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Renormalization-group equations in the SU(6) 3 model
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We use the renormalization-group equations to calculate the symmetry-breaking scales in the
[SU(6)] Pati-Salam model. Using only known parameters, we predict the mass scales consistent with
very small values for the light-neutrino masses and rare processes decay such as K+:m+e p+
for three steps of symmetry breaking. We also find that the proton is stable by gauge and Higgs
boson exchange.
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One of the most important advances in particle physics
in the last two decades has been the development of the
so-called standard model (SM) [1] based on the gauge
group SU(3)cI3 SU(2)L, U(l)y. The SM agrees with
all experimental data, but it does not answer some ques-
tions, such as the origin and values of the fermion masses,
the number of families, etc. For these reasons physicists
believe that the SM is not the most complete of theories.

There have been many attempts to answer the above
questions, and new models have been proposed. All of
these models imply the existence of new particles, ei-
ther fermions, gauge bosons, or scalars, additional to
those introduced in the SM. Other interesting features
are to unify the strong, weak, and electromagnetic inter-
actions embedding the SM in a larger gauge group [2].
However, it is important to consider the unification of
quarks and leptons with the three Bavor families. Some
of these interesting theories that unify the interactions
and fiavors are the Pati-Salam models [3]. Inspired by
these models, we proposed the G = [SU(6)] model [4]
to unify the nongravitational interactions and the three
families. In the Pati-Salam model the quark and lepton
numbers are unified into the SU(4)c gauge group. To
unify the three families with the weak interactions, we
use the SU(6)L, SU(6) R gauge group which has left- and
right-handed fermions. In order to have one gauge cou-
pling constant, the SU(4)c symmetry must be extended
to SU(6)c and a discrete Zs symmetry acting upon the
three SU(6) groups must be introduced.

In the present work, we use renormalization-group
equations (RGE's) to study the breaking of the [SU(6)]s
model. We consider two and three steps to break the
G group down to SU(3)c U(1)g. With more steps of
symmetry breaking, there are new unknown parameters
and it is possible to predict a low-energy parameter as a
function of the unknown parameters [5]. One finds that
the symmetry-breaking scheme consistent with RGE's is

[SU(6)] x Zs,' Sp(6)L, Sp(6)R SU(3)~ U(1)~
': SU(2)L, U(1)y SU(3)c
; SU(3)c U(1)cl,

where the energy scales M1 and M2 have values of about
10 and 10 GeV, respectively. In this model there is no
proton decay when mediated by gauge bosons or Higgs
bosons, and the grand unification scale can be lower than
in other grand unified theories (GUT's) [6]. However,
LB = 2 processes and neutron-antineutron oscillations
are possible.

We give the possible symmetry breaking in agreement
with rare processes, such as K+; m+e p+, and tiny
masses for the light neutrinos.

We use SU(6)L, C3 SU(6)c SU(6)R x Zs as the gauge
group to unify the nongravitational forces and the three
families, where Z3 is the three-cyclic group acting upon
[SU(6)] . SU(6)c is the color group, and the fundamen-
tal representation consists of three baryonic numbers and
three leptonic numbers. This group is broken down to
SU(3)c U(1)& L„where U(1)& I. is the baryonic num-
ber minus leptonic number.

The gauge fields of SU(6)& are given by
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where G' for i, j = 1, 2, 3 are the SU(3)c nondiago-
nal gauge bosons; X;, Y,', and Z, are leptoquark gauge
bosons with electrical charges —3, —,and —3, respec-
tively; P+, a = 1, 2, and P are dilepton gauge bosons;
and D; for i = 1, . . . , 6 are the neutral gauge bosons as-
sociated with the diagonal generators of SU(6)~.

SU(6)L,&tt) contains SU(2)L, (tt) SU(3)It~(It~) where
SU(3)~~(~tt) is the horizontal gauge symmetry which
unites the three families. The representation matrix for
SU(6)1,(R) is given so that SU(2)t, (~) is universal with
respect to the three families; i.e., the generators may be
written in an SU(2)L, (~) SU(3)~1.(~tt) basis as
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o-; (3I3, I2 g A, 0-, (3A, (2) SU(6)mSU(2)1, (z) SU(3)~1,(Irz), we have

where o.; are the 2 x 2 Pauli matrices, A are the 3 x 3
Gell-Mann matrices and I2 (I3) is the 2 x 2 (3 x 3) identity
matrix.

