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Electroweak baryogenesis and standard model CP violation
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We analyze the mechanism of electroweak baryogenesis proposed by Farrar and Shaposhnikov
in which the phase of the CKM mixing matrix is the only source of CP violation. This mechanism
is based on a phase separation of baryons via the scattering of quasiparticles by the wall of an
expanding bubble produced at the electroweak phase transition. In agreement with the recent
work of Gavela, Hernandez, Orloff, and Pene, we conclude that +CD damping effects reduce the
asymmetry produced to a negligible amount. We interpret the damping as quantum decoherence.
We compute the asymmetry analytically. Our analysis refiects the observation that only a thin,
outer layer of the bubble contributes to the coherent scattering of the quasiparticles. The generality
of our arguments rules out any mechanism of electroweak baryogenesis that does not make use of a
new source of CP violation.

PACS number(s): 98.80.Cq, 11.10.Wx, 11.30.Er, 11.30.Fs

I. INTRODUCTION

The present work addresses the possibility of imple-
menting the phase of the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix of quarks as the source of CP vi-
olation for electroweak baryogenesis.

The origin of the baryon asymmetry of the Universe
(BAU) is recognized as a fundamental question of mod-
ern physics. Although the BAU is a macroscopic prop-
erty of the entire observable Universe, the ingredients for
its explanation are contained in the microscopic laws of
particle physics, as pointed out by Sakharov [1].

Sakharov established on general grounds that a the-
ory of particle interactions could account for the pro-
duction of the BAU at an early epoch of the Universe,
provided that this theory contains B-violating processes
which operated in a C- and CP-violating environment
during a period when the Universe was out of thermal
equilibrium.

The state of the art in particle physics is the stan-
dard model of gauge interactions among quarks and lep-
tons. CP violation has been observed and is thought
to originate from the quark mixing matrix. B violation
is believed to have taken place through nonperturbative
weak-interaction processes in the hot plasma of the early
Universe.

Kuzmin, Rubakov, and Shaposhnikov [2] pointed out
that implementing the program of Sakharov in the stan-
dard model would require the electroweak phase transi-
tion to be first order, with the baryon asymmetry be-
ing produced at the interface of bubbles of the nonzero
Higgs expectation value, which expands into the unbro-
ken phase. Furthermore, Shaposhnikov [3] established
a stringent upper bound on the Higgs boson mass by
requiring that the resulting baryon asymmetry not be
washed out by the B-violating processes &om which it
originated. The latest studies [4,5] of the electroweak

*Now at the Department of Physics, University of Washing-
ton, Seattle, WA 98195.

phase transition have refined this bound to a value which
is now ruled out by experiment. Although a better under-
standing of the nonperturbative sector of the electroweak
theory is required, this bound directly challenges the pos-
sibility of electroweak baryogenesis.

The above obstacle, however, is not the principal rea-
son which has motivated various groups to enlarge the
framework of the standard model in the search for a vi-
able scenario of baryogenesis [6]. In the standard model,
all CP violation results &om a single complex phase in
the quark mixing matrix. This phase can be transformed
away in the limit that any two quarks of equal charge
have the same mass, and it can appear in physical observ-
ables only through processes which mix all three genera-
tions of quarks. These limitations suppress CP-violating
effects in the standard model for most processes by a
factor of the order of 10 . Given that CP violation is
a necessary ingredient for baryogenesis, it is dificult to
reconcile this suppression factor with the observed ratio
of the baryons per photon in the Universe, (4—6) x 10

Recently, Farrar and Shaposhnikov (FS) [7] performed
a detailed analysis of this important question. Despite all
expectations, they concluded that standard-model CP
violation does not lead to the above suppression; instead,
they found that under optimal conditions it is suKcient
for generating a ratio of baryons per photon of as much
as the observed 10 . A crucial ingredient of their anal-
ysis is the interaction of the quarks with thermal gauge
and Higgs bosons in the plasma, which they correctly
take into account by expressing the interaction between
the quarks and the bubble interface as the scattering of
quasiparticles.

Subsequently, Gavela, Hernandez, OrlofF, and Pene
(GHOP) raised objections to this analysis [8]. They
pointed out that Farrar and Shaposhnikov did not take
into account the quasiparticle width (damping rate). The
width results from the fast @CD interactions of the quasi-
particles with the plasma, and. is larger than any other
scale relevant to the scattering. They proposed to take
the damping into account, and they concluded that it
reduces the magnitude of the BAU produced by the FS
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mechanism to a negligible amount, in agreement with
earlier expectations. The details of their analysis will
appear in future publications.

We propose a novel interpretation of the damping rate
p of a quasiparticle as a measure of its limited quantum
coherence. The quasiparticle wave is rapidly damped be-
cause the components of the wave are rapidly absorbed
by the plasma, and reemitted in a different region of
the phase space. This decoherence phenomenon pre-
vents components of the wave &om participating in quan-
tum interference over a distance longer than a coherence
length E, whose magnitude is proportional to 1/p. Quan-
tum interference is necessary for the generation of a CP-
violating observable.

The above considerations lead us to reexamine the
physical mechanism of scattering of a particle off a
medium. The latter does not take place at the inter-
face but instead results from the coherent interference
of components of the particle wave function which are
re&acted by the bulk of the scattering medium. This
observation can be ignored if the incoming wave is co-
herent for an arbitrary amount of time, but not for a
quasiparticle which has a coherence length much shorter
than any other relevant scale. This perspective provides
a transparent physical understanding of the scattering
properties of a quasiparticle off the bubble. The coherent
scattering of a quasiparticle effectively takes place only
in a very thin outer layer of the bubble, which drastically
reduces the probability of reflection.

