3 mK.

S. Weighing pv oceduv e and cahbration

A, B,A, B, ..., A, B,A+8,
1 2 60

The interchange of masses required by the weighing
procedure works on a fully automated basis. After a test
mass, say the upper mass, is attached to the balance, it
is weighed over a period of about 3 min producing an
average weighing value. Afterwards it is slowly detached
&om the balance by slightly lifting it, the other mass is
simultaneously lowered and attached to the balance to
be weighed in the same way. The mechanism for lifting
a mass comprises a vertical double-coned gimbal for each
mass, which, on being raised, lifts the mass from the
balance by about 1mm (see Fig. 4). They are moved
hydraulically by stepping motor pumps, which are placed
outside the vacuum vessel to avoid operating problems
in vacuum and to remove variable magnetic fields and
disturbing heat sources near the balance. During the
mass exchange of about 3 min the weights of the two
test masses are controlled by the computer. The load
on the balance does not exceed 1 g, and the movement
of the balance beam resulting from lifting and lowering
the masses is smaIl. A better reproducibility of weight
measurements is reached.

Comparing the upper and the lower mass, say A and
B, the weighing sequence used is simply
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FIG. 6. The two test masses A and B are alternately
weighed with a period of about 13 min. The weight differ-
ence Avn is simply determined by taking the mean value of
two successive measurements of the upper mass at the time
the lower mass is measured. Since the weights are compen-
sated by a Axed counterweight, the whole gravity effect is seen
in the weight of the lower mass.

where after 60 cycles a calibration of scale sensitivity is
carried out by adding a small mass 8 of 0.999993 g to the
upper mass. No significant change of scale sensitivity was
observed (( 1 pg). The effective weights are obtained by
multiplying the readings with the value of local gravity at
the balance. A gravimeter measurement yielded a value
of 9.804208(3) ms [17]. The weight difference is then
calculated by linear interpolation between two successive
measurements of the upper mass at the time the lower
mass was measured (see Fig. 6).

D. Lake survey

Water level

FIG. 7. Water level as a function of time. The
low-frequency oscillations (T 4.7 min), so-called "seiches, "
are mainly excited by the wind. The steps mark the digital
resolution of the manometer.

sured separately and is subtracted from the total pres-
sure value. Considering water density p~, air density
p, compressibility of water P, as well as local gravity g,
the water level h, is determined with the formula

where P is the measured water pressure.
Calibration of water level was made by precision level-

ing on several days. An independent calibration was ob-
tained. by measuring the altitude of the pressure element
and the temperature profile of the lake water. Together
with the measured pressure the corresponding water lev-
els could be calculated. Both methods agree with each
other and the absolute values of water levels are found to
be accurate within 1 cm. Measurements revealing funda-
mental oscillations of the Gigerwald lake ("seiches") are
shown in Fig. 7.

In the idealized case of an infinite lake, a plain sheet of
water with thickness h and density p generates a gravi-
tational field independent of the distance from the sheet
and proportional to ph. The proportionality approxi-
mately remains true in the case of a finite lake. It is
therefore advantageous to determine the water level via
hydrostatic water pressure pgh instead of floats or sim-
ilar methods. The pressure measurement automatically
corrects in a good approximation any water density vari-
ations.

A high-precision manometer (Rittmeyer Wlg) was in-
stalled at an altitude of 1240.31 m in a lower gallery of the
dam 95 m below the maximum water level. It consists
of a quartz resonator whose frequency shift is propor-
tional to the applied. absolute pressure. The resolution
of the pressure measurement is 10, which is less than
1cm in the water level. The ambient air pressure is mea-

2. Water denaity

The density of the lake water was measured in the
laboratory with a pycnometer of the Gay-Lussac type
(with an inner volume of 102.845 ml at 20 'C). The water
was carefully filled and brought into thermal equilibrium
within 0.01 K in a constant-temperature bath at 27.3 C.
To prevent water evaporation, the capillary pycnometer
was made airtight with a polyethylene foil. After cooling
down to room temperature, the pycnometer was weighed
with a Mettler H54AR with an accuracy of 1 mg. The
cooling is important to avoid air convection in the bal-
ance. Furthermore, water absorption of the pycnometer
surface depends on the temperature and humidity of the
surrounding air. The pycnometer volume was calibrated
with pure water with a relative accuracy of 10 . By
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TABLE I. Water density measurements at 27.3'C. I I
]

I I I I

)

I I I I

(
I I I I

(

I I

Sample I
Sample II
SampIe III
Pure water

0.996459 g cm
0.996468 g cm
0.996458 g cm
0.996342 g cm

measuring the weight of the empty and filled pycnometer
water density was determined for three water samples.
Lake water turned out to be slightly denser than pure
water by 1.2(2)x10 4 gcm s (see Table I).