The fermions of the model are in

z3[g(6, 1, 6)] = @(6,1,6) + g(o, 6, 1) + @(1,6, 6), (3)

where

6 +-(2, 3),
15 4(-1, 6) + (3, 3),

21 -+ (1,3) + (3, 6),
35 ~ (3, 1) + (1,8) + (3, 8).

Note that the embedding for SU(6)L, ~ +SU-(2)L, (~)
SU(3)~1,(H~) is such that SU(2)1, R is universal this
is family independent while, for SU(6)c -+ SU(3))
U(1)a

( d, d,
'll1 Q 2

C1 C2

b1 b2

t1 t2

d3 E, L1 T,

83 E, L', T,
c3 E~ L2 T2
b, Z, I„'T,
t, E,' L+To),

Q(6, 6, 1) = 6:(3, 1) + (1,3).

We can see &om Eq. (5) that the vacuum expectation
values (VEV's) of the Higgs scalar associated with irrep
6 necessarily breaks SU(2)1, R, but irreps 15, 21, and
35 can respect such symmetry. So irrep 6 should be
used at the last step of SB when the breaking of SU(2)r,
should take place. The breaking of SU(2)~ should pro-
duce Majorana masses for three right-handed neutrinos.
So the Higgs fields carrying this task should couple to
@(1,6, 6) )3 g(1, 6, 6), and thus they should be either of
the form P(1, 15, 15) or of the form P(l, 21, 21).

For the irrep 15 of SU(6)1, ~, we have explicitly the
components

( & 6)&aL (a) =6

(3, 3)z;„„,

contains the ordinary left-handed fermions; @(1,6, 6) has
the charged conjugate fields for the electrically charged
fields in @(6,6, 1), but not for the neutral ones, because
we are using Majorana fields, and @(6,1, 6) represents ex-
otic leptons with positive and negative electric charge and
neutral fields. In this model there are no exotic quarks.
The ordinary leptons and quarks are linear combinations
of the leptons and quarks in Z3[Q(6, 6, 1)].

To achieve the desired symmetry breaking (SB)
in three different steps, we introduce appropri-
ate Higgs scalars. Using the branching rules for

I

y[1,2] y[3,4] y[5,6] ~[1,4]—[2,3] ~[1,6]—[2,5] ~[3,6) —[4,5]) ) & 'V

, y[»3) ~[1.51 ~[3,5]

)2'Bz, ()&.)=&

(3, 3)T;,„,

]+[ 13] A, [1 6]+[»5] A[3 6]+[4,5]

[»4] ~[»6] ~[4,6]

For the symmetry breaking at M1 scale, we use

t1 ——Z3$1(15) 1, 15) = P [ 5) + P [~ ~) +[A,B] [a,]9] [a,b]

where a, b, c, . . . , A, B,C, . . . , n, P, p, . . . refer to
SU(6)I„SU(6)R, and SU(6)c tensor indices, respec-
tively. The VEV's of P1 may be chosen in the directions
[a, b] = [1,6] = —[2, 5] = [3, 4], [A, B] similar to [a, b],
and [n, P] = [5, O] = [4, 5].

For the second step of symmetry breaking at M2 scale,
we use one more Z3[$2(15, 15, 1)] Higgs representation:

2 —Zsg 2(15, 15) 1) —Q2[~ P) + Q2[ 5) +[a,b] [A,B] [n,P]

with the VEV's in the following directions. For the first
two terms of P2, [a, b] = [1,2] = [3, 6] = —[4, 5], [A, B]
similar to [a, b], and [n, P] = [4, 5], while for the third
term, [A, B] = [2, 4] = [2, 6] = [4, 6] and [n, P] = [4, 6].

The final stage of the breaking is achieved by using a
Z3[(6, 6, 1)] representation with the VEV's displayed in
Ref. [4].

In this model the only gauge boson interactions that
could produce baryon number violation is given by

I

Z3[g(6, 6, 1)iD„P"g(6, 6, 1)]

=) (E, Xd;+E,. Xu, +L, Vd, +L+Yu,

+T Zd), + T Zu) ) .+ H.c.&.
where i refers to the family index. The gauge bosons al-
ways change a quark for a lepton, and they have a well-
defined baryon number; it is then not possible to write
down an effective Hamiltonian that changes the baryon
number obtained &om the gauge boson exchange. There-
fore proton decay is forbidden; i.e., LB = 0 by gauge
bosons exchange.

