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Evolution of the pion distribution amplitude in newt-to-leading order
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The evolution of the pion distribution amplitude in next-to-leading order is studied for a fixed and
a running coupling constant. In both cases, the evolution provides a logarithmic modification in the
end point region. Assuming a simple parametrization of the distribution amplitude at a scale of qo
0.5 GeV, it is shown numerically that these efFects are large enough at Q 2 GeV that they have to
be taken into account in the next-to-leading-order analysis for exclusive processes. Alternatively, by
introducing a new distribution amplitude that evolves more smoothly, this logarithmic modification
can be included in the hard-scattering part of the considered process.

PACS number(s): 12.38.Bx, 13.40.Gp

I. INTRODUCTION

The perturbative approach for hard exclusive quan-
tum chromodynamic (QCD) processes was developed
for more than one decade [1—4] (see Ref. [5] for re-
views). In this approach, the scattering amplitude at
large momentum transfer Q factorizes as a convolution
of process-independent distribution amplitudes, with
a process-dependent perturbatively computable hard-
scattering amplitude. By using the leading-order pertur-
bative QCD (PQCD) analysis, which was performed for
a large number of exclusive processes including mesons
and baryons, the qualitative behavior for large Q could
be well understood [6,7]. However, using the asymptotic
distribution amplitudes, which follow directly from the
solution of the evolution equation, results in predicted
normalizations for the elastic form factors at experimen-
tal accessible momentum transfer that are too small; in
the case of the magnetic nucleon form factor, this pro-
vides the opposite sign.

Prom deep inelastic scattering, where the application
of PQCD is generally accepted, it is known that the used
parton distribution functions for accessible Q are far
&om their asymptotic form where all higher moments
m, i.e. , n ) 0, vanish. It is therefore expected that for
the exclusive processes at accessible momentum transfer,
the distribution amplitudes are nonasymptotical. Choos-
ing distribution amplitudes that are enhanced in the end
point region (and asymmetric for nucleons) provides the
observed normalization and sign for the elastic form fac-
tors.

Reference [8] argues that choosing such enhanced am-
plitudes provides inconsistencies that afFect the impor-
tance of higher twist contributions, as well as of perturba-
tive nonleading-order terms, and so the PQCD approach
to elastic form factors probably is not self-consistent. (A
second point widely discussed in the literature is the non-
perturbative contribution &om the hadronic wave func-
tion [8,9].) Phenomenological methods, such as those
that (1) introduce a gluon mass, (2) freeze the running
coupling constant for small virtuality [10],or (3) suppress
the end point region by suitable distribution amplitudes

or by a cutoff [11],are used to improve the stability of the
PQCD approach. Recent incorporation of Sudakov sup-
pression has shown that the PQCD approach for the pion
form factor is self-consistent for a momentum transfer of
Q 20AclcD [12] (see also Ref. [13]).

The validity of the PQCD approach for exclusive pro-
cesses can also be studied by direct calculations of higher
twist and perturbative norileading contributions. It ap-
pears that higher twist analyses have not been achieved
quantitatively. The stability of the perturbation the-
ory has been investigated neglecting the evolution of
the distribution amplitude by next-to-leading-order cal-
culations for the pion transition form factor [14,15], the
pion form factor [16,17], and the two-photon processes
pp —+ M+M (M = m. , K) [18].Discrepancies in the one-
loop approximation of the hard-scattering amplitude for
the pion form factor were clarified in Refs. [19,20]. The
next-to-leading-order corrections to the pion form factor
and to the processes pp ~ M+M are rather large at
accessible momentum transfer.

Including the evolution of the distribution amplitude
in these analyses requires the solution of the differential-
integral evolution equation, which can be done by using
the moment method. The corresponding two-loop ap-
proximation of the integral kernel was computed by dif-
ferent authors and the obtained results agree with each
other [21]. It has been confirmed that the computed
evolution kernel is consistent with the Gribov-Lipatov-
Altarelli-Parisi kernel [22] and with conformal syinmetry
breaking in massless gauge field theories [23]. Because
of the complicated structure of the evolution kernel, only
the Grst few moments of the evolution kernel had been
computed numerically [24]. Based on this incomplete
computation, it was believed that the next-to-leading-
order correction to the evolution of the distribution am-
plitude and the contribution of this correction to the pion
form factor are rather small [24,25].

