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Kaplan-Narayanan-Neuberger lattice fermions pass a perturbative test
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We test perturbatively a recent scheme for implementing chiral fermions on the lattice, pro-
posed by Kaplan and modi6ed by Narayanan and Neuberger, using as our testing ground the chiral
Schwinger model. The scheme is found to reproduce the desired form of the efFective action, whose
real part is gauge invariant and whose imaginary part gives the correct anomaly in the continuum
bmit, once technical problems relating to the necessary in6nite extent of the extra dimension are
properly addressed. The indications from this study are that the Kaplan-Narayanan-Neuberger
scheme has a good chance at being a correct lattice regularization of chiral gauge theories.

PACS number(s): 11.15.Ha, 11.30.Rd

I. INTRODUCTION

There has been much progress recently in an old prob-
lem in the understanding of gauge theories, namely, the
regularization of chiral gauge theories. The goal is a
gauge-invariant regularization: While in theory there is
nothing wrong with regulators breaking gauge invariance,
we would like a gauge-invariant regularization for at least
two distinct reasons. In perturbation theory a gauge-
invariant regularization makes the proof of renormaliz-
ability much simpler [1,2]. For nonperturbative calcula-
tion much of the success of lattice field theory has fol-
lowed directly from its manifest gauge invariance, and so
we are reluctant to throw this away. Lattice regulariza-
tion of a chiral theory, however, must be clever enough
to evade no-go theorems [3,4] which state that it is im-
possible to have simultaneously (1) locality, (2) chiral in-
variance, and (3) the correct number of fermion species.

A good overview of the problem has been provided by
Narayanan and Neuberger [5], who point out that two of
the most promising recent schemes, one perturbative [1]
and another on the lattice [6], both make use of a com-
mon trick. A theory which looks vectorlike is constructed
by coupling right-handed particles to a mass matrix M
and left-handed particles to Mt, as in the (Euclidean)
Lagrangian

yP@+ @(MI"—+ Mp')@,

where P+ = 2(l + pq), P = 2(1 —p5), and g/ is the
covariant derivative. For the theory to describe a right-
handed fermion we need M to have a zero mode while
M~ has none: Thus the mass matrix M needs to have
infinite dimension. The infinite number of extra fields
are realized as Pauli-Villars regulators in Ref. [1]; in Ref.
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[6] the mass matrix is realized by a domain wall in a
higher dimension, labeled by coordinate s. There is a
right-handed zero mode bound to the domain wall.

It is clear Rom the above that in the domain wall
scheme the extent of the extra dimension should be kept
infinite to avoid creating fermions in pairs of opposite
chirality. Indeed, if the extra dimension is made finite,
we have an anti-domain-wall, to which a left-handed zero
mode is bound. One can then try to restrict the gauge
fields to a "waveguide" around the domain wall, with
scalar fields inserted at the boundaries of the waveguide
to restore gauge-invariance: This approach is still under
investigation but all indications are that the theory re-
mains vectorlike [7]. So instead we follow the rather dif-
ferent approach of Narayanan and Neuberger [5,8], keep-
ing the s extent infinite. In the language of the previous
paragraph this gives an infinite-dimensional mass matrix
(whose explicit form is given in the next section): In "do-
main wall" language we eliminated the possibility of zero
modes bound to the anti-domain-wall, because now there
simply is no anti-domain-wall. There is no need to intro-
duce new gauge fields, and so the gauge fields have the
dimension of the lower-dimensional target space (they
have no s dependence and are simply copied to each s
slice).

That we have at least the possibility of evading the no-
go theorems is evident: From the point of view of Refs.
[4,3], if we imagined integrating out all the extra fermion
species except the right-handed fermion at s = 0, the ac-
tion we get is no longer local [5]. Other nonlocal formu-
lations have been tried but these all either break Lorentz
invariance or dynamically generate ghost contributions
which wreck the theory (for an excellent treatment of
these problems see [S]). In this approach the ghosts are
canceled by pure gauge terms which also come from in-
tegrating out the fermions [5].

The purpose of this paper is to carry out a test of
the Kaplan-Narayanan-Neuberger (KNN) scheme in per-
turbation theory, using as our testing ground an exactly
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solvable model, the Schwinger model [(1+1)-dimensional
/ED]. To be more precise, we examine a chiral Schwinger
model that is exactly the usual Schwinger model "cut in
half": That is, we have a single right-handed fermion,
minimally coupled to the gauge field. In the continuum
limit, we expect the model to be anomalous: The efFective
gauge field action induced by integrating out the fermions
should be gauge variant because of this anomaly. This
is of no concern for our purposes: To make an anomaly
&ee model we have many options, one fairly routine, but
the others directly relevant to the central problem in the
field, that of regularizing theories such as the standard
model. The routine option is to introduce a left-handed
particle to make the theory vectorlike: The left-handed
anomaly then has the opposite sign (we check this ex-
plicitly), so that the theory is overall anomaly Bee. We
note that even the construction of this theory would be
problematic if (as with other lattice regularizations of
chiral theories) our effective action had a gauge-variant
real part. A more interesting choice is to introduce two
right-handed particles and a left-handed particle, with
couplings to the gauge field in a ratio 3:4:5 (hence "3-4-5
model" ), so that again the anomalies (which are propor-
tional to the charge squared) cancel. In two dimensions
this is the simplest "toy" standard model, with nontriv-
ial anomaly cancellation, but clearly we could construct
many other such models.

The point is that in the KNN formalism each new type
of particle (by "type" we mean favor or chirality) is com-
pletely decoupled from the others, unless we introduce
an explicit mass term coupling them. So in the massless
limit there are no "type-changing" vertices in perturba-
tion theory, and we can calculate the anomalies for each
type of particle separately. The essential problem is then
to calculate the effective action and the anomaly for a
single flavor and chirality of fermion, minimally coupled
to the gauge field, knowing that for a model containing
only massless fermions we can simply add the effective
actions for each type of fermion together, so that in par-
ticular we can make the anomaly &ee theories described
above.

