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Grand unification scale efFects in supersymmetric unification
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We write a Monte Carlo program allowing arbitrary splitting among GUT scale particles con-
sistent with experimental constraints for both the minimal supersymmetric model and the missing
doublet model. The resulting correlations among the low energy parameters are discussed and
several advantages of the missing doublet model are pointed out.
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Since the observation [1] of the superiority of super-
symmetric over nonsupersymmetric grand unification in
predicting the values of the standard model couplings
at the Z scale, supersymmetry (SUSY) has received a
greatly increased amount of attention. For a recent re-
view see [2]. It is now customary to require unification
of b and w Yukawa couplings at the grand-unified theory
(GUT) scale in addition to gauge coupling unification.
Then the observed b/7 mass ratio yields a prediction for
the top quark mass, n(Mz)-' = 127.9+ 0.2, (2a)

the 6 quark scale. In the "top-down" approach that we
follow, random values are chosen for the erst five param-
eters, the system is evolved to lower energy and solutions
are stored in a file that can be queried for correlations.
A "solution" is de6ned as a set of values for these ten
parameters that is consistent with the renormalization-
group system of diH'erential equations and with the ex-
perimental constraints

145 ( mq ( 218 GeV,

which seems to be in good agreement with both indirect
evidence from measurements at the Z and with prelim-
inary direct evidence from Fermilab [3]. In the simplest
unification scheme which we study here one considers the
GUT scale particles degenerate at some mass M~ and
SUSY partners degenerate at some mass Mg and writes a
system of Gve coupled differential equations for the three
gauge couplings, the top Yukawa coupling and the ra-
tio of b/r Yukawa couplings. In actuality one expects
the SUSY partners to be spread above and below Mg.
In the standard supergravity-inspired model for SUSY
splittings with Mi~~ = 0 (light gluino case), the squark
and slepton squared masses separately average to a com-
mon value Mo which can then be identified with M&. In
the general case it is also possible to de6ne Mg in such
a way that the one-loop corrections to ns(Mz) due to
this splitting cancel exactly. The percentage corrections
to the other (much larger) inverse couplings are then also
expected to be small. If tan(P) is large (compared to 5
say) it is necessary to enlarge this system to six equa-
tions and consider the e8'ects of the b and v. Yukawas
on the running of the other couplings. In this work we
will restrict our attention to tan(P) ( 5 which is in any
case theoretically preferred from proton decay and other
considerations. The system of difFerential equations as
given, for example, in [4] then relates the following 10
parameters: (1) the unification scale Mx, (2) the uni-
fied gauge coupling np(Mx); (3) the top Yukawa at the
unification scale nt(Mx); (4) the SUSY scale Mg, (5)
the ratio tan(P) of the Higgs vacuum expectation val-
ues; (6) the weak angle sin (8~); (7) the fine-structure
constant at the Z scale n(Mz); (8) the strong-coupling
constant at the Z scale ns(Mz); (9) the value of the top
quark mass M&, (10) the value of the b/r mass ratio at

sin [Hiv(Mz)] = 0.2324 —0.002[Mt /(138 GeV) —1]
+0.0003, (2b)

mt, /m = 2.39 + 0.10 . (2c)

In the light gluino variant, the gluino slows the running of
the strong-coupling constant between Mg and mg, and if,
in addition, the standard supergravity-inspired model is
chosen for soft SUSY breaking, the charginos and two of
the neutralinos are at the Z scale [5]. In either the light
or heavy gluino case, the solution space is a compact re-
gion in the ten-dimensional space defined above which
can be projected onto any of its 45 planes to explore cor-
relations between the various parameters. For example,
in Fig. 1 we show the correlation between Mg and M~
with the values of ns(Mz) indicated by shape coding.
The great current interest in SUSY is due to the fact that
this compact region overlaps with current measurements
of sin (0~), ns(Mz), and mt. In addition it contains
sufficiently high values of M~ to be consistent with the
current nonobservation of proton decay and sufficiently
low values of Ms to be consistent with theoretical argu-
ments relating this scale to that of electroweak symmetry
breaking. It is interesting to note that if the top quark
is in the region between 159 and 189 GeV as suggested
by the Fermilab events, the solutions give tan(P) ( 2.3
very close to the value tan(P) = 1.88 required [6] in the
light gluino scenario with radiative breaking. However
there are some problems. First of all radiative breaking
in the light gluino scenario requires a much lower phys-
ical top quark mass (124 GeV) [5,6] than Eq. (1) found
in the numerical solutions. This problem also exists in
the no-scale version of the heavy gluino case [7] and to
a lesser extent in the full minimal SUSY [minimal su-
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I I I i I i I 1 I I I I I I i heavy gluino: ns(Mz) = 0.097 + 0.003 . (4b)
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FIG. 1. Correlation between Mg and M~ in the solution
space of the minimal supersymmetric model. Solutions are
printed as squares, triangles, circles, and diamonds if the value
of ns(Mz) is in the first, second, third, and fourth quadrants,
respectively, of the full allowed range 0.11& ci3(M) & 0.136.