Recently, using conformal constraints, the complete
formal solution of the evolution equation in next-to-
leading order could be obtained without knowing the evo-
lution kernel by a one-loop calculation [23]. This paper
studies this solution in detail and shows that the evolu-
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tion of the distribution amplitude must be included in
the next-to-leading order analysis. Sec. II reviews to
leading order the evolution equation of the distribution
amplitude and the solution in terms of the conformal spin
expansion. The evolution of the distribution amplitude
in next-to-leading order for fixed o., is studied in Sec.
III. This includes a detailed investigation of the large
n behavior for the next-to-leading order corrections to
the eigenfunctions p' (x, n, ) and eigenvalues p (n, ) of
the evolution kernel. Numerical results for the evolution
of the asymptotic, the Chernyak-Zhitnitsky two-hump,
and another convex distribution amplitude are presented.
Sec. IV analyzes the solution of the evolution equation
in next-to-leading order with running coupling, showing
by numerical computation that the next-to-leading-order
corrections are also large in this case. Section V discusses
the obtained result, comparing it with a previous result
[24], and presents the conclusions.

1

O'„, V(*,Q') = dyV(z y ~ (q')) ~ (y q')
0

(4)

where n, = g2/(4z) is the @CD fine structure constant.
The evolution kernel V(x, y; a, ) = (n, /2m) Vl l(z, y) +
(n, /2')2 V~il(z, y) + . . has been computed pertur-
batively in one- and two-loop approximations by using
dimensional regularization in the modi6ed minimal sub-
tracted (MS) scheme [21].

The evolution equation (4) can be solved by conformal
spin expansion:

).I (1 —x)x

n=0«."(2z —1) (olo-(~') IP)"'I. =~ (5)

II. DISTRIBUTION AMPLITUDE AND THEIR
EVOLUTION

The distribution amplitude p(z, Q2) is the probabil-
ity amplitude for finding a valence quark (antiquark)
with light-cone inomentum fraction x (1 —x) in the pion
probed at large momentum squared Q2 [1]. This ampli-
tude can be deflned as the expectation value of renormal-
ized nonlocal light-cone operators [1,22]:

(p(z, Q ) = f —exp[ir(hP) (2x —1)]
7r

x(0IO(r. ;n)IP) I„.
where, for simplicity, the renormalization point p is set
equal to the large momentum transfer Q (this choice is
not optimal with respect to the factorization scale set-
ting for the considered processes; however, it is sufhcient
for the following discussions). The light ray vector h is
chosen as n = (n+ ——o, n = 2, 0~) so that nP = P+,
IP) denotes the pion state with momentum P, and

0(r; n) =:@g(—/eh)»(hp) U( rn, rn) Q„(K—h):

(n+ 1) (n+ 2)
4(2n+ 3)

where the sum runs only over even n [to ensure
the above mentioned symmetry of p(z, Q2)]. Here,

(OIO„(Q )IP)" = J' dxC„(2x —1)y(z, Q ) are re-
duced expectation values of local operators that in lead-
ing order do not mix under renormalization [3,26]. In
the &ee field theory, these operators labeled by the con-
formal spin form an infinite irreducible representation of
the so-called collinear conformal algebra, which is a sub-
algebra O(2, 1) of the full conformal algebra O(4, 2) [27].
The Gegenbauer polynomials C„oforder 3/2 form an3/2

orthogonal and complete basis in the space of quadrate
integrable functions with the weight (1 —z)z. Thus, ex-
pansion (5) converges if p(z, Q ) vanishes at the end
points of the interval [0, 1]; see, for instance, Ref. [28].
This condition is automatically satisfied [6].

The Q dependence of (OIO (Q )IP)" can be deter-
mined &om the evolution equation

Q' d, (oIO-(q')IP)

is the light-cone operator with the flavor content of
the considered pion. The path-ordered. phase factor
U( —r~h, rn) ensures the gauge invariance of this oper-
ator. The pion decay constant f = 133 MeV introduced
in (1) guarantees the normalization [1]

f
1

dz V(z, Q') = f. '(oI:@~(0)»(h~)@-(0):IP)/nP

Analogous to a quantum mechanical ground state, it is to
be expected that rp(z, Q2) can be chosen to be positive.
Notice that because of charge conjugation invariance, the
symmetry relation y(z, Q ) = p(1 —x, Q ) holds true.