In this paper we calculate the one-loop efFective ac-
tion for two external gauge fields induced by integrating
out the fermions, i.e., the one-loop vacuum polarization
graph. We also show that in the continuum limit fermion
loops with more than two external gauge fields attached
do not survive. This allows us to sum bubble graphs and
get results accurate to all orders of perturbation theory,
just as in the continuum theory. We can thus give ex-
act expressions for the anomaly, the mass gap, and the
chiral order parameter in the continuum limit. We then
compare our results with those obtained by other regu-
larization methods.

As was pointed out in Ref. [5], the fermion propaga-
tor has the right structure near zero momentum by con-
struction, and so there are only two ways in which the
scheme can fail this perturbative test: first, because of
the new infinity in the theory, the infinite s extent nec-
essary to create a genuinely chiral theory (a new and not
so well understood problem) and, second, because of the
peculiarities of momentum integration on the lattice (an

old and well understood problem). Narayanan and Neu-
berger [5,8] have given a prescription for handling the
first problem, the new infinity: They point out that it is
a bulk effect in s space (this is obvious in their overlap
formalism and in perturbation theory it will become clear
from the fact that only the translationally invariant part
of the propagator diverges) so that it is naturally cured
by subtracting diagrams for which the domain wall mass
term has been replaced by a constant mass. It now needs
to be checked that this scheme can be implemented with-
out introducing new singularities which might alter the
continuum limit of the theory. To deal with the second
problem, we need to be careful about taking the contin-
uum limit a m 0 of Feynmann integrals (where a is the
lattice spacing). This is because propagators depend on
the loop momenta q„ through q„a, which can be of or-
der 1 since the momenta range from vr/—a to vr/a. So
a simple expansion of the integrand in powers of a is
not valid. We follow Ref. [3] and divide the integration
region into an "inside" region near the propagator pole
at zero momentum and an "outside" region which is the
rest of the Brioullin zone. It turns out that for fermion
loops with more than two gauge fields attached, only the
"inside" region (where we can replace the propagators
by their continuum limits) contributes in the continuum
limit. The inside region in turn vanishes because of Ward
identities constraining the continuum propagators [10].
For the remaining graph with two gauge fields attached
(the vacuum polarization), both inside and outside re-
gions contribute.

In Sec. III we carry out the s subtractions for the ef-

fective action, and show that they render the initially s-
divergent action s finite. In order to make the ill-defined
infinite s summation well defined we first restrict the
gauge interaction to a finite range —I & s & L, while
the fermion fields propagate in infinite s space. We then
take the limit I + oo after subtractions. We empha-
size strongly, however, that the limit L ~ oo has to be
taken, and that the fermion "lives" in an infinite s space,
as we will see in Sec. V. A subtle point that needs to
be addressed relates to an ambiguity in the imaginary
part of the effective action, seen in the overlap formal-
ism [8]. Because the imaginary part of the Euclidean
action corresponds to the parity-violating part of the ac-
tion in Minkowski space, it is the most interesting part,
giving rise to the anomaly, for example. In Ref. [8] the
ambiguity arose because of an ambiguous phase in the
boundary states, when the efFective action was rewrit-
ten as an overlap using transfer matrices in the s di-
rection. Does such an ambiguity occur in perturbation
theory? In Secs. III and IV we show that in perturba-
tion theory the imaginary part of the effective action is
finite before subtractions, and unaffected by the subtrac-
tions (i.e. , the subtracted terms are purely real). Thus
the imaginary part of the effective action is unambiguous
in our perturbation scheme. Obviously the perturbation
scheme has picked a phase for the boundary states: In
Sec. V it becomes clear that in our perturbation scheme
we project the boundary states onto the ground states of
the &ee transfer matrix. In other words, the perturba-
tion scheme makes the Brioullin-Wigner phase choice, in
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which the overlap of the perturbed (nonzero gauge field)
state with the unperturbed (zero gauge field) state is real.
Of course this is not the only way to fix the ambiguity in
the efFective action, and in fact it is not an adequate pre-
scription for gauge fields with nonzero winding number
(instantons) for which this overlap is zero [11],but it is a
perfectly adequate prescription for ordinary perturbation
theory.

II. MODEL, PERTURBATION THEORY) AND
THE EFFECTIVE ACTION

has a global "vector" invariance U(n+) I3 U(n ), where
n+ (n ) is the number of fermion fields with positive
(negative) mp. This vector symmetry may be a candidate
for a "chiral" symmetry U(n+)Ii U(n )L, for the zero
modes (there are n+ right-handed zero modes and n
left-handed zero modes by construction). For example, a
model with n+ ——n = ny (as for @CD) the symmetry
becomes U (n f ) I, U(n f)Q —U(1)~ U(1)v. SU(ny) ~ g)

SU(ny)&. The currents associated with this symmetry
are

The fermionic action in d(= 2n + 1) dimensions pro-
posed by Narayanan and Neuberger is [5,8]

Sr„;„(g,g, U) = —) @,(x)[g)+ MP
via, t

+Mt P']„@,(x), (2)

where

V'„vP, (x)
V't v/r. (x)

M, t

a,

b, t p„(V't—+ V'„),

U(x, p, )@.(x+ jc) —vjr, (x),
g, (x) —U (x —p, , y, )vt), (x —p, ),
5,+i t —b, ta„
b, gt —b, ta„

11 1
1 —mpsgn

~

s+ —
~

——&t V„,2) 2

(3)

@,(x) and @,(x) are Dirac spinors, mp is the domain wall
height, 0 ( mo ( 1, x labels the sites on the d —1 di-
mensional "real" lattice, and s labels the infinite number
of fermions, and as such can be seen as a fIavor index
or as the position variable in an "extra" dth dimension
in which the d.omain wall "lives. " We have set the lat-
tice spacing a (not to be confused with a, ) equal to 1,
but will restore an explicit a to expressions as we need
to in taking the continuum limit (a -+ 0) later. The

p = 1, . . . , 2n, are Euclidean gamma matrices. P
and P are the usual projection operators onto right- and
left-handed fermions, respectively. Note that we take the
gauge fields U to be s independent; i.e. , we have not intro-
duced any extra degrees of freedom for the gauge field.
The action above is explicitly invariant under both s-
independent local gauge transformations and global vec-
tor transformation.