The possible Higgs contributions to proton decay arise
from the interactions between the quarks and the scalar
multiplets through a gauge-invariant effective operator
with at least four fermionic fields and at least one Higgs
'ooson which develops a VEV with AB = 1 [11].

The Higgs sectors we are using to produce the sponta-
neous SB (SSB) and to give masses to the fermions are
Z3[p(1, 6, 6)] and Z3[p;(1, 15, 15)].With the Z3[ljk(1, 6, 6)]
we can generate the couplings
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Zs [g (6, 6, 1)I,@(1,6, 6)I, ]P(6, 1, 6)
= [Q(6, 6, 1)L, g(1, 6, 6)1,]$(6, 1, 6)

+[g (6, 1, 6)L, Q (6, 6, 1)L,]$(1,6, 6)

+[0(1 6 6)L 4(6 1 6)1]~(6 6 1)

where the last two terms produce the mixing of the exotic
fermions with the ordinary fermions, to lead the seesaw
mechanisms for neutral and charged leptons [7], and the
other term produces mass matrices for ordinary fermions
[4]. From the above Lagrangian we see that the interac-
tions between ordinary fermions and Higgs bosons do not
lead to AB = 1 because the Higgs fields P(6, 1, 6) have
LB = 0 quantum numbers.

Because of the fact that quarks have one-third of the
baryon number, we need at least three quark operators
to obtain a LB = 1 efFective operator, which implies the
necessity of having the existence of a Higgs multiplet with
three indices of SU(6)~. In this model we are using only
Higgs representations with one or two SU(6)c indices,
and therefore, we do not have any LB = 1 efFective op-
erator after the SSB. The lowest Higgs representation
that could produce proton decay in this model is the
Zs[P(20, 20, 1)] = Zs[P bg~], where the 20-dimensional
representation is the totally antisymmetry third-rank
tensor, with the SU(6) -invariant efFective operator

@nqP@pybyabc q(pc ydl yrnn (»)
However, there are efFective operators that give rise

to neutron-antineutron oscillations, i.e. , LB = 2.
The Yukawa Lagrangian that gives mass to the exotic
fermions at M~ and M2 energies is

Z3(@(1,6, 6)Q(1, 6, 6)[pi (1, 15, 15) + p2 (1, 15, 15)]j;

(15)n, i(p) = . i(M) —(B,/6a) ln(M/p),

where n; = g, /4vr and the coefficient B; is defined as

(13)
there also exists a self-coupling of the four scalar multi-
plet P(l, 15, 15) that can produce with the above Yukawa
Lagrangian an efFective operator of six-quark fields that
lead to AB = 2. The scales predicted by RGE's give
tiny AB = 2 processes consistent with the experimental
bounds, such as the Pati-Salam model [8].

The coupling constants g,. obey the renormalization-
group equations which have the form [9]

a' = P(a'),
t9

Bp
(14)

and in the one-loop approximation the coupling constants
evolve as

Tr(T Tb) = 2b b. (»)
We will use this new normalization to compute the

Casimir operator. For example, for an SU(n) subgroup
of SU(6)~, in the Gell-Mann matrix representation, the
Casimir operator for the adjoint representation is given
by

(18)

(19)

Q = Tsr, + TsR + +B—L) (20)

where Y~ I, = diag(s, s, s, —1, 1, —1).
If we break down the model in three steps, we can

consider some possibilities depending on how to break
the SU(6)c color group or the SU(6)1, SU(6)~ group.
One of this possibilities is to break SU(6)c down to
SU(3)c U(1)~ L„and the other is to break it down
to SU(4)~ at the Mi mass scale. The second possibility
does not give an appropriate solution to the RGE, and
this is ruled out in this class of models; however, in other
kind of models such as SO(10) [11] this chain is viable
because the Casimir invariants are difFerent. So a realis-
tic phenomenological breakdown that can give solutions
to the RGE is

[SU(6)] x Zs ',' GL, (g G~ I3 SU(3)c U(1)~
'; SU(2)L, I3 U(1)~ C3 SU(3)~
: SU(3)~ U(1)g,

and the RGE's in the one-loop approximation for the SM
couplings are given by

i(M ), lla —6
I

Mi
z o'G n

9a —b Mg
ln6' M,

ln6' Mz '

99 —O' M,
lnn~'(Mz) = n~'—

(21)

C.(SU(n)) = 3n,

where the factor 3 arises &om the new normalization.
The Casimir operators of the subgroups of SU(6)L,~~l

are difFerent because we are using a special embedding
where SU(2)L, l~l is universal with respect to the three
families. The fundamental matrix representation T~ is
given by Eq. (2) with the appropriate coefficient to get
2 as the normalization factor, and the Casimir operators
can be calculated by the expression

& (G) = f""f""= —-'. T ([T' T'][T' T'])
where f'~" are the structure constants of the G group.