The evolution equation for p(x, Q ) derived in
Refs. [1,6] can also be obtained in a straightforward man-
ner from the renormalization group equation of the non-
local operator 0(r.; n) [22]:

=
—,

' ) '
~„„(~.(q')) (olo, (q')lp), (6)2 k=o

(o IO„(q') IP) (oIO-(qo) IP) (7)

where the anomalous dimension matrix
(o., /2vr) p b g + (o., /2vr) p & + is diagonal in one-
loop order. In general, Poincare invariance of the theory
assures the triangularity of the matrix j:= (p i, ). The
eigenvalues p = p are identical with the flavor non-
singlet anomalous dimensions known &om deep inelas-
tic scattering (moments of the Gribov-Lipatov-Altarelli-
Parisi kernel). In leading order the solution of (6) is given
by
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a+
( + 1) ( + 2)

n+1

4)
Z

where Qp is an appropriate reference momentum, A is
the /CD scale parameter,

tion equation for fixed coupling constant o;, . In this case,
the mentioned excitation of higher harmonics by evolu-
tion will not disappear in the asymptotic limit Q ~ oo.
Expansion of p(x, Q ) with respect to the eigenfunctions
rp'f(x, n, ) of the evolution kernel V(z, y, n, ) provides im-
mediately the solution of the evolution equation

C~ = 4/3, and Pp
——(11/3) C~ —(2/3) nf, with ny is the

number of active quarks and C~ ——3.
Since p ( 0 for n ) 0, (OIO„(Q )IP)" decreases

[see Eq. (7)] with increasing Q2, so that all harmonics
with n & 0 will also be suppressed. Furthermore, current
conservation implies pp = 0 so that from Eq. (5) the
asymptotic distribution amplitude follows:

i ~-(~*)/2
t 2

V(* Q') =). V.'(z ~ )

x (0IO„(Q,') IP) (10)

(p '(x) = lim p(x, Q ) = 6(1 —x) x, (9)

which does not evolve in leading order.
In next-to-leading order the operators mix under renor-

malization with each other. Thus the evolution of
(OIO„(Q )IP)" is deterinined by an infinite coupled
first-order differential equation system. Since the anoma-
lous dimension Inatrix is triangular, this system can be
perturbatively solved, resulting in a behavior qualita-
tively different than the solution from leading order.

For instance, if the iiutial condition is set as y(x, Qp) =
p '(x) = 6(1 —x)x at the reference momentum square
Qp2, then all higher harmonics will also be excited. In the
limit Q2 —+ oo, these excitations disappear, returning to
p '(x). This effect is investigated more generally and
quantitatively in the following two sections.

III. NEXT- TO-LEADING ANALYSIS FOR FIXED
COUPLING CONSTANT

The next-to-leading-order corrections to the evolu-
tion enters as a two-loop contribution of the eigenval-
ues p (n, )/2 and as n, corrections to the eigenfunctions
p' (z, a, ). The two-loop corrections of the eigenvalues
are well known &om the next-to-leading-order analysis
of deep inelastic scattering [29]. A closed expression for
the n, corrections to the eigenfunctions can be derived
from conformal constraints and a one-loop calculation
of the special conformal anomaly in Ref. [23] (here, the
result is reexpressed by a linear combination of Lerch
transcendent P[z, l, i], and taking into account the term
proportional to Pp):

ef( ) ( 1)n ( + n) i+n (1 )i+~
n+ 1! dz"

x 1+—P„(x) + O(n, )
( 2

2n.

To see the essential features of the next-to-leading-
order correction, consider first the solution of the evolu- where

F (x) = —(p —Pp) —ln[x(1 —x)] —g(2 + n) + g(4 + 2n)

ln ~ & 1+n
+C~ —) ——+ [P(1 —x, 1, i) + P(x, 1, i)]

2
~

i 2+n)
((3+2n) [p~ + vP(2+ n)]

(1 + n) (2 + n) 4 )

where @(z) = d ln(I'[z])/dz, p@ = 0.5772 . . . , and
P(x, 1,i) = g& p

x"/(i + k). The term proportional to
in Eq. (12) can be obtained directly by assuming a

nontrivial fixed point n*, , i.e., P(o.,') = 0, from a confor-
mal operator product expansion [31]. I thus refer to it
as the conformal symmetry-predicted part. Conformal
symmetry breaking by the P function provides a shift of
the anomalous dimensions p ~ p„—Pp. The remain-(o) (o)

ing term in Eq. (12) is proportional to the color factor

C~, and can be interpreted as an "additional" conformal
symmetry-breaking term that comes &om the renormal-
ization of the conformal operators in gauge field theory.

A. Corrections to the eigenfunctions

Consider the asymptotic limit Q ~ oo. As in lead-
ing order, the asymptotic distribution amplitude is com-
pletely determined by the eigenfunction po .
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PO (Xl ~8) = &PO (X~ O's) I

, (1-xl= 6(1 —x)x 1+—'
C& ln' +2

4vr ( x )
7r2

+ Po ln[(1 —x)x]+ — . (13)3 3 j

p„'(x, n. ) = * * C„'~'(2x —1)

+ ~ ()(*)+o(2'

~„'('i(x) = ) ' ' * C„(2*—1) c„'„~,
I =n+2 k

(14)

where

(gl (2n + 3) (P —Po + 4AA, )
(k —n) (k+ n+ 3)

+ 2(2n + 3)[A„„—g(k + 2) + g(1)]
(n+ 1)(n+ 2)

and

The term in yo proportional to Po gives a logarith-
mic modification. It is very interesting that the con-
formal symmetry-breaking term provides an unexpected
ln modification of the end point behavior. The o., cor-
rection to the asymptotic distribution amplitude (13) is
shown in Figs. 2(a) and 2(b).