More species of fermion could be incorporated into
Eq. (3) by simply adding more fermion fields g, and
changing the sign of the domain wall mass mo according
to whether a zero mode of a fermion field is to be right
handed (mp ) 0) or left handed (mp ( 0). That is,
we make a whole new copy of the action in Eq. (2) for
each new species of fermion. The resulting action then

(4)

where the TR's (T+'s) are the generators of U(n+)
[U(n )] and the indices + represent the sign of mp. (Here
we omit the "species" index of @+.) These currents are
not well d.efined due to the infinite s summation, and so
they will be redefined later in Sec. III.

Equation (3) is probably not the most familiar way
of writing out the fermionic action for this model. For
instance, we note that the lattice derivative g) is just the
naive d.erivative: The Wilson terms appear in the mass
matrix M. To write down the action in a simpler fashion
(see Ref. [8] for instance), we would start with the &ee
fermion action with Wilson terms in all d dimensions,
gauge d —1 of the d dimensions, and add a domain wall
mass in the dth dimension. In Eqs. (2), (3) the Wilson
term for the dth dimension is obscured by the fact that
the relevant pg matrices are hidden in P, P

The reason for writing the action in this way is that (2)
is clearly of the general form (1) first put forward in Ref.
[5] as a way of understanding difFerent-schemes [6,1,5] for
implementing chiral fermions. As we mentioned above,
these schemes all have in common the idea that in order
to create a chiral fermion (say, right handed), the mass
matrix M in Eq. (2) should have a zero mode, while
Mt should not. This cannot be achieved with a finite-
dimensional M, and so we must have an infinite number
of auxiliary fields. These fields may be Pauli-Villars regu-
lators, of alternating statistics [1,12,13], or fermion fields
labeled by s and coupled to a domain wall in this "in-
ternal" space, as in the scheme under investigation. Of
course these two approaches do not exhaust the possibili-
ties, but they are the only ones to have been investigated
so far.

In order to do perturbation theory we need expres-
sions for the fermion propagator and the vertices. The
main complications arise from the rather messy form of
the propagator, first derived in Ref. [5]. Because transla-
tional symmetry is broken in the extra dimension, we
work in momentum space for the (d —1)-dimensional
"real world" and position space for the extra dimension.
Then the propagator is [note that p„= sin(p„a), p„=
2 sin(2p„a)]

We are using the word "species" rather than "Bavor" simply
because we have already described the s index on vP as a
"Havor" index. .
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where

SF(p) =
( i p—„p„+2 p —M (p) P —Mt (p) P ]

i p„—P„+M t(p) P"G" + ( ip„—P „+M(p)] P G,

Ms

a. (p)

= ~.+i,t —b. ,ta. (p),
~.-i, t —b. ,ta. (p),

a+, s&0,
a, s&0,

1 + + mo)
2

G.t(p) = Gt. (p) =
I

I+—Is tl + (g—L B) n+—(s+t) t ) 0

A e '+, s&0 t(0,
ls —tl + (AL' —C)en (s+t)

Be n ls tl + (gR B)e—n+(s+t+2) S t )
Re —~+ (s+1)+n (4+1) s & —1 t ( —1

Is —tl + (QR Q)en (s+t+2) 8 t ( —1,

1 ( ~ 1+p'5
o.+ = arccosh —

~

a+ +
~

) 0,2E

AR
a e —a+e A L

a+e + —a e

1B-
2a+ sinh o,+ '

1C=
2a sinh o.

Note that the above form of the fermion propagator is valid only for s-space infinite.
To obtain the vertices we introduce gauge fields A~, defined by

)
ieaAs (e)

The vertices are somewhat simpler in form than the propagator: In fact they are exactly the usual Wilson vertices
(see Fig. 1), obeying the lattice Ward identity:

() a ( e) - - — &q+q&
V„,

" „.(q, q') = . .. ) a~~, ".4„) S..." ~...~„"S~ (10)

where we have restored the dependence on the lattice spacing a explicitly, and 8 S& (q) means 8 SR /c)(q&a) . This
is exactly the usual Wilson vertex, whose only momentum dependence is through the sum of the ingoing and outgoing
fermion momenta, with a trivial s dependence added in. We note that there is an infinite number of "seagull" vertices,
but with the addition of each photon the vertex decreases by a factor of a. We will need only V~ and V~,

We have left off the trivial s dependence.
The bulk of this paper is devoted to the calculation of the vacuum polarization tensor II~„(p) (see Fig. 2) for the

chiral Schwinger model (d = 3):
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II„.(p) = 11'.„)(p) + 11".) (p),

where II~„(p) is the nonseagull diagram,

2

II„„(p)= e ) Tr jO"S~ (q) [S~(q —p/2)] ~0"S~ (q) [S~(q+ p/2)]~, )a,
st

and II~(„(p) is the seagull diagram,

11".)(p) =" ', ).—~ ~""T ((~")'S '()[S ())..) '
st

In (13) and (14) we have used the vertex factors in (11).
The one-loop eKective action, to second order in the

gauge fields (we note that the efFective action for an odd
number of gauge fields vanishes, by Furry's theorem; see
the Appendix for details) is then given by

(i5)

where A„(p) is the Fourier transform of the gauge field:

~taR —'~-p G' &

S~(») = I, t „-GR MGs,

—1 — — pp ppp~~S» (p) =»~p~+p. =
I 'l(T"pp pp )

2 —1 ~ — — ( P. &~@PE~,SF (p) = '~~p. + p~ =
I z~„P „p—" )

Here p„= cos(p„a).
(18)

A„(x) =
(2vr)2

fo o„)
Yp I~t 0

1, @=1
CJ~ 8=2,

o~
ws = —&vi&2 =

I
!(0

—1

so that (pi, p2, ps) are just the usual three Pauli matri-
ces.