Depth profiles of water temperatures were measured on
several days down to 80 m by lowering a Pt-100 resistance
thermometer. Only very small temperature variations
were observed except for a thin layer of about 5 m below
the lake surface depending on climatic conditions. Below
this boundary layer, temperature usually varies not more
than 0.2 K. The annual temperature variation is sinu-
soidal with extrema in March and September at average
temperatures of 3 C and 10 C, respectively. During the
measuring period water temperature varied from 3'C to
6 C. In this range water-density variation is negligible
with respect to our required accuracy.

At the lake surface the density is 1.00009(4) gcm
corresponding to a mean temperature of 3.5 C. With a
compressibility of 4.9 x 10 Pa density profiles were
computed for all relevant levels. The density which enters
the calculation of the weight signal is the density differ-
ence between water and air, since water is replaced by air
and vice versa, when water level falls or rises. The mean
density of air is determined to be 0.001 08(2) g cm cor-
responding to the mean atmospheric pressure at the al-
titude of 1330 m. The assigned error to it is due to air
pressure variations.

8. Lake contout

I I I I I I I I I I I I I I I I I I I I

FIG. 8. Contour maps of the Gigerwald lake. Right: Con-
tour lines of the lake shore (6 m equidistant). The arrow
marks the position of the balance and the test masses. Left:
area of scree (20 m equidistant), displaced sidewards for dis-

play purposes. The contribution to the weight signal which
originates from the water up to 450 m distance from the dam
is already 997p.

The systematic uncertainty is negligible, since the high
precision of the pillar coordinates strongly limits any sys-
tematic displacement. For larger, noncritical distances
an older survey plan of the lake was used which revealed
only small deviations from the new plan. Data processing
yielded 2-m-equidistant contour lines (see Fig. 8).

The lake is situated in a narrow valley and is confined
on the sides by massive rock partly covered with scree.
Downstream the lake is confined by a smoothly curved
concrete dam, which was constructed following simple
polynomials. A horizontal section is just a parabola.
Fixed pillars spread around the lake are used to establish
a local control network. These pillars are regularly con-
trolled by geodetic engineers and are known in position
and height within 1 mm in the local coordinate system.

To ensure the exact dam shape a survey of the lakeside
was conducted. To this end, more than 100 survey marks
were fixed at various locations of the dam when the lake
reached its minimum level at the beginning of spring.
Subsequently, the marks were surveyed with electronic
theodolites (Wild T3000) from the pillars and from free
stations. The overestimated data yielded the positions
with an accuracy of about 3 mm. They agree with the
construction plans within 2 cm.

The shore contour was determined by air photogram-
metry. The scan of the lake shore produced survey points
at 4-m spacing up to 600 m from the test masses. The
obtained random uncertainty of the coordinates is 30 cm.

Scree

The shore is not bounded entirely by rocks. There is
also some scree, where water is seeping in. The scree
is throughout debris, which is embedded in mud. The
porosity of the scree is estimated by geologists to be
0.30 + 0.03, where the assigned uncertainty is at the 1o.
level. This value is quite reasonable considering measure-
ments by other geologists under similar conditions.

From geological surveys based on numerous drill holes
the solid rock boundary, and with this the area of scree,
is known (see also Fig. 8). Up to 200 m distance from the
test masses the amount of scree is negligible. There, the
shore is mainly confined by concrete and massive rock.
Since 90% of the weight signal comes from the water up
to 200 m distance from the test masses, the contribution
of water seepage to the weight signal is not negligible
though, but small: it is calculated for a mean water level
and amounts to 0.6% for the 112-m experiment and 0.4%
for the 88-m experiment, respectively.