In order to contribute to a CP-violating observable, a
quasiparticle wave must scatter many times in the bub-
ble before it decoheres. It must encounter mixing of all
three generations of quarks and the CP-odd phase in
the CKM matrix. The scattering takes place through
the quark mass term in the bubble of broken phase, and
through interaction with charged Higgs bosons in the
plasma. However, the mean free path for each of these
scatterings is far longer than the coherence length of the
quasiparticle wave. The wave has almost completely died
away by the time it has scattered a sufFicient number of
times. Consequently, the baryon asymmetry produced is
insignificant, orders of magnitude smaller than the ob-
served asymmetry (and the asymmetry found by Farrar
and Shaposhnikov).

We make the above arguments quantitative by deriving
a diagrammatic expansion for the reflection of a quasi-
particle wave ofF a bubble. This expansion expresses a
reflection amplitude as a sum of paths in the bubble with
various flavor changes and chirality flips, with each path
being damped by the exponential of its length expressed
in units of the coherence length Z. This method pro-
vides an analytic expression for the baryon asymmetry
and demonstrates that the leading-order contributions
are proportional to the Jarlskog determinant and to an
analogous invariant measure of CP violation. Our anal-
ysis corroborates the findings of GHOP that the BAU
produced is suppressed to a negligible amount as a result
of plasma effects.

Our arguments of decoherence are of great generality
and rule out any scenario of baryogenesis which imple-
ments the phase of the CKM matrix as the sole source of

CP violation.
In Sec. II, we review the main aspects of the elec-

troweak phase transition which are needed to carry out
our analysis and we describe the FS mechanism of baryo-
genesis. In Sec. III, we introduce and justify the concept
of the coherence length, and we describe the physics of
the scattering which takes into account the limited co-
herence of the quasiparticles. Using these insights, we
describe in Sec. IV our method for computing the baryon
asymmetry in the presence of a sharp bubble wall. We
discuss various additional suppressions which occur when
the wall has a more realistic thickness. Finally, we sum-
marize our results and discuss their applicability to more
general situations. In particular, we briefly discuss possi-
ble implications for other scenarios of electroweak baryo-
genesis.

II. MECHANISM
OF FARRAR AND SHAPOSHNIKOV

In this section, we review the relevant features of the
electroweak phase transition, and we describe the FS
mechanism of electroweak baryogenesis.

A. Electroweak phase transition

It is well established after the pioneering work of Kirzh-
nits and Linde [9] that the electroweak SU(2) xU(l)
gauge symmetry was unbroken in the early Universe.
As the Universe cooled down to a temperature of order
T 100 GeV, the thermal expectation value of the Higgs
field developed a nonzero value, breaking the electroweak
symmetry.

This phase transition is thought to have been a first-
order transition, although currently unresolved diKcul-
ties related to the non-Abelian gauge sector of the ther-
mal plasma have prevented a proof of this statement.
Electroweak baryogenesis relies on this assumption in or-
der to meet the criteria of Sakharov. In a second-order
phase transition, the departure from thermal equilibrium
results &om the time dependence of the temperature,
which is driven by the expansion of the Universe. The
rate of the expansion of the Universe, H = T /Mp~ „,g,
is typically 17 orders of magnitude slower than a typical
process in the plasma, far too slow to generate a signifi-
cant departure from equilibrium. On the other hand, in
a first-order phase transition the Higgs expectation value
jumps suddenly to a nonzero value. This triggers the
nucleation of bubbles of broken phase. As a bubble ex-
pands, its surface sweeps through the plasma, requiring a
given species to suddenly adjust its thermal distribution
to its nonzero mass inside the bubble. This produces a
temporary state of nonequilibrium with a time scale of
the order (thickness)/(velocity) 10 /T, which is com-
parable to the microscopic time scale of the plasma.

The dynamics of bubble expansion are fairly well un-
derstood. These bubbles grow to a macroscopic size of
order 10~ /T2until they fill up the Universe. In contrast,
baryogenesis is a microscopic phenomenon (1—100)/T.
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This allows one to ignore complications due to the cur-
vature of the wall by assuming the latter to be planar.
The thickness of the interface is of order (10—100)/T, de-
pending on the Higgs boson mass, while the terminal ve-
locity of expansion, v~, has been calculated to be non-
relativistic [5,10], with the smallest allowed velocity, of
order 0.1, attained in the thin-wall limit. Furthermore,
for this range of parameters, the growth of the bubble
has been shown to be stable [11].

The above considerations lead to a picture of the elec-
troweak phase transition favorable for the making of the
baryon asymmetry.

eliminate complications due to other aspects of baryo-
genesis such as the physics of the B-violating processes
and the structure of the wall. If it turns out that the
mechanism works within this simplified &amework, one
can reconsider the analysis within the full setting. In the
following, we select ideal conditions which not only sim-
plify the analysis but also optimize the generation of the
baryon asymmetry and make no reference to transport
phenomena.

We choose the following values for the B-violating
rates:

I'„,=oo.

B. Mechanism of Farrar and Shaposhnikov

Farrar and Shaposhnikov proposed a simple mecha-
nism of baryogenesis based on the observation that as
the wall sweeps through the plasma, it encounters equal
numbers of quarks and. antiquarks which reflect asym-
metrically as a result of the CP-violating interactions
[7]. This mechanism leads to an excess of baryons in-
side the bubble and an equal excess of antibaryons out-
side the bubble. Ideally, the excess of baryons outside is
eliminated by baryon-violating processes while the excess
inside is left intact, leading to a net BAU.

Outside the bubble is the domain of the unbroken
phase. There are rapid B-violating processes which oc-
cur at a rate per unit volume of I' „q ——K(o.~T)4. The
coefBcient e is not reliably known, but Monte Carlo sim-
ulations [12] suggest K 0.1—1. These processes cause
the baryon asymmetry to relax to a thermally averaged
value of zero. A &action of the antibaryon excess escapes
annihilation by difFusing back inside the bubble, an efFect
enhanced by the motion of the wall, and which can be
accounted for by solving diff'usion equations [7].