persymmetric standard model (MSSM)] model imposing
proton decay constraints [8,9] where the solution space
rapidly shrinks to zero if the top quark moves above 150
GeV.

Another potential problem in the MSSM may be
emerging with regard to the prediction for ns(Mz). In
the supergravity (SUGRA) inspired MSSM with light
gluinos, the solution space is restricted [5] to the narrow
region

0.122 & ns(Mz) & 0.132 . (3)

light gluino: ns(Mz) = 0 115 + 0 003 .

There is a similar problem in the heavy gluino sce-
nario. In Fig. 1, solutions are found in the range
0.11& ns(Mz) & 0.136. This is consistent with the val-
ues at the Z [11,12] but is marginally inconsistent with
the values found &om the more accurate low-energy data
[15] in the heavy gluino case: namely,

(Lower values can be obtained if one in effect gives up the
idea of a universal gaugino mass and puts the charginos
and neutralinos other than the photino at M~ [10].) This
+4% prediction is consistent with measurements at the
Z [11,12] which however have large errors. It may also be
consistent with deep-inelastic results analyzed in the light
gluino case [13]. However, the vast body of quarkonium
and other low-energy measurements analyzed in the light
gluino case [14,15] seem to require

Other analyses [13,16] of low-energy data arrive at val-
ues about 10%%up higher than this but, in any case, there
is widespread agreement that the low-energy data is in-
consistent with a value of ns(Mz) above 0.117 [15]. On
the other hand, if one analyzes the solution space more
closely one finds that no solutions exist with ns(Mz)
& 0.117 unless M~ & 10" and Ms ) 1 TeV. Both of
the latter are undesirable. One expects Mg to be of or-
der of the electroweak scale 200 GeV because of the
hierarchy problem. In addition the lightest supersym-
metric particle should have a mass no greater than this
for cosmological reasons. Finally, the radiative breaking
constraint runs into an extreme fine-tuning problem if
Mp is much larger than this value. Similarly M~ & 10
runs into problems with proton decay. Although the lep-
toquark bosons could be as low as 10 GeV without
causing too rapid proton decay, the triplet Higgs bosons
must be above 10 GeV. Since M~, the energy above
which the theory becomes SU(5) symmetric, corresponds
to the maximum mass of the GUT scale particles, the
consistency of the theory is in danger unless M~ ) 10

The purpose of this paper is to investigate whether
these emerging problems might be alleviated by GUT
scale effects, i.e., by mass splitting among the GUT scale
particles. We consider both the MSSM and the missing
doublet model (MDM) [17,18] which differ in the GUT
scale Higgs content of the theory. We neglect the effect of
GUT scale splitting on the running of the Yukawa cou-
plings due to the quasi-fixed-point behavior of the top
Yukawa coupling. This causes the top Yukawa coupling
to be very insensitive to perturbations at the GUT scale.
GUT scale effects have been investigated recently prior
to our work [19] and those results can be compared with
ours below. The effect on the Yukawa couplings has been
treated by Wright [19] in the MSSM and found to be very
small in the low tan(P) region that we investigate in this
paper. Some non-negligible effect is observed in the 6/w
ratio but that does not seem to feed back significantly
into the other parameters discussed here. Langacker and
Polonsky [19] have treated the GUT scale effects on the
gauge couplings in the MSSM with inclusion of SUSY
splitting effects. Polansky and Pomarol [19] have studied
the effect of GUT scale splitting on the SUSY-breaking
parameters. Although signi6cant effects are seen on the
masses of individual SUSY particles, their results do not
seem inconsistent with those presented here. Some of
our results for the heavy gluino case of the MDM can be
seen in broad outline in the quasianalytic work of Hagi-
wara and Yamada and Yamada [19]. However we find
significant departures from, for example, their quoted
prediction for the ns(Mz) range due to their neglect of
the effect of the Yukawa couplings on the running of the
gauge couplings. In the MSSM the Higgs particles fall
into 24, 5, and 5 representations while in the MDM they
occur in 75, 50, 50, 5, and 5. The MDM provides a
natural explanation for the color Higgs triplet obtaining
a GUT scale mass while the electroweak Higgs doublet
has a mass at the electroweak scale. The running of the
gauge couplings in the high-energy region is, at the one-
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loop level, determined by the equations TABLE II. GUT scale Higgs particles in the MDM and
their contributions to the running of the gauge couplings.