We next study quantitatively the o., contributions for
the eigenfunctions with arbitrary n. For this purpose, it
is technically more convenient to deal with the represen-
tation [23]

~np (xi o'8)

( o (1 —x)x

= —' R„' + O(o.,') .
27r

)1/2

)
—1

Figure 1 shows that this analysis provides qualitatively
the same n dependence as for r, and that the o., con-(1)

tributions are now larger. Moreover, the following are
common features of the o., corrections to the eigenfunc-
tions.

For n = 0 and Po ——0, only the "additional" conformal
symmetry-breaking part gives a contribution, of order
n, /2vr. For Po g 0, this term is partly canceled.

Contributions &om the symmetry-predicted and
-breaking parts have di8'erent phases, so that the net con-
tribution is smaller.

In the case of Po ——0, the minimum is at n=6. For
Po g 0, this effect is washed out. For small n and Po ——0,
the corrections are small.

The relative corrections are growing logarithmically:

are only nonzero if k —n is even. To comprehend
these o., contributions quantitatively, consider the am-
plitude at x = 0.5. However, since the ln [(1 —x)/x]
term in Eq. (13) disappears at x = 0.5, it is clear that
the large contributions of the end point region will be
dropped out. Nevertheless, from Eq. (14) and C2„(0) =3/2

(—1)& l I'(3/2 + n) / [I'(1 + n) I'(3/2)] [30], the relative

contributions r = &p (0.5) / y (0.5) increase loga-(1) (1)ef (0)ef

rithmically with n, and are of order 2 for n = 10 (Po = 0),
respectively, for n = 2 (Po ——9).

To take into account the missed logarithmic modifi-
cation in the end point behavior, it is more reasonable
to use the following quantitative measure for the O(n, )
contribution:

k+n+4l (k —~&

—@(k+ 2) —g(1) (15)

r 0.347Po —[2.71 + 1.39 ln(2 + n)] C~,
Rl l (0.411P + [54.7 —35.9 ln(2 + n)

+6.58 ln (2 + n)] C~
+ [

—8.98 + 3.29 ln(2 + n) ]P Cy j ( ~ i
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FIG. 1. Values of r„(boxes) and R„
(circles) are given when (a) Pp is set to
zero arid (b) Pp = 9. The difference of
the relative value of the conformal symme-
try-predicted part (upper half plane) and of
the relative value of the "additional" con-
formal symmetry-breaking term (lower half
plane) is shown by solid boxes (circles). The
lines represent the corresponding asymptotic
expressions. (Subasymptotic terms were also
taken into account for the approximation of
R .) The relative deviation of the partial
sums &p„& (x) from the exact cx, correctioner(i)

(x) is given (c) for k = 2 and (d) for
k =10.0
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and in the limit n ~ oo, the relative corrections are
independent of Po.

Later, the evolution of y(z, Q2) will be computed nu-
merically. For this purpose, it is necessary to know how
well the partial sums

j dz (p„',.~'i (z)2/z(1 —z)
dx p~ x x 1 —x

f
I f(1)( )2

+2'
(g )

*(1—z) I =m+2
(i8)

n+2i

k=m+2
(17)

approximate the functional series (14). This is also im-
portant for the case of running coupling, where the par-
tial waves beyond the leading order are given by the func-
tional series that have convergence properties similar to
the series for the eigenfunctions. The relative deviation
from p (z) can be measured byer(1)

Numerical computation shows that for n = 0, where
Po ——0, the deviation is 43% for i = 1, about 10% for
i = 5, and about 1% for i = 21. In general, to get the
same deviation for n ) 0, a larger number of terms is
taken into account; e.g. , for n = 4 the deviation is 50%
for i = 5, 10% for i = 19, and 1% for i = 82. In Figs. 1(c)
and l(d), the n dependence of the deviation is shown for
the cases that keep (c) two terms and (d) ten terms of
the expansion (17). To remain under the 3% level for
n & 500 it is necessary to keep 50 terms. The asymptotic
expansion of 4; for large i and n, where i (( n,

( 2' [2.96 + ln(1 + i)]
Po —Cy [0.692 —41n(2 + n)]