Inside the bubble, the known B-violating processes are
instanton processes [13], which can be ignored because
they occur at a rate smaller than the expansion rate of
the Universe, and sphaleron processes [2], which occur
at a rate per unit volume I';„oc exp( —2g~(P)/agrT).
In order to prevent the loss of the baryon excess in a
subsequent epoch, the latter processes must occur at a
rate smaller than the expansion rate of the Universe:
I';„« T /Mp~ „,g. Since the expectation value (P)
behaves parametrically as 1/m2H, this constraint yields
an upper bound on the Higgs boson mass [3,5] of order
45 GeV, which lies below the current experimental limit
of 58GeV [14]. This conflict is a major difficulty for
standard-model baryogenesis. It can be resolved either
by a drastic reformulation of sphaleron physics or by ex-
tending the parameter space of the symmetry-breaking
sector. Both avenues are the subject of active investiga-
tion.

C. Optimal parameters

The goal pursued by Farrar and Shaposhnikov is to
use the CP-violating phase of the quark mixing matrix
as the only source of CP violation for the phase sepa-
ration of baryons. To discuss this aspect, it is useful to

The first condition prevents the washout of the asymme-
try inside the bubble. The second instantaneously elimi-
nates the excess of antibaryons directly outside the wall
without reference to any difFusion process. These condi-
tions clearly maximize the asymmetry and allow one to
express it directly in terms of the velocity of the wall and
the reBection coefIicients for the scattering of quasiparti-
cles oK the bubble.

For the parameters of the wall, we choose

b~ ——0, v~ 0.1 . (2)

A wall of zero thickness enhances the quantum-
mechanical aspects of the scattering of fermions ofF the
bubble. In fact, we will show how various suppression
factors develop as the wall thickness increases &om 2—
3/T to the more realistic value 10—100/T quoted earlier.
The limit of small thickness was shown [5,10] to be the
limit of maximal damping of the motion of the wall in the
plasma, a situation for which calculations are reliable and
yield the above value of v~.

Finally, following FS, we assume that the scattering
efFectively takes place in 1 + 1 dimensions. This choice
simplifies the calculation greatly. Its justification relies
on the observation that the kinematics of the scatter-
ing only involves the component of the momentum per-
pendicular to the wall. In addition, forward scattering
produces a maximal change of helicity of the fermion,
which is required to produce an asymmetry. Restoration
of the three-dimensional phase space can only suppress
the asymmetry further.

D. Formula for ns/s

Under the above assumptions, we can derive a simple
expression for the "baryon-per-photon" ratio nJ3/s.

In the rest frame of the wall, at any given instant there
are equal numbers of quarks and antiquarks striking the
wall from either side. As a result of CP violation, quarks
and antiquarks scatter differently in the presence of the
bubble, and become asymmetrically distributed between
the broken and unbroken phases. By assumption, the
baryon number outside the bubble is immediately elimi-
nated, leaving an equal but opposite baryon number in-
side the bubble. Therefore the net baryon number pro-
duced is minus the thermal average of the baryon number
in the unbroken phase.
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1 AQUA tAg
3 27r

nL (ur) Tr RLIt RLR —RLRRLR

+(t w R)) .

The quantities R are matrices in favor space that contain
the reflection and transmission coeKcients. For exam-
ple, RL'R is the coeFicient of reHection for a left-handed
quark of initial flavor i which reflects into a right-handed
quark (conserving angular momentum) of final Havor f
RI.R corresponds to the CP-conjugate processes, that is,
right-handed antiquarks reflecting into left-handed anti-
quarks. Expression (3) simplifies using CPT invariance,
RRL, = RLR

1
Ag

3
d4J-

27r
~L(~) —nR(~) &(~) (4)

where A(~) = Tr[RRLRRL RLItRLR] = Tl [RLItRLR
RL&RLR]. The distributions n& L(w) are Fermi-Dirac
distributions boosted to the wall frame:

There are two contributions to the baryon number in
the unbroken phase: quarks and antiquarks from the un-
broken phase (u), which are reHected from the bubble
back into the unbroken phase, and quarks and antiquarks
&om the broken phase (6), which are transmitted through
the bubble wall into the unbroken phase. The contribu-
tion to the net baryon number n~ from the reflection of
quarks and antiquarks off the bubble is given by

that when quark masses are ignored in the broken-phase
thermal distributions, the contribution to n~ &om the
transmission asymmetry cancels the contribution &om
the reflection asymmetry to 6rst order in v~. This can-
cellation will not be total when the difference between the
broken-phase and unbroken-phase thermal distributions
is taken into account. We will calculate the contribu-
tion to n~ due to the reflection asymmetry, ignoring this
partial cancellation, and regard the "baryon-per-photon"
ratio given by Eq. (6) as an upper bound. The whole cal-
culation of the baryon asymmetry now reduces to the de-
termination of the left-right reHection asymmetry A(u).

The nontrivial structure of the phase space is contained
in the factor (pL —pR) v~/T. This vanishes unless, as
discussed in the following subsection, interactions with
the TV and Z bosons in the plasma are taken into ac-
count in the propagation of the quarks; there we will see
that (pL —pR) . vg /T nor. In addition, the CP odd-
quantity A(u) vanishes unless Havor-mixing interactions
occur in the process of scattering. This requires us to
take into account the interactions with the charged TV

and Higgs bosons in the scattering process. At first, this
might appear an insurmountable task. However, Farrar
and Shaposhnikov suggested that all the relevant plasma
effects can consistently be taken into account by describ-
ing the process as a scattering of suitably defined quasi-
particles off the wall.