i=t;+6, +6,
2'7t dO! .

n2 Q dt

where t = 1n(Q), b, represents the contribution of par-
ticles at the SUSY scale and below, b, represents the
contribution of the GUT scale leptoquark supermultiplet
at mass M, and 6; represents the contribution of the
GUT scale Higgs supermultiplet. The low-energy and
leptoquark contributions are

b, = (—,1, —3),

2

H(8 3)& H(8 3)
H(3 g), H(3 g)

H(6 2) & H(6 2)

H(I)I) ~ H(Ii~)
H(8 y)& H(8 y)

Dg, Dg

D2, D2

H5p, H5p

Sum

Rep.

(8,3,0)
(3,1,+ —',)
(6,2,+ ~)

(1 1 o)
(8,1,0)
(3,1,+ —,')
(3,1,+ -')

Mass

0.4M'
0.4M'
0.2M'
Mz),

MD,
M@

bi (2)
0
10
10

2
5
2
5

173
5

277
5

35
285

5
295

5

b2(~) b3(i)
16 9
0 1

10
0
3
1

b; = (—10, —6, —4),

100 GeV ( Ms ( 1 TeV, (8)

TABLE I. GUT scale Higgs particles in the MSSM and
their contributions to the running of the gauge couplings.

2

H(s, i)) H(s, i)
H(I 3) ) H(I 3)
H(g g), H(g g)

D, D
Sum

Rep.

(8,1,0)
(1,3,0)
(1,1,0)
(3,1,+ -')

Mass

M~
M~ /5
M~
Mg)

bi(j) b2(2)
0 0
0 2
0 0

0
2

b~(i)
3
0
0
1

4

for i = 1, 2, 3 in that order. The high-energy contri-
butions from Higgs supermultiplets are tabulated in Ta-
bles I and II adopted from [19] for the MSSM and MDM
cases, respectively. Since the Higgs singlet in Table I de-
couples from the running of the gauge couplings, in the
MSSM one can entertain the notion that the contributing
GUT scale particles are (at least approximately) degen-
erate. In the MDM, however, as can be seen from Table
II there are unavoidable mass splittings which have im-
portant consequences for the solution space. In both the
MSSM and the MDM, proton decay will be too rapid if
the color Higgs triplet with hypercharge +3 is below 10
GeV. We therefore require that MD and, in the MDM,
Mg and M@, are above this value while allowing uncon-
strained values of the other masses. Since the D~ and
D2 in the MDM have relatively minor effect on the gauge
coupling running, we equate their masses for simplicity.
The solution space of the MSSM is enlarged to 12 dimen-
sions with the replacement of the single M~ by the three
parameters M~, MD, and Mg. In the MDM the solu-
tion space becomes 13-dimensional with M~ replaced by
Mi, Mz&, and Mg, and M@. We equate the (dimensional
reduction) gauge couplings and the b and r Yukawa cou-
plings at M~ defined to be the maximum mass of the
GUT scale particles. For each choice of Ms, tan(P), and
the GUT scale parameters we integrate to low-energy
decoupling each particle at energy scales below its mass.
The contributions of the GUT scale particles are treated
only in one-loop approximation. We also require

in accord with the theoretical prejudices discussed above
and Mq ) 131 GeV in the heavy gluino case as re-
quired by the Fer'milab experiments. In the light gluino
case nonstandard decay modes could allow a lighter top
quark. The solution space is characterized by minimum
and maximum values of various parameters which are
tabulated for the various models in Table III.