In this basis we have

It is convenient for later calculations to work in a chiral
basis with

III. SUBTRACTION PROCEDURE

1
S,'a' ——S,g ——(S,+~+ S,a),e e

2 e (is)

where S,+& arises f'om calculating (15) with a constant
mass term +ms. This is the prescription suggested in
[5,8]. In the homogeneous effective actions S,z we also
restrict the gauge fields to the finite range —L ( 8 & L.
After performing the subtraction in Eq. (19) at finite

Because of the sums over infinite s space, the efFective
action (15) is ill defined. In order to make the effective
action well defined, we adopt the following prescription
(see also Ref. [14]). We restrict the interaction between
gauge fields and fermions to the range —I ( 8
though the s space itself is infinite. We immediately see
that the effective action (15) diverges as L ~ oo. The
divergence, which arises from the translationally invari-
ant part of the fermion propagator, can be removed by a
subtraction

q+p/2

q-pl2

FIG. 1. An n-photon vertex.
FIG. 2. Graphs contributing; to the vacuum polarization.

(a) The nonseagull graph. (b) The seagull graph.
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L, we take the limit L -+ oo. Restricting the gauge
fields to finite ranges does not change the form of the &ee
fermion propagator, Eqs. (5) and (6), but it breaks the
gauge-invariance of the action (2) under s-independent
transformations. Of course we know that we need to
break the gauge-invariance in the imaginary part of the
efFective action in order to recover the anomaly. Our
prescription breaks gauge-invariance in both the real and
imaginary parts of the effective action when L are finite,
but when we take I ~ oo gauge invariance is recovered
in the real part and broken only in the imaginary part.
This is a key advantage of the KNN scheme.

The definition of the effective action above also sug-
gests that the currents associated with the global "vec-
tor" transformations in Sec. II should be modified as

L

) (GI ) (GI ) gy gy ) cx~+~s —t( —n~+~s —t~

st sit=0
L

—cr.~ Is —tI —cx~ Is —tI

s, t=1
+terms finite as L ~ oo. (23)

We note that the divergence comes only Rom the trans-
lationally invariant part of the propagator. As such it
is natural to remove the divergence by subtracting the
efFective action due to a homogeneous mass term. With
a constant mass term +mo instead of the domain wall
we find that the propagators are as in Eq. (5) above, but
with G+ = G+ = G+, M = M~ Mt = (M~)t where

s=—L
(2O)

so that the "vector" transformation generated by the
modified currents becomes

G+ g~ —a+ Is —tI
st

G— g —a Is —tI
st

(Mg), t ——b,+i t —b, ta~,

(M~).t = b. ..—b, ta~. (24)

(21)

It should be noted that the action is no longer invariant
under this modified transformation due to the presence of
the terms @,(MP +MtP ),tQt, and, as seen in Secs VI.
and VIII, this breaking of the "vector" symmetry leads
to anomalies in the fermion number currents.

In this section we show explicitly that this subtraction
scheme renders the real part of the effective action finite,
but that the imaginary part of the action (which leads to
the anomaly) is finite without subtraction. The homoge-
neous action S+& is purely real (as we show in the next
section), and so the imaginary part of the action is un-
afFected by the subtractions. As such it is unambiguous,
in apparent contradiction with the overlap calculation of
Ref. [8]. In Sec. V we address this apparent contradic-
tion.

To see that the efFective action is divergent in 8 is very
straightforward. Looking at the expression for II~„[Eq.(~3

(13)] for instance, using the chiral basis (18) for the prop-
agators and vertices, taking the Dirac trace, and then
summing over 8 and t gives terms of the form

L L). (Gi) t(G.+)t +
2 ): (Gi) t(G. )t.

s,t=—L s, t=—L

cancels the divergence in (23).
There are some more subtle points to be made. First,

we note that only the real part of the effective action
is initially divergent: The imaginary part is finite before
subtractions. To illustrate this we note that the "GLGL"
term, for instance, is paired with a "G G " term in the
following way:

). (Gi) t(G2)t. Cp-+ (Gi).t(G2)t. C*.
st

(25)

where

4 = ~. (a+p/2) ~ (v —J/2) ~&~-s»s-. (26)

We can split the above sum into its real and imaginary
parts as follows:

Prom the form of the homogeneous propagator above, it
is immediately obvious that (19) is the correct prescrip-
tion to render the effective action finite. For instance,
subtracting

) (0,).,(0', )...
st

(22)

where 0, 0' come &om the set (G~, G+, MG~, MtG+)
and

L L

st s=—L t= —L

A subscript 1 means "evaluated at momentum q +
p/2, " while subscript 2 means "evaluated at q —p/2. "
All such terms diverge: Looking, for instance, at
g.t (G, ),t (G2 )„we find

It is easily shown that g, t(Gi ),t(G2 )t, diverges in ex-
actly the same way as g, t(G~i), t(G2 )t„so that the first
term in (27) is infinite, but the second is finite. In the
next section we show that the homogeneous actions S+&
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are purely real, so that the imaginary part of the effec-
tive action is unaffected by the subtractions, and is hence
unambiguous.

d xe p~A (x)BpA~(x),

where Op here means 8/Bxp. Now remember that our
gauge field has only two components, and so the inte-
grand in Eq. (28) above reduces to

IV. REALITY OF THE HOMOGENEOUS
EFFECTIVE ACTION

A2 (2:)BsAi (x) —Ai (x)BsA2 (x), (29)

This can be seen by a brief but sloppy argument or
a slightly longer explicit calculation. The sloppy argu-
ment Grst: Given that we have fermions coupled to an
Abelian gauge Geld in three dimensions, we might expect
an imaginary piece in the homogeneous effective action,
of Chem-Simons form [15,16]

where ~s = &/&2:s ——8/Bs. If the gauge fields are s
independent as in the KNN case, then the Chem-Simons
term vanishes. Of course this does not rule out other
imaginary terms, and so we really should do an explicit
calculation.