The scree volume decreases with water level. For the
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III. CALCULATIONS

A. Lake integration

To calculate the weight difference as a function of water
level the method of Talwani and Ewing [18] is used. In
general it is not possible to obtain an analytical expres-
sion for the integration of the gravitational force caused
by an irregularly shaped three-dimensional body, but the
problem is greatly simplified if one of the dimensions be-
comes infinitesimal. To take advantage of this we divide
the three-dimensional body in a large number of thin
laminae of thickness dz and add them together. Includ-
ing a fifth force of the form given in Eq. (1) the vertical
gravity caused by an arbitrarily shaped, horizontal lam-
ina can be expressed by contour integrals. The vertical
gravitational force dE' on a mass m located at the point
P is (see Fig. 9)

dE = kp d — —,d dz

+~kp e
—

~ ~~' d — —'e-"'~'d dz,~l (8)

88-m experiment the scree correction varies between 0.3%
and 0.5%. For the 112-m experiment, it is 1.2% at the
lowest water levels and decreases for higher levels down
to 0.4%. This height dependence offers an internal con-
sistency check for the scree correction. It is proved that
the results obtained from data at low water levels are
consistent with those obtained at high water levels and
support the quoted value for the porosity (see Sec. IV B).
Additionally, the value of the 88-m experiment is consis-
tent with the value of the 112-m experiment, where the
main scree corrections originate from different regions of
the lake.

(r.a =
I

ridfi — r2df2
I +7 — df2 I, (9))

where df is the vertical gravitational force between a
water element and the test mass i separated by the dis-
tance r;. The integration over the Gigerwald lake yields
r,fr = (112 + 2) m and r, fr = (88 + 2) m, respectively,
slightly depending on water level.

the first term in Eq. (8) describing Newtonian gravity can
be analytically solved [18]. The second term describing
the interaction of a fifth force must be numerically inte-
grated. To extract a value for the gravitational constant
from data, pure Newtonian gravity is assumed (a;=0).

The Gigerwald lake is integrated by using 2 m-
equidistant contour lines, each containing 4000 to 5000
individual survey points. The cylindrical test masses are
taken as point masses in their centers of mass. The sus-
pension devices and the suspension wires are divided into
distributed point masses. The wire of the lower test mass,
for example, is divided into 16 point masses equidistantly
distributed along the wire axis. The error made by these
approximations is far outside the required accuracy of
this experiment. The integrated effect for the 88-m ex-
periment and the 112-m experiment, respectively, are
shown in Fig. 10. As long as the water level is well be-
tween the test masses, the weight difference varies almost
linearly with water level as would be expected in the case
of an infinite lake. The slope is about 33 pg m . When-
ever the water level approaches the height of the upper
mass (at an altitude of 1324.359 m), the weight signal
diminishes and becomes even negative for higher levels.
A zero effect would arise for an infinite lake.

The effective interaction distance r ~ characterizing
the mean distance between the interacting water and the
test masses is given by

with k = —G m and p the density of the lamina. The
contour integral $ dg is 2vr, if the vertical projection P' of
the point P lies inside the lamina and vanishes otherwise.

Assuming the contour of a lamina may be approxi-
mated by a sufFiciently large number of discrete points,
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FIG. 9. Geometrical elements involved in the computation
of the vertical gravity of a thin horizontal lamina S of constant
density. P is the point where the gravity is being evaluated.

I' IG. 10. Calculated weight difference as a function of water
level following pure Newtonian gravity. The upper curve is
calculated for the 112-m experiment, the lower curve for the
88-m experiment. The origin is set to 1240 m for both curves.



DETERMINATION OF THE GRAVITATIONAL CONSTANT WITH. . . 4013

It follows from calculations that the contribution to
the weight signal of the lake water situated more than
500 m away is already less than 1%.

B. Systematic uncertainties

In the following the most significant systematic un-
certainties listed in Table II are discussed. The largest
uncertainties to be expected in the predicted gravity ef-
fect are contributions from uncertainties in the geometry
of the lake. Since they depend on water level, the mag-
nitude assigned to them are values corresponding to an
average water level.