In the MSSM we find that the inclusion of GUT scale
effects does not appreciably lower the range of ns(Mz)
which lies between 0.117 and 0.133. For the heavy gluino
case with arbitrary GUT scale splitting subject to the
proton decay constraint, we show in Fig. 2(a) the cor-
relation between Ms and ns(Mz) with values of Mq in-
dicated in shape coding. The solutions are plotted as
squares, triangles, circles, or diamonds if the top quark
is in the first, second, third, or fourth quadrant, respec-
tively, of the full range from 144 to 207 GeV. In Fig. 2(b),
the same correlation is shown for the light gluino case
(M& &5 GeV). Our result for the ns(Mz) range in the
heavy gluino case of the MSSM is in good agreement with
the findings of [19] namely ns(Mz) ) 0.115 (Langacker
and Polonsky) and ns(Mz) ) 0.118 (Wright). Figure 3
shows, in the light gluino case, the correlation between
M~ and MD with values of Mg indicated in shape cod-
ing. The solution is plotted in Fig. 3 as a square, tri-
angle, circle, or diamond if the Mg value falls into the
first, second, third, or fourth quadrant, respectively, of
the full range given in Table III. In Fig. 4, we show the
correlation between tan(P) and Mq in the light gluino
case. The quadrant values of the top Yukawa coupling
at M~ are shown in shape coding. The solution is plot-
ted as a square, triangle, circle, or diamond, respectively,
if the nq(M~) value falls in the first, second, third, or
fourth quadrant of the full solution space range which is
0.198& nq(Mx) & 1.0 in the light gluino case (see Ta-
ble III). We do not show the corresponding correlations
in the heavy gluino case of the MSSM since these have
been discussed recently by other authors [19] and we find
general agreement with their results in spite of slightly
differing approximations made. For example, the mini-
mum value of M~ given in Table III agrees exactly with
that of Wright [19].

In the MDM the situation is quite different. The in-
trinsic mass splittings at the GUT scale have the effect of
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TABLE III. Minimum and maximum values for the (at least partially) unconstrained parameters
in the solution spaces of the missing doublet model and the MSSM with and without GUT scale
splittings. Imposed lower or upper limits are underlined. All masses in the table are in GeV. The
SUSY scale is restricted to 100 GeV& Ms & 1 TeV.

Mv

n~(Mx).
ns(Mz)

Mg

sin 8~

M~ =Ms
M~ &Mb
M~ =Ms
M~ &Mb
M~ =Ms
MG &Mb
M~ =Ms
M~ &Mb
M~ =Ms
M~ &Mb
M~ =M,
M~ &Mb
M~ ——Ms
M~ &Mb
M~ =Ms
M~ &Mb
M~ =M,
M~ &Mb

MSSM (degenerate)
23.6,25.4
23.4,24.5
(1.2,3.0)10
(2.3,4.0)10

0.214,1.00
0.299,1.00
0.117,0.127
0.122,0.132
145,207
146,203
0.2291,0.2325
0.2304,0.2324

MSSM
22.7,27.1
22.6,26.3
(0.7,8.2) 10'
(1.2,8.7)10'
(1.0, 24)10
(1.0, 33)10
(0.32,15)10
(0.62,19)10

0.195,1.00
0.198,1.00
0.117,0.133
0.119,0.137
144,207
146,197
0.2296,0.2324
0.2301,0.2324

MDM
3.8,25.9
4.1,25.0
(2.3,21)10
(3.6,19)10
(1.0, 18)10
(1.0, 16)10
(1.2, 6.7)10
(1.2, 6.4)10
(1.0, 7.8)10
(1.0, 6.7)10
0.013)0.387
0.010,0.354
0.095,0.114
0.095,0.113
131,193
108,184
0.2302,0.2329
0.2306,0.2332

significantly reducing the solution values of mrs(Mz). Fig-
ure 5(a) shows the correlation between Ms and ns(Mz)
with Mq indicated by shape coding. Figure 5(b) shows
th same correlation except here the gluino is put below
the b mass. The solution spaces overlap well with Eqs.
(4a) and (4b). Figure 6(a) and 6(b) show the correlation
between M& and M+ in the heavy and light gluino cases,
respectively. The solutions are plotted as squares, trian-
gles, circles, and diamonds if the MD value lies in the
first, second, third, or fourth quadrant of its full range
given in Table III. One sees many solutions with high val-
ues of MD and low values of M~. Such solutions would
have the interesting consequence that proton decay would
procede through the leptoquark gauge bosons leading to
the "standard model" proton decay mode e+vr unlike
the typical supersymmetry signature of a vK+ dominant
decay. Figures 7(a) and 7(b) show the correlation be-
tween tan(P) and Mq in the heavy and light gluino scenar-
ios, respectively. The quadrant value of the GUT scale
Yukawa coupling nq(M~) is indicated in shape coding
with squares, triangles, circles, and diamonds being used
if nq(M~) lies in the first, second, third or fourth quad-
rant of its full range given in Table III. The data show
solutions for very low values of Mz unlike the situation in
the MSSM. This is only of academic interest if the events
observed at Fermilab are indeed due to top quark pro-
duction. Even if the Fermilab events are not due to top
quark production it is now experimentally ruled out that
a top quark with a standard model decay chain could lie
below 131 GeV. However, in the light gluino scenario, if
Mp is also relatively low a light top quark could have
evaded the Fermilab search since it would have the non-
standard dominant decay chain