Looking first at the seagull contribution to S,+&, with
the two-gauge-Geld vertex, we find that it is proportional
to the integral over q of

). ( (M"G) —'
qG i~

q„—„q„ i~

= ) (MtG)„q„+ (MG)..q„—G-Oi & qqp —G"&„0 qqv (30)

For simplicity we have left off the + subscripts and superscripts. This sum 1s divergent but real We get no
contribution to the imaginary part of 5,+&.

To see that the nonseagull term is real is a bit (but not much) more subtle. Writing out the vertices and propagators
in the chiral basis as in Eq. (30) above we obtain

2

II„(p) = e ) Gi(M G)2((„„)i+ Gi(MG)2((„„)i
st

+(M G)iG2((»)2 + (MG)iG2((~„)2 + other terms (31)

where

((„)i ——o t (q + p/2) crt q„q„,

((„~)2 = o (q —p/2) o q„q„. (32)

The subscripts 1 and 2 on G, MG, or MtG again mean "evaluated at momentum q+p/2" or "evaluated at momentum
q —p/2, " respectively. The imaginary part of the expression in (31) is

e ) G (MtG) —G, (MG)(2')' - - ' ' ' '-
i, 2i

—[G2(M G)i —G2(MG)ij
~

" ""
~
+ other terms&(& -)l —(& -) &

2x st
(33)

This sum can be easily shown to converge (the subtractions ensure this). Thus we are justified in doing the q integral
inside the sum. Putting q ~ —q in the second term in the square brackets above turns all the subscript 1's into 2's
and vice versa: For G, MG, and M G this is obvious since these are only functions of q through ~q + p/2~. The (
terms are also easily seen to interchange the 1 and 2 subscripts. Then the first term in Eq. (33) cancels with the
second and we get zero for the imaginary part once more.

In Eq. (31) we only listed 4 of 16 terms, but the argument goes through in a similar fashion for all the others.
The last two sections have shown that the imaginary part of the effective action is finite and unambiguous, in

apparent contradiction with the calculation of Ref. [8]. In the following section we look at this apparent contradiction.
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V. PERTURBATION THEORY AND THE PHASE AMBIGUITY

The overlap formula [8] for the effective action in our scheme is of the form

exp[S ir(A&)] = lim ( lim (b —([T (0)] [T (A&)] [T+(A&)] [T+(0)]' ]b+)j
= (b —I0—)«+ lb+)»m « —I[T-(A~)]'[T+(A~)1'I0+) (34)

where T~(A„) are the transfer matrices and ~0+) are the
ground states of the &ee transfer matrices. The point
is that when we take Sp —+ oo we project the boundary
states ~b+) onto the ground states of the free transfer ma-
trix. Since ~bk) is naturally taken to be independent of
A„, (b —~0—) (0+ ~b+) does not depend on A„at all, and
as such it aKects only the irrelevant constant part of the
effective action. We can see also that the boundary condi-
tions for the fermions do not a8'ect the final result. Even
periodic boundary conditions for fermions give the same
result as long as the limit so -+ oo is taken before taking
the limit L ~ oo. (To get a nonzero result the condition
(0+ ~0—) g 0 is also needed. ) Aside from the irrelevant
constant (b ~0—) (0+]b+) the final answer is the same an-
swer we would have gotten if we had taken ib+) = ~0+)
i.n the first place, which is the Wigner-Brioullin phase
choice [17,8], where the overlap of the perturbed state
limL, ~ (lim„~ [T~(A„)] [T~(0)]")ib+) with the un-

perturbed state lim„L, ~ [T~(0)]"+ ~b+) is real.

VI. EFFECTIVE ACTION IN THE CONTINUUM
LIMIT

In Sec. III we showed that the subtractions render
the s, t sums in the efFective action in (15) finite. But
we still have to integrate over p and q. It can easily be
checked that after the subtractions the integrand has no
singularities in p or q when we take the continuum limit
a ~ 0, other than the singularity noted in Ref. [5]:

4 —m'mo(4 —mo)
aMp 4p2a2 (35)

This part of the fermionic propagator corresponds to the
zero mode bound to the domain wall. The zero mode
is absent in the homogeneous propagators (there is no
domain wall for it to be bound to), and in fact the ho-
mogeneous action will give no contribution in our con-
tinuum calculation. We will start by just leaving the
homogeneous terms out entirely, but justify our rashness
explicitly as we go along. The homogeneous action has of
course already fulfilled its role to tame the 8 divergence of
the integrand so that meaningful statements can be made
about its continuum limit. We note that the method used
in this section is basically identical to that used in Ref.
[18] on Kaplan and Shamir fermions. We explicitly use
the Karsten-Smit approach [3] to momentum integration
on the lattice.

We wish to evaluate (15) in the continuum limit a ~ 0.
We will see that because of the divergence of the propaga-
tors at small momentum it is natural to divide the region
of q integ»tion, A = ((qi q2): Iqil & ~/u Iq21 & ~/u)
into an "inside, " Ai ——((qi, q2): [qii & e/a, [q2[ & e/a),
and an "outside, " A2 ——A —Ai (see Ref. [3], pp. 121—
122). e is a small positive number which we take to zero
only after we take a ~ 0. In the outside region A2 we
can rescale q + q' = qa and take a + 0 in the integrand.