2
48 7C~ —8 42'(Po —CF [0 692 —4. 1n(2+ n)])0.411+

(Po —C~ [0.692 —4 ln(2 + n)])

+ 0 ~ ~

) (i9)

is proportional to 1/gl + i for fixed n Furthe. rmore,
4„; increases with n and has the limit lim ~
0.78/v 1+ i. In this limit there are much larger values
when n is moderately large, e.g. , n 100:

"(*,y) = (I —&) —~(* y)

1 « ~(z ~) &"'(~ y) + [y(z y)]+
0

lim A~2 0.49, lim 4 1p 0.235,
n —+oo YL~ OO

lim A„50 ~ 0.11, lim L„5000 0.011 . (2o)

1

[y(z y)1+ = y(z y) —~(z —y) «y(~ y)
0

To approximate the logarithmic end point behavior of
p„' (z, n, ), a much larger number of terms than suggested
&om the previous analysis should be taken into account.
For situations where the end point behavior is crucial,
e.g. , for the next-to-leading-order analysis of the elastic
pion form factor, it is better to use the integral represen-
tation [23]

1n( 1 ——
/

y(z, y) = Cs 0(y - *) (*—y)

x M 1 x
(22)

Furthermore, the convolution with the kernel S(z, y) gen-
erates a shift of the Gegenbauer polynomial order

1

(p'„ (z, o.,) = dy h(z —y) + —' c~'l(z, y) +
0 27r

„(1—y)y Cs(2(2„,)

f
1

dye(z, y) C t (2y —1)
0 n

where

(1 —z)z

dp N„ C.' '+'(2 —1) I =o (23)
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~' V(x q') = "y [c ' (»y) + .
] V (y Q')

(24)

and the operator 7 projects on the diagonal part of the
expansion of a function f (x, y) with respect to C,. ~; i.e. ,
'Pf (x, y) = P,. o(1 —x)x/N, C, (2x —1)f,;C,- (2y —1),
where f,~ with 0 ( i, j ( oo are the expansion coeK-
cients. Although the operator P and the kernel S(x, y)
are only defined implicitly, Eq. (22) is nevertheless help-
ful to convolute c( )(x, y) with a given hard scattering
amplitude.

Finally, from Eq. (21), the ci, corrections to the eigen-
functions can be written as a convolution,

the (modi6ed) partial waves for n & 0 will be more
strongly suppressed than in leading order. The rela-
tive two-loop corrections to p (n, ) are about 4.5o., /(2m)
[4n, /(2vr)] for all n & 0 and ny ——3 [ny = 4], giving a
correction of 20% for reliable values of n, 0.35. The
relative correction to the evolution of the distribution
amplitude is probably of the saine order. (This kind of
correction does not appear directly in the evolution of
the asymptotic distribution amplitude, so that in this
case they are much smaller. )

If the corrections arising from the eigenvalues are ex-
panded with respect to o,„it is possible to write these
corrections as convolution with the leading order solution
of the evolution equation:

where the partial waves of p" (x, Q ) are given as Gegen-
bauer polynomials:

~-(~.)/2
p" (x, Q ) = ) C„i (2x —1)

(q'l

x(0lo„(q )lP)" . (25)

B. Corrections to the eigenvalues

A further advantage of the representation (24) is that the
above mentioned excitation of higher harmonics is now
completely included in the kernel c( ) (x, y).

dy V"'(»y) I" (y, Q'), (26)

where V~(i)(x, y) = 'PV(i)(x, y) is the diagonal part of
V(i)(x y)

Although the kernel V(i)(x, y) is known in a closed
form, it seems a more dificult task to extract the diago-
nal part V~(i) (x, y). A reasonable approximation can be
found from the fact that p grows like p ~, i.e. , only
logarithmically, for increasing n. The simple form of the
asymptotic expansion

The two-loop corrections to the anomalous dimensions
p„(n, ) are given in Ref. [29]. As in one-loop order

( 0 for all n ) 0 holds true. Thus, if these two-
loop corrections are resumed in

—5.33331n(2 + n) + 0.9215,

—(33.237 —2.963ny) ln(2 + n)
+15.315 —1.4363n& (27)

(q/q )
(n, /2vr) p(') + (n, /2~)' p(') and the eigenvalue equation [which is known from the

one-loop approximation of V(x, y)]

dy [vb(x, y)]+ (1 —y) y C ~ (2y —1) = 2[1 —p~ —Q(n+ 2)] (1 —x) x C ~ (2x —1),

vb(x, y) = vb(x, y) —b(x —y) dz vb(z, y), (28)

xM1 —x
vb(x, y) = B(y —x) +

y(y —*)

where g(n + 2) = ln(n + 2) + O(1/n) for large n, allows us to reexpress Eq. (26) as