t +tG
=Wb

I ~ qqG

Such a decay chain would not lead to energetic leptons
and hence would not trigger the Fermilab top quark de-
tector. Thus in the light gluino case, it is possible that the
top quark lies significantly lower than the 174 GeV sug-
gested by the Fermilab events which in that case would
have to be attributed to standard model backgrounds
or, perhaps, to other SUSY sources. Such a light top
quark might be in agreement with that required by ra-
diative breaking in the light gluino case [6,5]. It might
also resolve the anomalously large top quark production
cross section implied. if the observed events are due to a
174-GeV top quark. A light top quark is not, however, a
prediction of the light gluino case however since solutions
with higher top mass are also seen in Fig. 7(b).

Another new feature of the missing doublet model is
that low values of the top Yukawa coupling are allowed
unlike the case in the MSSM where most of the solu-
tions involve top Yukawa couplings at M~ close to the
"perturbative limit, " o.q

——1.
In Table III we summarize the solution space of the

three models under consideration. We require Mg & 1
TeV and plot the minimum and maximum values of each
of the parameters which are at least partially uncon-
strained by experimental or theoretical bounds. The re-
sults in the light and heavy gluino cases are shown sep-
arately. The predictions for the top mass and sin 0~
have comparable ranges to the experimental indications
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FIG. 3. Correlation between M~ and M~ in the light
gluino case of the MSSM with GUT scale corrections. The
shape coding indicates the quadrant values of Mz (see text).
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FIG. 4. Correlation between tan(P) and Mz in the light
gluino case of the MSSM with GUT scale corrections. The
quadrant value of the GUT scale Yukawa coupling oz(Mx) is
indicated by the shape coding. (See text. )
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rameters that cannot be seen in Table III. Some of these
are displayed in the figures.

Our results may be summarized as follows.
(1) The minimal supersymmetric model with a SUSY

threshold below 1 TeV and a GUT scale spectrum con-
sistent with proton decay is inconsistent with low-energy
measurements of the strong-coupling constant that sug-
gest a value as(Mz) ( 0.117. Allowing splitting of the
GUT scale degeneracy does not improve agreement.

(2) The missing doublet model predicts, to within
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FIG. 5. (a) Correlation between Ms and as(Mz) in the
heavy gluino case of the MDM with GUT scale corrections.
The shape coding indicates the quadrant values of the top
quark mass (see text). (b) As in (a) except here for the light
gluino case.

FIG. 6. (a) Correlation between M& and M@ in the heavy
gluino case of the MDM with GUT scale correlations. The
shape coding indicates the quadrant values of Mo (see text).
(b) As in (a) except here for the light gluino case.



51 GRAND UNIFICATION SCALE EFFECTS IN. . . 3919

195

182

169

156

I I l I I04 00 p

O +~Pd 0 000 g Pp
0O+d d

0PQ
0 p 0

404 p
0

OO &Qp p
0

pp

O',~, 0

0
O~~OOa o 0

Ob Op
a' 0P
"4 Ob

00 OOP
pp

I

l.64
l

2.46
f

3a28

tan (p)

4.1 4.92

190

+9%, a low value of the strong-coupling constant in
agreement with low-energy data. The unification pre-
dictions might however be expected to rise somewhat if
one allows smooth thresholds [20].

(3) In the MDM the GUT scale, defined as the mass

above which the theory is SU(5) symmetric, reaches
above 10 GeV, improving agreement with string theory
expectations. In many solutions the leptoquark gauge
multiplet lies an order of magnitude below the Higgs
multiplet allowing standard-model-like err proton decay
modes to dominant over the vK modes usually expected
in supersymmetry.