E. Quasiparticles

n(a) = no[a(~+ vg p)] =
( )] (5)

For zero wall velocity, the thermal distributions for
left- and right-handed particles are identical in the wall
frame so that n~/s in Eq. (4) vanishes. The motion
of the wall introduces the nonequilibrium conditions re-
quired for the generation of the baryon asymmetry. The
leading contribution to nJs/s thus appears at first or-
der in v~. Expanding Eq. (5) in powers of viv, using
the value v~ = 0.1, and dividing by the entropy density,
s = 2m g*T/45 45T, we find the "baryon-per-photon"
ratio produced to be

Quasiparticles are fermionic collective excitations in a
plasma. They were studied decades ago in a relativistic
context in an e+-e plasma [15]. They were considered
for the first time in the @CD plasma by Klimov [16] and
Weldon [17]. In the vacuum, a massless spin-1/2 particle
with energy u and momentum p has the inverse propa-
gator So ——p u —g p. ln the plasma, the particle is
dressed, acquiring a thermal self-energy of the form

(7)

The dispersion relations for the quasiparticles are ob-
tained by solving for the poles of the full propagator,
including the self-energy. We need to solve

()[ — ()]T 2 T
xb, (~) ~ Q(vs). (6)

det[So ' —Z(~, p)] = 0 .

The solution is

(8)

As mentioned above, there is a contribution to n~ from
particles transmitted from the broken phase into the un-
broken phase. This contribution also vanishes for zero
wall velocity. Using CPT and unitarity, one can show

The factor of 1/3 is the baryon number of a quark, and,
again, there is a minus sign because the baryon number in
the unbroken phase is washed out, leaving an opposite baryon
number inside the bubble.

g' is the number of massless degrees of freedom in the
plasma 103.

~ = a(a, p) + p[1 —b((u, p)] .

The quantity a(u, p) has a nonzero value 0 at zero mo-
mentum, so that there is a mass gap in the dispersion
relations. A peculiar feature of this solution is the ap-
pearance of two branches as shown in Fig. 1. The upper,
"normal" branch (n) corresponds to a "dressed" quark
propagating as if it had an effective mass O. The second,
"abnormal" branch (a) is interpreted [18] as the propa-
gation of a "hole, " that is, the absence of an antiquark of
same chirality but opposite momentum. A "hole" is ex-
pected to be unstable at large momentum, but is thought
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FIG. 1. Schematic picture of the dispersion relations for
a fermionic quasiparticle in a hot plasma. The upper curve
represents the normal branch. The lower curve represents the
abnormal branch, which corresponds to the propagation of a
"hole." The abnormal branch becomes completely unstable
when it passes through the light cone m = p (dotted line) [19].

to be stable for relatively small momentum [19],which is
the region of momentum of interest in the FS mechanism.

At small quasiparticle momentum, where the largest
phase separation of baryons occurs, the self-energy can
be linearized as

These results for the thermal masses hold at leading order
in the temperature T, assuming that T is much larger
than any other energy scale. In Sec. IV, we will see that
in order to have flavor mixing of right-handed quarks, we
need to consider corrections proportional to ln m/T that
arise when nonzero quark masses in the broken phase are
taken into account.

The full structure of the dispersion relations (9) for
left- and right-handed particles in the broken and the
unbroken phases is depicted in Fig. 2. The graphs which
contribute to the self-energy are of the form shown in
Fig. 3(a), where the quark interacts with either a gluon, a
W boson, or a Higgs boson in the plasma. The dominant
contribution to the O s is left-right and flavor symmetric,
and comes from gluon exchange diagrams. This is con-
tained in the left-right average of the O s which, ignoring
the small flavor-dependent pieces from Higgs boson and
hypercharge-boson interactions, is given by

Ao
'

~

1+
[

50GeV.g, T f 9nvi 'i

64n. )

Z(~, p) = p (0 —(u) —p . p/3 . (10)
Splitting between left- and right-handed excitations
comes dominantly &om the TV+ interactions:

The solutions for the poles in the quasiparticle propaga-
tor are in this approximation simply bO = Ol —OR 4 GeV.~wT

20OO
(i6)

Here the factor of 1/3 is the quasiparticle group velocity,
du/dp, at zero momentum.

In the hot plasma of the early Universe, left- and right-
handed quasiparticles acquire distinct thermal masses Ol,
and O~ because only left-handed quarks couple to the
thermal R' bosons. The thermal masses also develop fla-
vor dependence because difFerent flavors couple with dif-
ferent strength to the thermal Higgs bosons. The thermal
masses of the left-handed quasiparticles are given explic-
itly by [17,7]

27rCX~T 7i (1~T (3 sill 8~
3 2 4 36

52.5

47.5

45.0

42.5

10 15

p (GeV)
20

M +KM2Ktid

4Mw )
' (12)

2vra, T2 ernie T (4 sin el' M„b 13

while for right-handed down quarks,

where the contributions &om thermal interactions with
gluons, electroweak gauge bosons, and Higgs bosons are
all apparent. In this expression, K is the CKM matrix,
M„= diag(m„, m„mq), Mq = diag(mq, m„ms), and
the Yukawa couplings to the Higgs bosons have been re-
lated to the masses of the quarks and the TV in the broken
phase. For right-handed up quarks,

FIG. 2. Dispersion curves linearized for small momentum
p. Because the W and Z bosons in the plasma only inter-
act with left-handed quasiparticles, the dispersion relations
for left-handed (L) and right-handed (R) quasiparticles are
distinct. For a given chirality, the dispersion relations are
as shown in Fig. 1, with both a normal branch (n) and an
abnormal branch (a). (These curves are only shown for a
single, light Qavor. The curves for other light Qavors would
be shifted slightly in energy. ) In the unbroken phase, the
left-handed abnormal branch (L ) intersects the right-handed
normal branch (R ); in the broken phase, the nonzero quark
mass connects the two chiralities and level crossing occurs, as
indicated by the dashed lines (here illustrated for the charm
quark). The result is a mass gap with thickness of order the
quark mass [7].
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(a) (b)

FIG. 3. (a) Graph contributing to the real part of the quasi-
particle self-energy. The dashed lines represent either gluons,
electroweak gauge bosons, or Higgs bosons from the plasma.
These graphs are responsible for the thermal masses 0 of the
quasiparticles, shown in Fig. l. (b) Graph describing a col-
lision of a quasiparticle (solid line) with a quark or gluon
(dashed line) in the plasma. This graph contributes to the
imaginary part of the self-energy, and leads to the decoher-
ence of quasiparticle waves.