The face of the dam is a smooth surface and is very
carefully surveyed within 3 mm. Penetration of water
into the concrete is negligibly small. Dam movements,
which arise from temperature changes of the dam and
from water pressure changes, are . .ontinuously registered
with several plumb lines. The maximum displacement at
the top of the dam is + 2 cm corresponding to extreme
conditions of an empty lake and a warm dam (contrary
to a full lake and a cold dam, respectively). Since in first
order both lake water and test masses are moved in the
same way, dam movements are not critical. Any balance
tilts due to dam movements cancel out by measuring the
weight difference and by repeating scale calibration. The
final uncertainty of the dam contour is taken to be 1 cm
yielding a relative uncertainty contribution of 0.30 x 10

The shoreline coordinates have an uncertainty of 30
cm. A random perturbation calculation yielded a rela-
tive uncertainty of 0.37 x IO for the 112-m experiment.
More critical is the seepage of water into the scree. Al-
though the location of solid rock is well known by numer-
ous soil explorations, the porosity of the scree is not well
validated and leads to a major contribution in the error
budget (see Sec. IID4). The calculated relative uncer-
tainty for a porosity of 0.30+0.03 is 0.61 x 10 . Since
these uncertainties scale more or less linearly with the
test mass separation, they could be reduced for the 88-m
experiment. The calculations yield relative uncertainties
of 0.23 x 10 for the shore contour and 0.39 x 10 for
the porosity of scree, respectively.

The test mass positions are not critical. They are
determined with electronic theodolites, laser range Gnd-
ers, and leveling instruments referring to the regularly
surveyed reference stations inside the dam. The uncer-

TABLE II. Contributions to the systematic uncertainty of
G in parts per 1000 (ln).

IV. RESULTS

A. Raw data

The data acquisition is performed on a highly auto-
mated level. Measured weights of the test masses and
of the calibration mass, water level, balance tempera-
ture, vacuum pressure, and climatic conditions are con-
tinuously recorded by the computer and displayed as a
function of time. Various other system parameters are
also registered and can be remote controlled from Zurich.
The raw data of the 1994 measurements are shown in
Figs. 11 and 12, where the weight difference of the two

1330 ''''I''''I''''I'
1320

0.0625

1310

1300

1290

0.0620

0.0615

tainty in position is found to be about 3 mm. Ther-
mal expansion of the suspension wire is 6 2 mm at most.
The relative uncertainty of test mass positions is about
0.04 x 10

The water level is known with an accuracy of 1 cm
producing a relative uncertainty of 0.12 x 10 . Earth
curvature was found to be negligible (( 10 ). Waves
average out, and the amplitudes of low-frequency oscil-
lations of the lake ("seiches") are too small to have in-
Huence on the weight measurements. The uncertainty of
the water density leads to a relative uncertainty of less
than 0.05 x 10

The effect of variable air density is (0.1 pg, which is
below the resolution of the balance. More problematic
is the variable soil moisture in the surroundings of the
dam. The effect may vary between + 2 pg depending on
climatic conditions. It averages out over a measuring
period of some months if it is not correlated with the
water level.

The value of g near the balance is easily determined
with a relative uncertainty of 10 by using a gravimeter.
It produces an uncertainty of the same magnitude in the
error budget.

Source
Dam contour
Shore contour
Porosity of scree
Test mass positions
Water level
Water density
Total

112-m exp.
0.30
0.37
0.61
0.04
0.12
0.05
0.79

88-m exp.
0.30
0.23
0.39
0.04
0.12
0.05
0.56

1280 0.0610

] 2+0 I I I I I I I I I I I I I I I I I I I I I I I I

80 90 100 110 120 130
time (days)

FIG. 11. Water level and weight difFerence of the 112-m
experiment (March to May 1994).
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FIG. 12. Water level and weight di8'erence of the 88-m ex-
periment (August 1994).

B. Data analysis

The measured and calculated weight difference (Spring
1994) as a function of water level is shown in Fig. 13.
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test masses and the water level are displayed as a func-
tion of time. During the spring measurements (over a
period of 50 days) water-level changes up to 44 m pro-
duced a maximum weight signal of 1390 pg. During the
autumn measurements (over a period of 22 days) a rnax-
imum weight difference of 223 pg was still obtained.