(4) In the MDM the top quark mass predictions extend
to lower masses. In the light gluino scenario such a light
top could evade the Fermilab bounds due to nonstandard
decay modes and could provide agreement with radiative
breaking ideas. Higher top mass values are, however, also
found among the unification solutions with both light and
heavy gluinos.

(5) In the MDM the top Yukawa coupling remains com-
fortably in the perturbative region from low energies to
the GUT scale as can be seen from the comparisons in
Table III.

This work was supported in part by the Department of
Energy under Grant No. DE-FG05-84ER40141. While
this manuscript was in preparation, a paper [21] appeared
noting the inconsistency of the MSSM with low-energy
values of the strong-coupling constant [the first part of re-
sult (1) above]. As a word of caution one should note that
as one approaches the Planck mass there could be signif-
icant perturbations to the results presented here from
gravitational effects [22]. These cannot at present be
treated in a reliable way.
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d
4vr —1n(ni) = 2(d«nt —ci,n, ), (A2)

In this appendix we give some details of our numer-
ical techniques used to eKciently demarcate the uni6-
cation solution spaces. We wish to solve a set of five
coupled di8'erential equations for the three gauge cou-
plings n;(Q), the top Yukawa coupling nq(Q), and the
ratio r = g(ni, /n ). These equations are of the form

8 ba
130 -ODS o

~D
gP 0 d

4~—ln(r) = (d~i —d, )n, —(c~; —c;)n; . (A3)
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FIG. 7. (a) Correlation between tan(P) and M~ in the
heavy gluino case of the MDM with GUT scale correc-
tions. The quadrant value of the GUT scale Yukawa coupling
n&(Mx) is indicated by the shape coding. (See text. ) (b) As
in (a) except for the light gluino case.

Here t—:ln(Q) and the normalization is such that the
coefBcients coincide with those listed in [4]. In the nu-
merical analysis, we add to these the eKects of the 6 and
w Yukawa couplings (treated as nonrunning) and of the
two-loop contributions to the Yukawa couplings. These
however give negligible contributions in the case of small
tan(P) to which we restrict our attention. The boundary
conditions are defined as
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n (Mx) = n, (M/) = n '(M/) —1/(67r)
= n, '(Mx) —1/(4~),

In addition to the GUT scale b; and b; tabulated in
Tables I and II, the 6; are given in terms of the individual
contributions by

bg ——[2.2+ N /2+ 17(N, + Ng)/30+ Ns/6](1+ Ns/2)
+(Nh + 4N„- + Ns) /10, (A4)

b2 ——[s + N /6 + (N + Ns + Ng)/2] (1 + Ns/2)
—22N~/3+ 4Ng, /3+ (Nh, + 4N„- + Ns)/6, (A5)

bs = —11 + 2N~ + 2Ny(1 + Ns/2)/3 )

with a quark number

(A6)

Ny ——3 + N, + Nb + Ng . (A7)

The contributions from the GUT scale gauge supermul-
tiplet are

6, = (—10'., 6Nv. , —4—Nv), i = 1, 2, 3 .

The contributions from the GUT scale Higgs supermul-
tiplets can be read from Table I or II in the MSSM or
MDM, respectively. The N's are zero far below the cor-
responding particle mass and unity far above. In this
paper we work in the 0 function approximation where
the N, 's are taken to be 0(Q —M;). For example, N&
is taken to be a 0 function at the gluino mass and Ns is
taken to be a 0 function at the SUSY threshold treated as
degenerate apart from the particles explicitly separated
out in Eqs. (A4) —(A6). It is clear from these equations
how to separate Ns into the contributions from nonde-
generate squarks and sleptons if desired. The effects of
the light quarks and leptons are included as constants.
The 0-function approximation could be made exact if the
mass dependence of the threshold effects were correctly
included elsewhere in extracting the coupling constants
from experiment. Since this cannot be done without prior

Bgg ——19'�(1+ Ns)/30 + 9(Nh + Nh/2 + Ns/2)/50,
(A8)

Bg2 ——3'(1+Ns)/10+ 9(Ng+ Nh/2+ Ns/2)/10,
(A9)

Bgs ——44'(1+ Ns)/30, (A10)
B21 = Nf (1 + Ns)/10 + 3(Ng + Nh/2 + Ns/2)/10

(All)
B22 ———136N~/3 + 64', /3+ 49Nf (1 Ns/7)/6

+13Nh, /6 + 29(Nh + Ns)/12, (A12)
B2s ——2'(1+ Ns), (A13)
B3$ —11Nf (1 + Ns)/60 (A14)
Bs2 ——3'(1+Ns)/4, (A15)
B33 ——102 + 38'�(1—2Ns/19)/3 + 48NG . (A16)

The top Yukawa contributions to the gauge running are
defined by the coefficients

aqua ——17N& (1 + 35Ns/17) /10,
a2q ——3Nq(1 + 3Ns)/2,
as' ——2'(l + Ns) .