In the unbroken phase, the energy levels of left- and
right-handed quasiparticles intersect at an energy close
to Ap, at a momentum lpl near (3/2)bA. In the broken
phase, level crossing takes place, leaving a mass gap of
thickness equal to the mass of the quark at the core of
the quasiparticle. This is shown in Fig. 2. Quasiparticles
with such energies cannot propagate in the broken phase;
they are totally reflected by the bubble if they approach
it from the unbroken phase. This latter property is of
crucial importance in the FS mechanism and restricts
the relevant phase space to a region near u = 00.

Finally, there are other contributions to the self-energy
resulting from neutral and charged Higgs bosons. Their
effects are unimportant for the propagation of a quasi-
particle in either phase. However, the self-energy contri-
butions from interactions with the charged Higgs bosons
are crucial for the generation of the baryon asymmetry.
Without them, the thermal masses would be flavor inde-
pendent, and in a mass-eigenstate flavor basis, the CKM
matrix, the only source of CP violation, would not be
present. With the charged Higgs interactions included,
it is impossible to diagonalize the evolution equations for
the quasiparticles simultaneously in both phases: The re-
quired CP-violating flavor mixing will be present in one
or both phases, allowing the separation of the baryons
across the bubble wall.

3 ms—
10 o~

S T
= 10-'L.

This estimate requires 4, the energy-averaged value of
the reflection asymmetry, to be at least of order 10 in
order to account for the baryon asymmetry of the Uni-
verse; this value is just barely attained in Ref. [7].

Gavela et al. [8] pointed out that the above analy-
sis ignores the quasiparticle width (or damping rate) p
embodied by the imaginary part of the self-energy

Z = ReZ —p (2ip) . (19)

The width results from the exchange of a gluon with a
particle in the plasma, and has been computed at zero
momentum as p 0.15g, T 20 GeV [20]. GHOP made
the important observation that this spread in energy is
much larger than the mass gap m in the broken phase,
and as a result largely suppresses A(tu). Their arguments
rely on the analytic continuation in the u plane of the
coeKcients of reflection for quasiparticle scattering.

In the next section, we describe the role of the damping
rate p in the scattering of a quasiparticle off the bubble
from a perspective which provides a clear physical un-
derstanding along with an unambiguous computational
method.

dependent mass term. In particular, they identified the
source of the phase separation of baryon number as re-
sulting from the interference between a path where, say,
an s quark (quasiparticle) is totally reHected by the bub-
ble with a path where the s quark first passes through
a sequence of flavor mixings before leaving the bubble
as an 8 quark. The CP-odd phase from the CKM mix-
ing matrix encountered along the second path interferes
with the CP-even phase from the total reflection along
the first path. Total reflection occurs only in a small
range of energy of width m, corresponding to the mass
gap for strange quarks in the broken phase, as depicted
in Fig. 2. This leads to a phase space suppression of
order m, /T. Inserting this suppression into (6) yields
the following estimate of the Farrar and Shaposhnikov
baryon-per-photon ratio:

F. Phase separation of baryon number
III. COHERENCE OF THE QUASIPARTICLE

A. Coherence length E

I&+ ~l' —I&+ ~*l' = —4rm Alm & . (17)

This illustrates the role of quantum mechanics in the
generation of a CP-odd observable. Farrar and Sha-
poshnikov proposed to describe the scattering of quasi-
particles as completely quantum mechanical, that is, by
solving the Dirac equation in the presence of a space-

It is known that a CP-violating observable is obtained
by interfering a CP-odd phase 8 with a CP-even phase A
so that, schematically, the asymmetry resulting from the
contribution of particles and antiparticles is proportional
to

A Dirac equation describes the relativistic evolution
of the fundamental quarks and leptons. Its applicabil-
ity to a quasiparticle is reliable for extracting on-shell
kinematic information, but one should be cautious in us-
ing it to extract information on its off-shell properties.
A quasiparticle is a convenient bookkeeping device for
keeping track of the dominant properties of the inter-
actions between a fundamental particle and the plasma.
For a quark, these interactions are dominated by tree-
level exchange of gluons with the plasma. It is clear that
these processes affect the coherence of the wave function
of a propagating quark. To illustrate this point, let us
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1 1 1E=vg-
2p 6p 120 GeV ' (20)

where vg is the group velocity of the quasiparticle. With
this definition, we can easily describe the decoherence
that occurs during the scattering off a bubble. Of crucial
importance for the remaining discussion, the coherence
length of the quasiparticle is much shorter than any other
scale relevant to the scattering process:

1 1 1 20 1 1000
T p bO T ' m, T (21)

B. Model for decoherence

Having identified the limited coherence of a quasipar-
ticle, we need to describe its impact on the physics of
scattering by a bubble of broken phase. To understand

Not only is the quantum mechanics of interference sup-
pressed, but also the scattering process is entirely classical.

consider two extreme situations.
(i) The gtuon interactions are infinitely fast I. n this

case, the phase of the propagating state is lost &om point
to point. A correct description of the time evolution can
be made in terms of a totally incoherent density matrix.
In particular, no interference between difFerent paths is
possible because each of them is physically identi6ed by
the plasma. As a result, no CP-violating observable can
be generated and A(u) = 0.

(ii) The gluon interactions are eztremeLy sloiv. The
quasiparticle is just the quark itself and is adequately de-
scribed by a wave function solution of the Dirac equation,
which corresponds to a pure density matrix. In particu-
lar, distinct paths cannot be identified by the plasma, as
the latter is decoupled &om the fermion. This situation
was implicitly assumed in the PS mechanism. This as-
sumption, however, is in conflict with the role the plasma
plays in the mechanism, which is to provide a left-right
asymmetry as well as the necessary mixing processes. In
addition, this assumption is in conflict with the use of
gluon interactions to describe the kinematical properties
of the incoming (quasi)quark.

The actual situation is of course in between the two
limits above. The quasiparticle retains a certain co-
herence while acquiring some of its properties from the
plasma. Whether this coherence is sufIicient for quan-
tum mechanics to play its part in the making of a CP-
violating observable at the interface of the bubble is the
subject of the remaining discussion.