&q'&~-~(x Q') =
l

—
l

ln 2 ~ dy(a~(x —y)+~(vb(x y)]+kv' (y Q')+&(x, q')
(271 ) (Qo) o

(29)

where a 0.6315 —0.0918nf and 6 8.309 —0.7408nf. The terms in the sum representation of the remainder

B(x, Q ) = dy(V (x, y) —ab(x —y) —b[vb(x, y)]+) p (y, Q )

1 I (1 —X)x 3)2, , (i) aa(i) Q l (ol0„(q,') IP) (30)
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are additionally suppressed by O(1/n). Thus, for the same accuracy, the approximation of R(z, Q2) by a partial sum
requires fewer terms than the approximation of rpLo(y, Q2) itself.

C. Complete next-to-leading order corrections

In the asymptotic limit, each given distribution amplitude y(z, Qo) at reference momentuin squared Qo extends
into the asymptotic distribution ainplitude (13). Thus, in this limit, the relative next-to-leading-order correction
[yN (x) —pL (z)]/rp (x) is uniquely given by

~as NLQ (z) (pas Lo (z) o, ( 1 7r2- 5
C~ ln

~
~+2 ——+Pp ln (1 —x)x +-

asLO(z) 4~ 4 z ) 3 3

so it is large and enhanced in the end point region. The
next-to-leading-order contribution by the evolution of the
distribution amplitude is also important away from this
asymptotic limit.

It is possible to get information about the distribu-
tion amplitude at low momentum transfer, e.g. , Qo 0.5
GeV, &om nonperturbative methods such as sum rules
[32] and lattice calculation [33]. However, the obtained
results are inconclusive, and so it is not possible to dis-
tinguish between the parametrizations

p '(x) = 6x(1 —x),
poz(z) = 30x(1 —x) [1 —4x(1 —x)], (32)

(O~O„(Q2) ~P)-' = m„(Q2) — ' ) ' c',l ~, (q', ),
i=0

The function y' (x) which was used for the next-to-
leading-order analyses of the pion form factor in Ref.
[17] is only one example of further convex amplitudes.
[For a numerical calculation, rp' (z) is more suitable than
broader amplitudes, which had previously been assumed
to be more realistic. ] Furthermore, it is assumed that the
evolution of y(z, Q ) for Q ) 0.5 GeV can be obtained
&om the perturbative solution of the evolution equation.

The evolution of rp(z, Q2) is controlled by Eq. (10),
where the reduced expectation values (0~0 (Qo) ~P)"
are computed from the nonperturbative input p(z, Qo),
which is assumed to be one of the functions in Eq. (32).
It follows from Eqs. (10) and (14), up to corrections of
order O(n, ),

I

(i = 0, 2, . . . , 200). The corresponding eigenfunctions
rp'f(z, n, ) take into account the (102 —i/2) terms of the
expansions with respect to Gegenbauer polynomials. The
distribution amplitude p(z~, Q ) at Q = 2 GeV was then
computed for difFerent points x~, j = 0, 1, . . . , 70, and
interpolated to a smooth function.

It can be seen in Figs. 2(b) —2(d) that the relative next-
to-leading-order corrections have the following features.

Independent of the shape of y(z, Qo), the relative next-
to-leading-order corrections are characterized by loga-
rithmic enhancement at the end points caused by both
corrections to the eigenfunctions and to the eigenvalues.

For partial waves with n ) 0, the corrections com-
ing from the eigenvalues are larger than from the eigen-
functions. However, these corrections disappear in the
asymptotic limit.

Amplitudes enhanced at the end points also have larger
relative next-to-leading-order corrections that are nega-
tive.

Although it was possible for the chosen distribution
amplitudes to compute the evolution in next-to-leading
order numerically, this will be a difFicult task for ampli-
tudes that are broader. In addition, the complete next-
to-leading order analyses for an exclusive process can
be done more conveniently if the next-to-leading-order
correction is written as a convolution, with the distri-
bution amplitude p"(z, Q ) defined in Eq. (25), which
also evolves smoothly in next-to-leading order (no excita-
tion of higher harmonics). Since p(z, Q ) = p" (x, Q ) +
h'rp(z, Q2) &om Eq. (24),

&p(z, q ) = dy
~

h(z —y)+ —c l(z, y)+
(

ls

o 27K

1
m, „(Q',) = dx Cs~2(2z —1) p(z, qo), (33)

0

&v'(~ Q') . (343

where the coefficients c,. are deffned in Eq. (15).
Taking into account a suKcient number of terms in

the series (10), the distribution amplitude at the fac-
torization scale for exclusive processes assumed to be
Q 2 GeV can be obtained numerically. The num-
ber of active flavors is 3, and the value for the fixed
coupling constant is o., = 0.5. The distribution ampli-
tude was approximated by the first 101 nontrivial terms

Again, the excitation of the higher partial waves is com-
pletely included in the convolution with c~ l(x, y). Notice
that p" (y, Q02) may be used instead of p(y, Qo) as an ini-
tial condition. In fact, this corresponds to the choice of
another factorization scheme for the considered exclusive
process (redefinition of the soft and hard parts).