(A17)
(A18)
(A19)

The running of the Yukawa couplings is defined by the
coefficients

knowledge of the SUSY spectrum, it would at present
be more accurate to use a smooth function for the N;
as has been done elsewhere [14,20] (but not with total
consistency). We leave this, however, for future study.
For definiteness we put the light Higgs boson mass Mh
at 60 GeV. In the heavy gluino case we take a degener-
ate SUSY spectrum (N& ——Ng, = N& ——Ns). In the
light gluino case, we take M& ( Mb, M~ ——M& ——49
GeV. The heavy Higgs boson and the charged Higgs bo-
son are put at Mg. This approximate spectrum is sug-
gested in the minimal SUGRA model with a universal
gaugino mass put to zero at the GUT scale. Reason-
able splittings among the squarks and sleptons will not
significantly affect our conclusions.

The two-loop contributions to the gauge running are
defined by the coefficients

dye ——9'(l+ Ns/3)/2, 3'(l —Ns/3)/2, 3'(1 —Ns), 1 = &, b, T,
ct~ = 17'(1+Ns/51)/20~ 9'(1+Ns/3)/4~ 8N|, (1 —Ns/3), i = 1, 2, 3,
cs; = Ns(1+ 13Ns/15)/4, 9'(l + Ns/3)/4, 8'(1 —N, /3), i = 1, 2, 3,
c; = 9N (1 —Ns/5)/4, 9N (1+Ns/3)/4, 0, i = 1, 2, 3 .

(A20)

(A21)
(A22)

(A23)

The first step is to choose random values for Ms and
the GUT scale parameters between some minimum and
maximum values. The minimum and maximum values
are chosen to satisfy Eq. (8) and the perturbativity re-
quirement for the top Yukawa coupling, nq(Mx) ( 1,
as well as the proton decay constraints discussed in the
text but are otherwise unconstrained. The parameters
are controlled by a set of random numbers ranging from
zero to one. We ensure that no solutions are missed out-

side of the resulting envelope by monitoring the distribu-
tions of random numbers and requiring that no solutions
are found in the outer 5%; otherwise the boundaries are
moved out until this is true. This procedure is based
on the assumption that the solution space is simply con-
nected.

From these input values we must integrate down to
low energies and record thy "solutions" that are consis-
tent with experimental constraints of Eqs. (2). It is in-
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efficient to numerically integrate every random choice of
the input parameters down to the b quark scale. Instead
we proceed as follows. In step (2) we use the analytic
approximation techniques discussed in [23] to estimate,
&om Mg and the GUT scale parameters, the Z scale
values of ni(Mz), n (Mz), sin 8~, and o'3(Mz) ~

general these predictions are good to within a few per-
cent but it would be dangerous to rely on this. Each
prediction p, (Z) is required to satisfy

p, (Z) = p,o(Z) + e, (A24)

before a full numerical integration to low energies is
performed. Until the first solution is found p, o(Z) is
taken within the experimental range and a generous er-
ror (much larer than the experimental error) is taken for
the e;. As long as e; is large enough the exact values of
p; and e; are not critical. After the first solution is found
p,o(Z) is repeatedly readjusted to the average of the suc-
cessful predictions. This average need not overlap the
experimental values since the analytic results have some
systematic error and only the results of successful nu-
merical runs are accepted as solutions. After the second
solution is found e; is repeatedly readjusted to four times
the rms deviation of the successful predictions. In this
way the program rapidly "learns" which random choices
of the input parameters are worth numerically integrat-
ing. As a check, with a probability of 10%%u&, a numerical

integration is performed on input choices which lead to
predictions within 8 standard deviations of the successful
predictions. The number of successful predictions from
these runs is monitored and found to be negligible (usu-
ally zero). We are thus confident that no valid solutions
are being lost by this procedure which can significantly
speed up the generation of solutions. A few low statis-
tics runs have been made without use of the prediction
subroutine as a final check of the results.