The damping rate p characterizes the degree of coher-
ence of the quasiparticle. It results &om 2-to-2 processes
of the type shown in Fig. 3(b). It is a measure of the
spread in energy, AE 2p, which results &om the "dis-
turbance" induced by the gluon exchanged between the
quark and the plasma. Prom the energy-time uncertainty
relation, 1/(2p) is the maximum duration of a quantum-
mechanical process before the quasiparticle is scattered
by the plasma. We define a coherence length 8 as the
distance the quasiparticle propagates during this time:

this impact, let us first consider a familiar example, the
scattering of light by a re&acting medium.

According to the microscopic theory of reflection of
light, the refracting medium can be decomposed into suc-
cessive layers of scatterers which diffract the incoming
plane wave. The first layer scatters the incoming wave
as a difFracting grid. Each successive layer reinforces the
intensity of the difFracted wave and sharpens its momen-
tum distribution. As more layers contribute to the inter-
ference, the difFracted waves resemble more and more the
full transmitted and reflected waves. This occurs only if
the wave penetrates the wall coherently over a distance
large compared to the mean distance between scattering
sites.

In analogy with the microscopic theory of reflection of
light by a medium, we can slice the bubble into successive
layers which scatter the incoming wave. The wave func-
tion for a quasiparticle reflected from the bubble is the
superposition of the waves reflected from each of the lay-
ers. However, the decoherence of the quasiparticles aris-
ing &om collisions with the plasma implies that quasipar-
ticles reflected &om deep inside the bubble back into the
symmetric phase cannot contribute coherently to the re-
flected, outgoing wave of quasiparticles. Having traveled
several coherence lengths through the plasma, a compo-
nent of the wave reflected from deep inside the bubble
will have been repeatedly absorbed and reemitted by the
plasma. Each component thereby acquires a distinct mo-
mentum and energy, preventing quantum interference of
their amplitudes. Therefore, scattering from layers of
the bubble deeper than one coherence length does not
contribute signi6cantly to the production of a coherent
outgoing wave.

We can make the above arguments more specific in
three different but complementary ways.

(i) The scattering occurs because of the gain in mass by
the quark when it enters the broken phase; this increment
of mass is very small, and the full scattering requires
the coherent contribution of scatterers up to a distance
1/m into the bubble in order for the latter to probe the
energy of the wave with a resolution smaller than m.
This requirement is not satisfied since, from (21), this
minimal penetration length is three orders of magnitude
larger than the coherence length of the incoming wave.

(ii) From a corpuscular point of view, since scattering
in the bubble is due to the quark mass m, the mean
free path for scattering is 1/m. This is 1000 times longer
than the coherence length. Therefore the probability for
quasiparticle scattering even once in the bubble before it
decoheres is extremely small, of order (m/)2 10

(iii) Farrar and Shaposhnikov found a sizable baryon
asymmetry generated in an energy range of width m,
where a strange quark is totally reflected from the bub-
ble. This energy range corresponds to the mass gap in
the broken phase described previously (Fig. 2). How-
ever, strange quarks can easily tunnel through a barrier
of thickness I. (( 1/m„since they are off shell by an en-
ergy Aw m, for a time Kt E/vg ——1/(2p). Because
b,ub, t = m, /(2p) (( 1, tunneling is completely unsup-
pressed and the amplitude of the reflected strange-quark
wave is only of order m, /p 1/1000.
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The probability of scattering several times in the bub-
ble, as is required in order to generate a CP-violating,
baryon asymmetry, is thus vanishingly small. The baryon
asymmetry results &om interference of reflected waves
and necessarily involves several flavor-changing scatter-
ings inside the bubble in order to pick up the CP-
violating phase of the CKM matrix. We therefore expect
that the baryon asymmetry produced when decoherence
is properly taken into account will be smaller than the
amount found by Farrar and Shaposhnikov by several
factors of mE.

From these physical considerations, we can easily elab-
orate quantitative methods of computing the scattering
ofF a bubble by quasiparticles with a finite coherence
length E.

A simple model is obtained by expressing that when a
quasiparticle wave reaches a layer a distance z into the
bubble, its amplitude will have effectively decreased by
a factor exp( —z/2E). A component which reflects from
this layer and contributes to the reflected wave will have
decreased in amplitude by another factor of exp( —z/2E)
by the time it exits through the bubble wall. We can take
this into account by replacing the step-function bubble
profile with an exponentially decaying profile:

M() Me '~~, z)0,
0, z&0. (22)

This automatically attenuates the contribution to the re-
flected wave from layers of the bubble deeper than one
coherence length. The analogue in the theory of light
scattering is the scattering of a light ray by a soap bub-
ble. For this reason, we refer to this model as the "soap
bubble" model. It is clear that truncating the bubble in
this way renders the bubble interface transparent to the
quasiparticle, that is, significantly reduces the amplitude
of the reflected wave.

A more rigorous method of computing A(w) which we
develop in detail in the next section is to solve an effective
Dirac equation in the presence of the bubble, including
the decoherence (damping) that results from the imag-
inary part of the quasiparticle self-energy. We extract
Green's functions which allows us to construct all possi-
ble paths of the quasiparticles propagating in the bulk of
the bubble with chirality Hips and flavor changes, each
path being damped by a factor exp( —l:/2E) where l: is
the length of the path. Paths occurring within a layer of

I

thickness 8 dominate the reflection amplitudes, in agree-
ment with the previous considerations. We refer to this
method as the "Green's function" method.

We have computed A(u) using both methods. They
give results qualitatively and quantitatively in close
agreement. The principal difference is the following: The
"soap bubble" model totally ignores scattering off the
region deep inside the bubble, and does not take into
account small effects &om decoherence in the foremost
layer. In the next section we develop the "Green's func-
tion" method in detail. The results of both methods are
summarized in the final section.