The complete o., correction to the evolution of the dis-
tribution amplitude in next-to-leading order can easily
be obtained f'rom (24) and (26):
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(a} (b)

c)

4 IL

0 0.4 0.8

-4 4
I

0.4
(

0.8

FIG. 2. Evolution of the pion distribution amplitude for fixed o., = 0.5 and three active Havors. As nonperturbative inputs,
three distribution amplitudes defined in Eq. (32) are chosen at the reference momentum scale Qo ——0.5 GeV. They are
sh wn in (a): p '(z, Q ) in leading order (solid line), Ip (z, Q ) (dashed line), y' (z, Q ) (dot-dashed line), and &p '(z, Q ) in
next-to-leading-order (dotted line). The relative next-to-leading-order corrections at Q = 2 GeV are shown for rp '(z, Q ) in
(b), for p (z, Q ) in (c), and for &p' (z, Q ) in (d), showing that the end point behavior of the distribution amplitudes changed
more drastically under evolution. The next-to-leading-order corrections of the eigenvalues are neglected for the dashed line,
expanded with respect to o., for the dot-dashed line, and taken into account by resummation for the solid line. The correction
in the asymptotic limit is represented as a dotted line.

~(z Q') =~" (* Q')+~'~(* Q')+h" V(* Q')
i 2$
A ~(*-u)+ —' "(*v)+ —'l

I I

V"'(* &) +" v' (»Q').
0 2n

'
2vr (Qo2)

(35)

IV. NEXT- TO-LEADINC-ORDER ANALY SIS
FOR RUNNINC COUPLINC CONSTANT

This section discusses the solution of the evolution
equation in next-to-leading order for running coupling,
which was derived in [23,31],

where ck~„are the expansion coeKcients of the eigenfunc-
tion defined in Eq. (15) and

(O) (O)
2 ~k"-("(Q» =

(o) (o) +Ho

V(* Q') = ) V-(* n. (Q'))
n=0

,

n. (Qo) '

I n, (Q'))
. (38)

~' dt
x exp — —p„(i7(t))

2 Q2

(oIo-(Q') IP)" .

V'-(z n. (Q')) = C' (2z —1)

+n+( ) (i)( Q2) +
27'

"'( Q') = )' '
k=n+2 k

xsi,„(n,(Q )) c('„),

The partial waves &p (z, n, (Q )) are new Q -dependent
nonpolynomial functions, known as a functional series:

Since these partial waves satisfy the convenient initial
cond&tron

~-(z n. (Qo)) = ~ &&'(» —1),
k

the expectation values (OIO~(Qo)IP)" can be now sim-
pler computed as for fixed a, :

1

(OIO„(Q )IP)" = dz C„'(2z —1) (p(z, Q ) . (40)

Because of the asymptotic behavior of p& ———41n(k+
2) +, sr, (n, (Q2)) approaches 1 for k )) n and
n, (Qos) ) n, (Q ) [see Fig. 3(a)]. Consequently, the be-
havior of rp (z, n, (Q2)) in the end point region is de-

termined by c&
.
, i.e. , it has the same logarithmic modi-

fication as rp (z).~r(x)
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FIG. 3. The evolution of the pion dis-
tribution amplitude for running n, is es-
sentially determined by the matrix val-
ued function sq„(n, (Q )). (a) shows that
sq„(n, (Q )) defined in Eq. (38) as a func-
tion of k/(n + 2) is nearly n independent,
and for n, (Q ) = 0.5n, (QO) it is almost of or-
der 1. The relative next-to-leading-order cor-
rections for p '(x, Q ) in (b), for y (x, Q )
in (c), and for &p' (x, Q ) in (d) are com-
parable to the 6xed coupling result. Here,
n, (QO) = 0.9, n, (Q ) = 0.3, and three ac-
tive Savors were chosen. The meaning of
the solid, dashed, and dot-dashed lines is the
same as for Fig. 2(b, c,d).