With the above normalization the electromagnetic
charge is defined as

B; = 11C2 —b, . (16)
9 11a-b

n~ (Mz) = n~'—
14 6' 14 6a

t ~ is the quadratic Casimir operator of the adjoint rep-
resentation which gives the contribution of the gauge
bosons that do not get mass at the M scale [10]. The sec-
ond term b; gives the contribution of the fermions with
a mass smaller than this scale.

In the present work, we do not use the conven-
tional normalization. We will normalize all gauge
group generators by T3L, which is given by T3L
diag(1, —1, 1, —1, 1, —1)/2 [4] such that

x ln
Mg —b' M

ln6' Mz '

where b and b' are the fermionic contributions at Mq
and M2 scales, respectively, a is the Casimir operator
for the group Gl, ~~l which can be equal to Sp(6)l, ~~l or
SU(2)l, ~~l. It is important to note that we are consid-
ering unbroken parity symmetry at the gauge group and
it is spontaneously broken at the M2 scale. The group
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U(1)y comes from two different gauge groups U(1)~
and Gtt, which contain SU(2)~.

It is possible to predict from the above equations and
the data from the CERN e+e collider LEP the mass
scales. For Gl, (~) = Sp(6)1,(~) this yields

where C2(Sp(6) 1,(tt) ) = 11, and for the parameters at low

energies we are using n (Mz) = 127.9, n~ = 0.113,and
x = sin Ow = 0.233 [12]. For Gl.(~) = SU(2)L, (~) the
RGE's lead to inconsistent values for Mq and M2. Prom
the above result, we conclude that this Pati-Salam model
can be broken down to SP(6)L,(~), which has horizontal
symmetry, and in the second step to the SM. This second
step lies in an experimentally attractive regime for the
future colliders.

Another interesting but no realistic scheme is to break
down the model by two steps. This case corresponds in
the above equations to Mi ——M2 with mass scale

M —2.12 x 10 GeV. (23)

In this model the unification scale is much lower than in
the other models, Es, SO(10), SU(5), etc. , but this does
not give very small values for the light-neutrino masses.

Another interesting feature is the intermediate scale
M2 when the symmetry is broken down by three steps.
At this scale the horizontal symmetry is broken and the
corresponding neutral gauge boson that produce Qavor-

2'
Mx ——Mz exp (81n —180n x —27n~ )144 x ll

= 1.42 x 10' GeV,

(22)
27t

M2 ——Mz exp
144 x 11 (18n + 9n x —55o.& )

3.53 x 10 GeV,

changing neutral currents at the tree level get mass. They
give rise to the decay K+ ~ vr+e p+ and this can be
written naively [14]:

I'(K+ G2~10 GeV
; rr+e p+

256rr s ms~
(24)

where G,tr/~2 4rrn/8Mz, sin 0~. From the experi-
mental data I","v ( 11.173 x 10 27 [13], we find for the
mass of the neutral gauge bosons the value

M~ & 10 GeV,

This work was supported in part by COLCIENCIAS
in Colombia and CONACyT in Mexico.

where we take the values of o; and sin 0~ at the Mz
scale. The result obtained above is in agreement with
the renormalization-group equations with three steps
breaking the scheme when [SU(6)]s is broken down to
Gl, (R) = Sp(6)1,(~).

In conclusion, the [SU(6)] Pati-Salam model [15] with
the above Higgs set does not produce proton decay by
gauge or Higgs bosons exchange. However, this predicts
LB = 2. Proton stability in this kind of model depends
on the Higgs bosons [3]. Using the RGE with three steps
of symmetry breaking, it is possible to find a lower grand
unification scale than other models that give very small
values for the light-neutrino masses. The intermediate
scale gives mass to the gauge bosons that produce rare
processes, and it agrees with present data. It would be
interesting to consider other steps of horizontal symmetry
breaking, but these introduce new unknown parameters.
The mass scale predicted by two steps of SB is lower
than the scale predicted by K+:m+e p+ decay. This
suggests that it is necessary to consider at least three
steps of SB to have a realistic model.
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