IV. CALCULATION OF A(~)
INCLUDING DECOHERENCE

A. Dirac equation for quasiparticle scattering

In the unbroken phase where quarks are massless,
quasiparticles propagate with a well-defined chirality, and
the wave functions I and R of left- and right-handed
quasiparticles evolve independently according to

[~ + cr . p —Zl, ((u, p )]L = 0,
[/r2 —O p —ZR((d, p )]R:0 (23)

where ~ and p are the energy and momentum of the
quasiparticle, and Zl. ~ are the thermal self-energies dis-
cussed in Sec. II E. The largest contribution to quasipar-
ticle reflection and the phase separation of baryons occurs
at small momenta where the momenta of left- and right-
handed quasiparticles are not significantly different. At
small momenta, the self-energies can be linearized [Eq.
(10)] as ZL, ~ 2(AI. ~ —ip) —w + a'. p/3. Here Bl, ~
are the thermal masses of left- and right-handed quasi-
particles introduced in Eqs. (12), (13), (14), and we have
included the imaginary damping term (19).

In the bubble of broken phase, the nonzero mass cou-
ples the two chiralities of quasiparticles. For an idealized
bubble with a wall of zero thickness at z = 0 and extend-
ing to z = +oo, the mass term is just M0(z), where M is
the matrix of broken-phase quark masses. The propaga-
tion and scattering of the quasiparticles in the presence
of the bubble of broken phase is thus governed by an
effective Dirac equation:

Me(z)
2[v) —O~ +ip —siicr 8] )

0= (2[co —OL, +ip+. io 8]-3
Mt8(z) (24)

(I, &
where ilf =

~ ~

. The field iII can be either the field of
(Bp

the down quarks, (d, s, b), or the field of the up quarks,
(u, c, t), and in either case is a three-component spinor
in flavor space. We ignore the small corrections to this
equation induced by boosting to the &arne of the bub-
ble wall since they contribute at higher order in the wall
velocity. In a flavor basis which diagonalizes 01„ this
Dirac equation is flavor diagonal in the symmetric phase

[Me(z) = 0]. Inside the bubble, however, flavors mix via
the mass matrix, which is off diagonal in such a basis.
We treat the mass matrix as a perturbation in order to
make the calculation of the quasiparticle reflection coef-
ficients as physically transparent as possible. This is an
excellent approximation for all quarks other than the top,
for which mal 1. We will therefore concentrate on the
scattering of down quarks in this section, and describe
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qualitatively how these results would be altered for the
scattering of the top quark. The large top quark mass
does not alter the implications of quasiparticle decoher-
ence for the generation of a baryon asymmetry.

Multiplying the above Dirac equation by 3/2, it be-
comes

&P, +'~. a W0(z)
M tg(z) (PR—+ i cr . 8) )

(25)

where PL, and PR are the symmetric-phase complex mo-
menta of the left- and right-handed quasiparticles, in-
cluding the imaginary damping terms

PI. = 3(~ —Ol, + ip),
P~ = —3(~ —O~ + ip) .

(26)

(»)
The rescaled mass M is just given by M = 3M/2. We can
decompose PI. ~ into the physical (Hermitian) momenta
pL, R, and damping terms inversely proportional to the
coherence length E = 1/(6p) introduced in Eq. (20):

z
Pl, = pL, ——,pl, = 3((u —Ol, ),2E'

PR pR + pR = 3(M OR)2Z'

(28)

(29)

The damping of the quasiparticle waves due to the imag-
inary parts of Pl, and PR will be discussed shortly.

As discussed above, we restrict our attention to quasi-
particles with momenta perpendicular to the bubble wall.
Referring to the components of 4 as

(30)

(31)

Because of angular momentum conservation, the Dirac
equation for 4 decomposes into two uncoupled equations,
one for j, = —1/2 quasiparticles contained in y,

( PL,—iB,g(z) =
I te( )

P""Ix(.),PR

and another for the j, = +1/2 quasiparticles contained
in y,

—~~.&(z) =
I ~g(, )

M"8(z) l
( )PI, )—(33)

In each of y and y, the upper component represents a
quasiparticle moving towards the wall from the symmet-
ric phase. The lower component represents a quasipar-
ticle reHecting off the. bubble back into the symmetric
phase. The j = —1/2 equation describes a left-handed
quasiparticle reHecting into a right-handed quasiparticle;

we introduce spinors y and y for quasiparticles with
j, = ~1/2, where j, is the z-component of their angular
momentum:

the j, = +1/2 equation describes the reversed process.
In the following we concentrate entirely on the scat-

tering of j, = —1/2 quasiparticles contained in y. To
obtain analogous results for the scattering of j, = +1/2
quasiparticles, we need only interchange PI. ++ —PR and
M ~ Mt, as is apparent from Eqs. (32) and (33).

In the next subsection we will use the equation of mo-
tion for y(z), Eq. (32), to calculate the reflection asym-
metry A(w). We conclude this subsection by discussing
the equation of motion for y(z) in the symmetric phase,
where the mass term is absent. A left-handed quasipar-
ticle moving toward the bubble has complex momentum
Pl. given by Eq. (28), and a right-handed quasiparticle
moving away from the bubble has a complex momentum
PR given by Eq. (29).

First examine the real parts of Pl. R in Eqs. (28), (29).
The signs of the real parts of either Pl. or PR depend on
whether the quasiparticle is on the normal or abnormal
branches, and this in turn depends on the value of ur (see
Fig. 1). (For example, if O~ ( ~ ( Ol„ the left-handed
quasiparticle is on the abnormal branch and has nega-
tive momentum. The right-handed quasiparticle is in this
case normal, but also has negative momentum. ) What
is essential, though, is that the signs of the group veloc-
ities are independent of energy: The left-handed quasi-
particles move toward the bubble and positive z, and the
right-handed quasiparticles move away from the bubble
and in the direction of negative z.