To avoid this excitation of higher harmonics (Gegen-
bauer polynomials) by the evolution, a new distribution
amplitude analogous to the case for the fixed coupling
constant is introduced that satisfies a diagonal evolution
equation (the corresponding evolution kernel has to be
diagonal with respect to Gegenbauer polynomials). A
formal representation for this transformation kernel was
given in [24],

W = dt exp( —(leo —V )t) [(& —'P)V ]
0

exp( —V( )t), (41)

V. SUMMARY AND CONCLUSION

This paper has shown that the (relative) next-to-
leading-order correction to the evolution of the pion dis-

but, as was pointed out, this representation cannot be
used for explicit calculations. Hopefully, changing the
factorization scheme for the exclusive process under con-
sideration will allow us to factorize the process amplitude
in terms of the desired diagonal distribution amplitude
V'(x Q').

For the numerical study of the next-to-leading-order
corrections, assume that the distribution amplitude at
Qo ——0.5 GeV [A( ) = 0.4 in next-to-leading-order, i.e. ,
that n, (Qo2) 0.9] can be parainetrized by one of the
functions in Eq. (32). The amplitudes are evolved to a
scale Q = 2 GeV, where n, (Q ) 0.3. The number of
active flavors is 3, taking into account the first 100 non-
trivial terms in the partial sums for both series (36) and
(37) [the asymptotic (Chernyak-Zhitnitsky) distribution
amplitude requires only one (two) term(s) in (36)]. The
result in Figs. 3(b), 3(c), and 3(d) shows that the rel-
ative next-to-leading-order corrections for running cou-
pling have qualitative and quantitative features similar
to those in the case of fixed coupling discussed in Sec.
III C.

tribution amplitude is rather large, especially in the end
point region, and that in this region the negative correc-
tions are larger for enhanced amplitudes. The o., cor-
rection to the partial waves comes &om the off-diagonal
matrix elements of p I„ it can be interpreted as excitation
of higher harmonics (Gegenbauer polynomials) by evolu-
tion, and appears as ln[x(1 —x)] and ln [x//(1 —x)] terms.
The two-loop contribution to the anomalous dimension

is for n & 0 much larger than the ofF-diagonal matrix
elements of p„g, i.e. , about 20% of the one-loop approx-
imation. However, the exponentiation of the two-loop
contribution provides a larger suppression of the corre-
sponding harmonics as in leading order [expansion with
respect to n, provides a large (negative) excitation of the
harmonics].

The obtained large next-to-leading-order correction
seems to contradict a previous analysis [24], where it was
found that this correction is rather small. The expla-
nation for this discrepancy is that (1) only the first few
expansion coefBcients t"

A, were taken into account, and
(2) the authors looked only to the evolution of &p(x, Q ) at
x = 0.5. Furthermore, the reference momentum chosen
for use in Ref. [24] was Qo ——10A( ) = 1 GeV in leading
order, i.e. , n, (Qo

——1 GeV ) 0.3. Such a choice pro-
vides a much smaller next-to-leading-order correction for
Qo ——1.25A( ) [because n, (Qo = 1.25 A ) 0.9, pertur-
bation theory should be valid for the evolution of the dis-
tribution amplitude]. Using a popular parametrization at
lower reference momentum (e.g. , Qo 0.5 GeV) provides
a logarithmic correction, which should be included in the
input amplitude at a higher reference momentum.

The question of whether to include an o,, suppressed
logarithmic correction to the input amplitude p(x, Qo)
can be avoided by choosing a distribution amplitude that
evolves smoothly, with no excitation of higher harmonics
by evolution. The amplitude rp" (x, Q ) satisfies an evo-
lution equation where the corresponding evolution kernel
V (x, y) is diagonal with respect to Gegenbauer polyno-
mials. Consequently, in such a factorization scheme, the
contribution responsible for the mentioned excitation of
higher harmonics is now included as the a, correction to
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the hard. -scattering amplitude of the considered process.
Because of the size of the discovered correction and

its dependence upon the input amplitude, the evolution
of the distribution amplitude has to be included in the
next-to-leading-order analysis of exclusive hard momen-
tum processes. For large enough Q, the Sudakov sup-
pression can be neglected so that, using the known ex-
pressions for the hard-scattering amplitudes of the pion
transition form factor and the electromagnetic form fac-
tor, it should be straightforward to reanalyze the next-to-
leading-order corrections for these processes. Because of
the large number of Feynman diagrams, the o., correction
to the hard-scattering amplitude for the pp —+ M+M
processes for the case of equal momentum sharing was
only computed numerically. It should nevertheless be

possible to estimate the size of the correction coming
from the evolution of the distribution amplitude. A gen-
eral next-to-leading-order analysis for arbitrary distribu-
tion amplitudes requires an analytical calculation of the
hard-scattering amplitude (448 diagrams).
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