However, in the inside region Ai we cannot do this
asymmetric rescaling, since we do not have a guarantee
that q' ) e && pa. In this region we must take the a + 0
limit of the integrand symmetrically. We get the follow-

ing contribution to II„„(p):

d2

( )2 ) ~('&" [
—'& (q —p/2) ]Go(q —p/2)& iZ [

—p~i(q+ p/2)p~]G, (q+ p/2)P~)a' (36)

where

Go (q),»
——lim G (q), ~ —— E (s, t) (37)

and

E (s, t) = E (t, s) = (4 2)
'

(1 —mo)'+', s, t & 0,
x ( (1 —mo)'(1+ mo)', s ) 0, t & 0,

(1+m, )'+', s, t & 0.
(38)
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The M terms in the propagators give zero because of
the Dirac trace. We have taken the a + 0 limit of the
integrand. Note that we have interchanged the order of
the limit and the sum, which is valid only because we
have explicitly shown that the s, t sums are finite. The
continuum limit sum has been done in Ref. [18] and is a
very simple result:

Tr p, Sy q vs' q ss

+h" T (8„'S~'.S~).. . (46)

).+'( ~)'=) ~'(, )=1
St

(89)

f d'q ~(pz „.p)(q
—»/2)-(q+»/2)p

( )(2~)' (q p/2)'—(q+ p/2)'
40

The contribution of the seagull graph II~ to the inner
region is of ord.er a, as are the contributions from the
homogeneous effective actions. In the latter case, though,
we note (at the risk of being suffocatingly pedantic) that
the subtractions mere needed to make the s, t sums finite
first, so that the continuum limit made sense.

So now all that remains to be done is the q integration:

A; = {(q„q,):q, c (., ~), q, c (-~, ~) ~,
(~)

= ((ql 'q2) ~ 'ql + (—7I, —E), q2 6 (—7T', ir)),(b)

A: =((q q):q &(— ), q. &(, )j,(C)

A2 = ((qi, q2): qi C (—E', E), q2 C (—7l, —E)).(d)
(46)

Let us first look at the case p = v. Then we note that

where in the first term we have used. 6„S+
—S+ B„S~.S+ . We have done the rescaling q + q' = qa
and dropped the primes. The integration region A2 is

given by A2 U A2 U A2 U A2, where

The two-dimensional Dirac trace is

Tr(P p"p p"p ) (41)

B„SF B„SF+ B„S~ S~ = 8„(B„S~' SF), (47)

and putting p = 2 for definiteness, we have the following
integral to evaluate:

= g" g ~ —g" g ~+ g"~g —ib" e"~ —ib ~~"

(42)

Note that if we replaced P by P in the above equa-
tion (as we would do to make a left-handed fermion), the
imaginary part of the trace would reverse sign: This will
also lead to an anomaly with the opposite sign. The in-
tegral at first sight looks logarithmically divergent, but
in fact it converges, and so we can let the integration re-
gion run &om —oo to oo (remember e is to be taken to
zero only after a ~ 0) and the integral gives (using either
Feynmann parameters or exponentiation of the denomi-
nators)

1
- q2=(q~}) Tr S~ . Sy . (48)

8 SS- qQ (q2)min

We note that the integration region A2 involves large
momenta (our rescaled q of order 1), and so at this point
we have no justification to replace the propagators in
(48) with their zero mode piece. However, noting that
the terms in square brackets in (48) must be odd in q2 to
contribute, we find that all such terms have a factor of
q2

——sinq2 (remember we have rescaled q, and so it is as
if a = 1), and as such give zero at the integration limits
in (46) where p2 ——m or —ir. In particular, regions A2

(b) ~ () (d)and. A2 give zero, and A2 and A2 combine to give

(q p/2)-(q+ p/2—)p 1 S-»p
(2~)' (q p/2)'(q+»/2)'— (48)

S

and so the final contribution to II~ (»i) from the inner
region is

2e 1 b'CX 2 2——, ~e" ».». + ~e»» ~ + 2(~~-p —p~p-) —~,-p4' p2

(44)

The very last term in (44) makes us feel slightly uncom-
fortable because it breaks gauge-invariance (in the two-
dimensional sense) but is not the usual anomaly because
it is real [the anomaly terms are in fact the first two terms
in (44)]. Such a "longitudinal" term was found for mod-
els with s-dependent gauge fields [18]. Thankfully the
contribution from the outside region exactly cancels this
term.

The contribution to II&„ from the outside region of
integration A2 is

2Tr(p22P ) , (2~)' q,'+ e'

1 q~- q1 ——c

27r 2
arctan-

q1 ——g

1= —.(50)
47t

q2 =E

+q2(MtG P + MG P )„.(49)
i q2 ———E

Now that all momenta are small (( e) we see that only
the zero mode part of the propagator in the G term
contributes (the other terms are down by a factor of e,
as indeed are the terms that would have come &om the
homogeneous effective action), and we get [noting that
Q. F~(s, s) =1 [18]]
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Applying similar reasoning to the cases p = 1 and to
p g v, we finally obtain, for the integral in (45),

(51)

that the higher-order graphs are s finite and then look
at the momentum integrals in the continuum limit, using
the same division into "inside" and "outside" regions that
we used in Sec. VI.

2

II„„(p)= — [ie—" p p„+ie p p„+2(6„p4' p2
—p~p-)l. (52)

The one-loop efFective action is then given by (15). The
consistent anomaly A(x) is defined as the variation of
the effective action under a gauge transformation A„~
A„+B„A:

Q(x) = — ' = eO„J„(x),
bSg

bA
(53)

xrhere J&(z) is the fermion number current,

bSg
e bA„(x)

(54)

In momentum space we have

2+ = p~ J„(p) = ' p„e" A—„(p) (55)

We make note of two points. First, we have calculated
the consistent form of the anomaly; the covariant form
for the Abelian theory difFers only by a factor of 2 (i.e.,
the factor 4m in the denominator is replaced by 2ir).
Second, we should discuss how to make an anomaly-
free theory. We have already checked that for a fermion
of opposite chirality, the anomaly reverses sign, and so
the vector theory with a right-handed and a left-handed
fermion is anomaly free. We could also implement the
3-4-5 model, with, say, two right-handed particles with
charges ei ——3e, e2 ——4e, and one left-handed particle
with charge e5 ——5e: It is clear Rom the above argu-
ments that the anomaly vanishes in the continuum and
we can also implement this model on the lattice.