Although an arbitrary balance drift cancels out by the
difference measurement, a nonregular and uncorrelated
small drift was observed in the weight difference. This
drift may originate from changes of soil moisture in the
surroundings of the dam. Since the weight-difference
data at the same water levels must be equal for all times,
any discrepancies arising from such slow drifts could be
minimized by using the following model equation for the
weight difference:

AE(t) = aAEN, t „(t)+ b;t + c;,

where DEN, t „(t) is the calculated weight difference
based on Newtonian gravity. The fit parameter a, valid
over the whole measuring period, represents the ratio
G/Gi b, where Giab = 6.6726 x 10 ' m kg s, the
currently accepted laboratory determination of the grav-
itational constant [19], is used as an arbitrary reference.
The parameters 6, and c, , respectively, are coefFicients
of linear drifts over time intervals between 5 hours and
3 days. The magnitude of b; is less than 0.5 pg per day
and is of variable sign; c, adjusts the fit to be continuous.
The coeKcients follow from a regression analysis with the
method of least squares. The results for a including the
1992 and 1993 measurements [15] are given in Table III.

For the 112-m experiment, the Anal value of a is de-
termined to be 0.99944(17), which is the weighted mean
of the 1992, 1993, and 1994 measurements. For a consis-
tency check the 1993 data were subdivided into two data
sets of measurements with water level above and below
1305 m. The results are 0.99929(26) and 0.99981(33),
respectively, in reasonable agreement with each other.
They also con6rm the calculations made for the scree
correction. If the provided value for the porosity were
wrong by 20'Fo, the two results should already differ by
more than 0.1%, which is not the case. The discrepancy
of the 1994 value is assumed to be due to meteorological
changes in the immediate environment of the lake (e.g. ,

variable soil moisture), and due to nonreproducible posi-
tioning of the test masses on the suspension devices. For
the 88-m experiment, the resulting value of a is found
to be 1.00079(94). The larger statistical uncertainty of
0.94 x 10 is mainly due to the shorter measuring time
and the smaller weight signal.

The total uncertainty of G is obtained by taking the
root-mean-square of the uncertainties listed in Table II
plus the corresponding random experimental uncertain-
ties. The resulting values of the gravitational constant
are

G = (6.669 6 0.005) x 10 m kg s

232O I I I I l I I I

1318
1 I I I I I 3 I I I I I I I I I I I I I I

1280 1290 1300 1310 1320
wat, er level (m)

I

1319-
I I I

1330
TABLE III. Results of the 112-m experiment and the

weighted mean.

FIC. 13. Weight difI'erence as a function of the water level
in Spring 1994 (the origin is set to 1240 m). The measured
gravity data (open circles), only corrected for linear drifts,
fit well the predicted gravity effect (solid curve). Each circle
represents the average of 100 measurements. The insert shows
a typical region where all gravity data are presented.

Data
1992
1993
1994

Weighted mean

a = G/Gi~b
1.00017(76)
0.99958(19)
0.99822(48)
0.99944(17)
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FIG. 14. Results of G experiments at geophysical distances
as a function of the effective interaction distance. The solid
line represents the laboratory value G& b. Numbers in brack-
ets refer to the reference list.

FIG. 15. CConstraints for a composition-independent fifth
force set by the Gigerwald experiment and by other G exper-
iments at geophysical distances. The strengths o; and range
A

an ranges
in the area below the curves (n ( 0) and above the curves

(o ) 0) are excluded with 95%%uo confidence. The numbers in
brackets refer to the reference list.

for the 112-m experiment, and

G = (6.678 + 0.007) x 10 k

for the 88-m experiment. The values are in agreement
with each other and with the accepted laboratory value
see Fig. 14).

Together with Luther's laboratory value Gi b(r, tr --5
cm) the values of the gravitational constant determined
from the Gigerwald experiment place new limits on the
strength n(A) of a composition-independent fifth force.

( 2)/ (ri) = P, the ratio of gravitational con-
stants determined at two different distances rq and r2
follows an n(A) relation [20] given by

n(A) =
[(1+r2/A)e "2~" —p(l+ ri/A)e —~&"]

Varying P within the limits of experimental uncertain-
ties upper limits for the strength of a composition-
independent fifth force can be obtained. Below 5 cm,
w'here Eq. (13) is not exactly valid any more depend-
ing on the model used for the Luther experiment, and
above 100 m, the typical mass separation in the Giger-
wald experiment, the sensitivity to the fifth force strongly
decreases. In the range between, however, we obtain

new constraints for the strength of an attractive (n & 0)
and repulsive fifth force (n & 0), respectively. They are
shown in Fig. 15 together with other G experiments at
geophysical distances.
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