Although tan(P) is technically an input parameter it
is ineKcient to choose tan(P) before integrating to low
energies. For each value of the first four input parame-
ters Mx, no(Mx), nq(Mx), and Ms, a range of values
of tan(P) will lead to a solution. Most solutions will be
lost if a predetermined value of tan(P) is insisted upon.
Apart from a small effect to be discussed below, nothing
depends on tan(P) until one reaches the top quark en-

ergy scale. Therefore, without choosing tan(P) we first
integrate down to an intermediate scale randomly cho-
sen between 230 and 690 GeV in 125 steps in ln(Q). We
then integrate in a further 125 steps from this intermedi-
ate scale down to Mz. At each step below 220 GeV we
assume that the energy is a possible value for Mq. Based
on the couplings at that point we analytically estimate
the value of sin giv(Mz). This can be done quite ac-
curately since the extrapolation in ln(Q) is small. If the
assumed value of Mq and the estimated value of sin (0~)
are in agreement with the experimental correlation Eq.
(2b) we define a value of sin(P) from the relation

sin(P) = M&[173 GeV /4mnt(Mt, )(1+4n3(Mg)/(3m) + llns(Mq) /vr )]

n," (Ms) = nc(Ms) sin P . (A26)

The coefficients are defined to govern the running of this
"effective" standard model Higgs coupling below Mg.

We then repeat this procedure at the following steps until
no further consistent values of Mq and sin 0~ are found.
Then from among the acceptable pairs of Mq and sin(P)
we choose one solution at random. We decouple the top
and proceed down to the Z, where the exact numerical
value of sin 0~ is then found. The solution is kept if the
experimental constraints of Eqs. (2a) and (2b) are satis-
fied. In the usual procedure of fixing tan(P) in advance,
Eq. (A25) becomes a nonlinear equation to be solved for
Mq and nt, (Mi) which introduces some error in addition
to the inefficiency described above. However, our proce-
dure also involves some small errors. The first is that the
top quark is decoupled at the lowest acceptable value of
Mq instead of at the actual solution chosen. These values
however differ typically by less than 10 GeV so that the
effect on the gauge couplings at Mz is very small. In
addition there is another small error alluded to above.
The usual procedure in extrapolating &om M~ down to
Mz is to define an effective standard model field theory
below Mg. The effective standard Higgs coupling is

When one reaches the top scale the top mass relation
1S

Mg ——173 GeV 4vr o,"~( Mg)

4o.
x 1+ 3(Mg) + lln (M, )/7r

37r
(A27)

The difference between this and Eq. (A25) is extremely
small for Mg less than a TeV since the top Yukawa cou-
pling is running very slowly in this region. To further
minimize the discrepancy while preserving the advan-
tages of not choosing tan(P) in advance, we perform the
scaling of Eq. (A26) with an "average" value of sin(P)
corresponding to tan(PO) = 1.8.

If after reaching the Z scale the solution is still viable
we extrapolate down to the 6 quark scale in a further 125
steps including in the strong-coupling running the effect
of the three-loop coefficient:

bsss ———2857/2 + 5033Nf /18 —325N~ /5 . (A28)

Since the electromagnetic effects on the running of o.3
and r are very small in this region and the effects of
the running of the electromagnetic coupling on o.3 and
r are even more negligible we neglect to switch to an
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effective U(1) gauge theory below M~. Instead we run
the full standard model couplings (decoupling the W at
82 GeV). This slight approximation and that discussed
above at the top quark scale could be avoided if, instead
of using efFective field theories in the various regions, the
full supersymmetric theory was adhered to with a natural
smooth decoupling of particle contributions below their
mass. Equation 2(c) corresponds to a running b quark
mass of 4.25+0.17 GeV. @CD corrections bring this up

to a physical b quark mass of 4.95+0.20. We require
therefore that the b/r mass ratio, r, reach the value of Eq.
(2c) at the scale 4.95 GeV. We neglect the running of the
w mass from the b quark scale down to the 7 mass scale
since this is extremely small compared to the uncertainty
in the b quark mass. If the couplings pass the anal test
of Eq. (2c) the 10-, 12-, or 13-dimensional solution in the
case of the MSSM, the MSSM with GUT scale splitting,
and the MDM, respectively, is recorded.
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