The first term is exactly what was needed to cancel the
last term in (44), as advertised; the second term would
give rise to a Chem-Simons interaction in the effective
action (15) if the gauge fields were s dependent, but with
s-independent gauge fields gives no contribution to the
eEective action. We omit this term from now on.

The final result for the continuum limit of the vacuum
polarization is then

A. s-subtractions

The s subtractions render graphs with more than two
external photon lines s finite because, as for the vac-
uum polarization graph, the s divergence comes &om the
translationally invariant parts of the propagators, and is
exactly canceled by the homogeneous subtractions. Let
us look for example at the nth-order graph in Fig. 3. It
is clear that the most s-divergent terms are of the form

81 iSQ ) ~ ~ ~ i Sri

~l (81 82
J

~2 (82 83
f ~n JSra (56)

I
) ~i —1 18i —1 Si I Pi Si Pi+1 Si+1

si =P
(57)

gives factors of the form exp( —P; is; i —P;+is,+i) or
exp( —Pl il —P;+is;+i). But these factors are exactly
what are needed to make the sums over s, i and s,+i
converge. Carrying out the sums over si, . . . , s„, we ar-
rive at a finite answer. Replacing more than one of the
factors in (56) in this way just makes the sum even more
convergent, and so we are done.

We note that the above argument still holds if we re-
place some of the vertices in Fig. 3 with seagull vertices,

q+ p)

This divergence is exactly the one that will be canceled
by the corresponding homogeneous terms. The only
potential problem occurs if we take one of the factors
exp( —n;~s; —s,+i ~) and replace it with a less dangerous
part of the propagator of the form exp( —P;s; —P;+is;+i)
(for s;, s;+i ) 0). There is no corresponding term from
the homogeneous effective actions to cancel this term,
and so it must be finite by itself. It is not immediately
obvious that this is so, given the n —1 dangerous-looking
factors that are left. However, it is easy to see that in fact
with this modification the sum in Eq. (56) is finite. Con-
sider making exactly the replacement described above,
and summing over s, . It is easily shown that

VII. GRAPHS WITH MORE THAN TWO
EXTERNAL PHOTONS

In this section we show that graphs having fermion
loops with more than two photons attached vanish in the
continuum limit (as they do in the continuum theory, this
fact making the model easily solvable). This will allow
us to give exact results for the mass gap and the chiral
order parameter in the continuum limit, for the vectorlike
theory (the usual Schwinger model). We must first show

I~~ + y

FIG. 3. A fermion loop with n photons attached.
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because the 8 divergences come from the propagators:
the s dependence of the vertices [Eq. (10)] is trivial.

B. Integration over the "inside" region

Having shown 8 convergence, we can now worry about
doing the momentum integration in the continuum limit.
In the "inside" region defined in Sec. VI, we can replace
the propagators and vertices by their a ~ 0 limits. We
find immediately that (as for the vacuum polarization)
any graph with a seagull vertex is down by factors of a
and gives a vanishing contribution to the "inside" inte-
gration. For the nonseagull graphs (see Fig. 3) we replace
the propagators with their a ~ 0 limit:

lim [S~(p)]„= ip"—p„aGo (p) P

graphs obtained by leaving the order of vertices 2, . . . , n
fixed but attaching photon 1 in any position relative to
the other vertices .Using (62) one can show that the
contraction of the sum of this subset of graphs with the
external momentum /i of photon 1 vanishes. This means
that the sum of this subset of graphs has zero divergence.
Carrying out the same procedure for the axial-vector-
graphs shows that the sum has zero curl as well, meaning
that it must be identically zero.

But what about n = 2, which we have already seen
to give a finite answers Well of course we have been a
bit sloppy: The above argument only holds for n & 2,
because for n = 2, the contraction of the graph with an
external momentum gives an expression which is linearly
divergent, and we are not allowed to use the Ward iden-
tities in (62).

where Go (p), t, is given by Eq. {37).We have shown that
the 8 sum associated. with Fig. 3 is finite but it still must
be done: However, it is easily shown that

) F (si, s2)F (s2, ss) = F (si, ss),

so that

) I'~(s„s,)I ~{s„s,) . "I'~(s„,s, )

C. Integration over the "outside" region

The integrals over the outside region vanish for n &
2, by a simple power counting argument. In Ref. [10]
it is shown that for n & 2 any graph with n photons
attached to a fermion loop (i.e., the graph in Fig. 3 or
any variation with seagull vertices) vanishes as a -+ 0,
unless the propagator has a pole. Since in the outside
region we have exclud. ed the only pole in the propagator
by cutting out the region ~q~~ ( e, where e was to be
taken to zero only after a ~ 0, we are done.

= ) I' (s„,s„) VIII. COMPARISON %ITH OTHER
REGULARIZATIONS

where the first equality follows from repeated application
of (59) and the second from (39).

We note that because the 8 sums just give a factor
of unity, the propagators and vertices may be replaced
by the following 8-independent forms and the 8 sums ig-
nored:

Sp(p) = P, —

(61)

We can now follow the methods of Ref. [10] to show that
for n ) 2 the graphs of Fig. 3 vanish in the inner re-
gion. The trick is to make use of the following vector
and axial-vector Ward identities, which hold for the con-
tinuum forms of the propagator and vertex in Eq. (61):

SJ. (p + 1)l„V„S~(p) = (—e) [S~(p) —Sy (p + I)],
S~(p+ &)I„V„Sj'(p)—( e)[+5S+(p) —ps'(p+ &)]

(62)

[note that V„= (—e)p~p5]. In two dimensions we have
the relationship p~p5 ———ie+"p„, so that we can relate
the graph in Fig. 3 to the graph with the vertex factors

replaced by p&, ps. To carry out the proof (whose
details we do not repeat), one considers the subset of

The vacuum polarization in the chiral Schwinger model
has been calculated by several authors, using both con-
tinuum [19,20] and lattice regularizations [21—23]. Their
results may be summarized by

2
II„'„"„"{p)= II„"„'(p)+ —Ch„, (63)

where II„(p) is given by Eq. (52). Here C is a constant
called the regularization constant, which was allowed
but undetermined in the continuum calculations [19,20,
and explicitly given in the lattice calculations [21—23 .
In these previous lattice regularizations, C was nonzero
and real, and depended on the Wilson parameter r. It
emerges as a necessary consequence of the Wilson formu-
lation for removing the doubler modes. The problem with
a nonzero C in Eq. (63) is that this term breaks gauge-
invariance in the rea/ part of the effective action, meaning
that the effective action for a left-handed fermion is not
the complex conjugate of that for a right-handed fermion.
In other words, to restore gauge-invariance by, say, mak-
ing a vector theory with a left- and a right-handed par-
ticle, we have to give up the property that chiral deter-
minants for left- and right-hand. ed particles are complex
conjugates. A further peculiarity relating to nonzero C
is that the chiral Schwinger model develops a boson ex-
citation of mass e2(C + 1)z/4mC. So perhaps our most
important result is that our C is zero. The gauge boson
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for the chiral Schwinger model then becomes infinitely
heavy and decouples &om the theory. A gauge-invariant
vector theory is easily constructed by simply adding the
effective actions for a left-handed fermion and a right-
handed fermion. The vacuum polarization in the vector
theory then changes Rom the expression (52) to

g(L+Q)
( ) ~

b
pppv

E.
" (64)

We can also get a result for the chiral order parame-
ter (fg). This is zero in the perturbative vacuum, but
may still be calculated perturbatively from the four-point
function. Once again we simply quote the result, refer-
ring the interested reader to Ref. [10] and the references
therein:

2
2+~

4' 2

where p@ is Euler's constant. The actual results are not
terribly important for our purposes: Our main purpose
in quoting them is to emphasize that we have obtained
the correct continuum limit at all orders in perturbation
theory. Of course the main result we needed was that, as
for the continuum theory, fermion loops with more than
two photons attached vanish, so that perturbation theory
is rather easily summed.

We could also consider the 3-4-5 model. The vacuum
polarization for this model becomes

Because graphs wit;h fermion loops having more than
two photons attached vanish, we can obtain the exact
current-current correlation function (and hence the mass
gap) by just summing bubble graphs, exactly as in the
continuum theory. We simply quote the result from Ref.
[10], noting that it is exactly the result of the continuum
theory:

dimensions. Our perturbative scheme renders the eG'ec-
tive action 6nite after the subtraction of efFective actions
with homogeneous mass terms. The gauge-variant term
in the effective action corresponds exactly to the con-
sistent anomaly: In contrast with other regularization
schemes, the real part of the effective action is gauge-
invariant. To obtain this result, we made the infinite
8 summation well defined by restricting the range of
the gauge interaction. This restriction of course breaks
gauge-invariance, in both the real and the imaginary
parts of the effective action, but when the range of the
gauge interaction is taken to infinity gauge invariance is
restored in the real part and broken only in the imaginary
part, giving the correct anomaly.

A rather more difBcult test of the KNN scheme is a
perturbative calculation in 4+ 1 dimensions. We expect
the scheme to work just as weH in 4 + 1 dimensions as
in 2+ 1, but of course an explicit demonstration is nec-
essary. If this test is passed, we would expect the KNN
regularization of more complicated anomaly free chiral
gauge theories such as the standard model to also have
the correct continuum limit.

The infinite extra dimension that is needed to make a
truly chiral fermion has been sho~n here to be tamable
in perturbation theory: Narayanan and Neuberger have
also given a Gnite and hence computable nonperturbative
efFective action, in the form of an overlap. One obvious
research goal is to produce a version of the nonpertur-
bative overlap formula [8] that can be used in practical
Monte Carlo-type calculations.
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JI' JR,3 + JR,4 + JL,S
P V P p, (68)

is anomalous:

(69)

This result agrees with a previous calculation in Ref. [18].

IX. DISCUSSION

We have shown that the KNN scheme for implementing
chiral fermions passes a simple perturbative test in 2+1

(a-4-5) e' (3' + 4' + 5') 6

2 ( p2 )
and hence a mass gap p~ & = 5 . It is easy to see
that the fermion number current of the model, defined
by

APPENDIX: FUR,KY'S THEO%EM

The effective action for an odd number of gauge fields
vanishes, by Furry's theorem. This holds not only in
the continuum [24] but also on the lattice, where we
have to worry about graphs with seagull vertices. The
point is that the charge conjugation matrix C, defined
by Cp~C ~ = —p, transforms the propagator like

CS(q)C = S'+(—p) and the m-gauge field vertex fac-
tor like CO S (p)C = (—1) 0 [S i(—p)]+, where
T denotes the transpose in spinor space. So regardless
of the number of seagull vertices, it is easy to show (by
insertion of factors CC ) that a given graph with a
fermion loop and n attached gauge fields is equal to
the same graph with the reverse orientation, up to a
sign (—1) . Thus for odd n the two orientations can-
cel. The only complication we have blithely skipped over
is the action of the charge conjugation matrix on the
chiral "mass" term M(p)P + Mt(p)P in the propaga-
tor. For a lower-dimensional "target" space of dimension
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] = 2, 6, ]0, . . ., We find that Cp5C
still get CS(q)C ~ = S+(—p), but now T denotes trans-
position in 8 space as mell as Dirac space. Of course this
is exactly what we need to transform the graph (say, the
one in Fig. 3, with n odd) into the graph with reverse
orientation, up to a sign (—I) . For target dimension

4& 8& &2& y
we find that C'p5(

so the transformed graph is equal to the graph with re-
verse orientation up to a sign (—1) and a transposition
of each propagator in s space. But since we trace over
8, the graph is invariant under an s transposition of each
propagator and we are done.
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