Now examine the imaginary parts of PI. and PR. A left-
handed quasiparticle, which moves towards positive z,
has a momentum with a positive imaginary part. There-
fore the wave function for left-handed quasiparticles de-
cays as exp( z/2E) —as the quasiparticles move towards
positive z. A right-handed quasiparticle, which moves to-
ward negative z, has a momentum with a negative imag-
inary part. Hence the wave function for right-handed
quasiparticles decays as exp( —Izl/2E) as the quasiparti-
cles move towards negative z. In other words, quasiparti-
cle waves are damped no matter in which direction they
propagate.

Note that we have implicitly chosen u to be real. With
this choice, the momenta must become complex in or-
der to satisfy the dispersion relations, and propagation
of quasiparticles in space is damped. We have taken ~
to be real because energy is conserved in the scattering
process. We can then just ignore the factor exp( —iwt)
which describes the time dependence of the quasiparticle
wave function, since it does not affect the probabilities of
reHection.

We could have satisfied. the dispersion relations with
real momenta if we had allowed ~ to be complex. Then
we could have observed the decay of the quasiparticles in
a time 1/(2p). But then the re6ection probabilities would
have an exponentially decaying time dependence, which
would require us to study the space and time dependence
of quasiparticle scattering in order to determine the time
it takes for a quasiparticle to scatter off the bubble.

B. Diagrammatic calculation
of re8ection coefficients

We now derive a perturbative expansion for the re-
Hection coeKcients. The result is what one would in-
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tuitively expect: A left-handed quasiparticle propagates
toward positive z until its velocity is reversed by scatter-
ing in the bubble, an insertion of the quark-mass matrix,
and then becomes a right-handed quasiparticle, propa-
gating towards negative z, perhaps exiting the bubble
and contributing to the reflected quasiparticle wave, or
possibly scattering again, and once more propagating as
a left-handed deeper into the bubble. Throughout, the
quasiparticle wave is damped. To generate a phase sep-
aration of baryons, the quasiparticle wave must sufFer a
sufhcient number of scatterings inside the bubble, both
with the neutral Higgs condensate, which gives factors
of the quark-mass matrix, and with charged Higgs bo-
son in the plasma, in order to produce a CP-violating
observable.

First consider the propagation of quasiparticles in the
symmetric phase (again, restricting our attention to the
j = —1/2 quasiparticles contained in y). For the left-
and right-handed quasiparticles contained in y we need
to find Green's functions GL and GR satisfying

ticles move toward negative z, as expected. We have
substituted the expressions for PL, R [Eqs. (28), (29)] to
demonstrate that quasiparticle propagation is dam. ped.

Now introduce the quark-mass terms in the bubble as
a perturbation, and consider the reflected wave of right-
handed quasiparticles at z = 0 due to a b-function source
of left-handed quasiparticles at z = 0. Let

(38)

We thus need to solve (32),

(—iB, —PL)yL(z) = —i~(z)XL, (0) ™(z)g~(z),(39)

(—ic), —PR)y~(z) = Mt—o(z)yL, (z) . (40)

From the equations satisfied by the Green's functions we
see that the solution is given by

yr(z) = —G z(z)zy ( )z+0f dzoGzrz —zo)

(—iO —PI, ~)GI, ~(z —zp) = IL b(z —zp)

In addition we require the boundary conditions

(34) x M 8(zp) y~ (zp),

QR(z) = f dzoGrr(z —zo)( —Al )&(zo)rrr (zo)

(41)

(42)

GL, (—oo) = G~(+oo) = 0,
which state that there are no sources of quasiparticles at
spatial infinity. The unique solution is

0( ) —(z —zp)/2E ipl, (z —zp)~&z —z0~je (36)

G~(z —zp) = —i0(zp —z)e' " '
= —ie(z — )

~" 'l~ e'""~' "l (37)

The 0 functions indicate that left-handed quasiparticles
move toward positive z while the right-handed quasipar-

where the integrals are over all z0. These expressions can
be iterated to find the reflected wave to any order in the
quark mass matrix.

The reflection matrix BLR, where the subscript indi-
cates that left-handed quasiparticles are reflected into
right-handed quasiparticles, is obtained by considering
all possible flavors of initial and final quasiparticles. For
example, BL'R, the reflection coeKcient for scattering of
initial flavor i into a final flavor f, is found by calculat-
ing the f component of yR(0) when the i component of
yL, (0) is set equal to one and the other components are
set to zero. From the solution Eq. (42), we see that the
reflection matrix is given by the expansion

BLR = x dz] GR —zy —M 0 z] GL zy

—z dz~ dz2dz3GR —z3 —M 0 z3 GL z3 z2 JHO z2 GR z2 z] M 0 z] GL zg

+ z ~ ~

z] e
—i PR z1~t i PI.z1

0
OO 0 OO

z dz dZ dz
—iPRzs~t iPI. (zs —z2)~ xPR(z2 —z1)~t aPI. Z1 +Zg Z2 Z3 e

0 Z1 z2

(43)

(44)

This expansion is shown diagrammatically in Fig. 4.
Let us now make explicit the damping of the quasiparticle waves. Decomposing each of PL and PR into a momentum

and a damping term as in Eqs. (28), (29), the previous expression for BI,~ becomes

B =i dze '/ e '""'~ ei"LR— 1
0

OO 0 OO

+i dzq dz2 dzs exp[ —(zq + ]z2 —z]
I
+ Izs —z2I + zs)/(2e)]

0 z1 Z2

X xpRzs ~t zpL(zs —z2)~ xpR(z2 —z1 )~t xp Lzl (45)
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FIG. 4. First two terms in the expansion for the re6ection
matrix RL,R. The bubble of broken phase is indicated by the
step. An incident left-handed quasiparticle approaches the
bubble from the left, and is scattered by the quark-mass term
M in the bubble, becoming a right-handed quasiparticle
which moves back towards the bubble wall. The right-handed
particle can then exit the bubble and contribute to the re-
Hected wave, or else can scatter again, via M, leading to
a contribution to the re6ected wave at higher order in the
quark-mass matrix. The full reBected wave is obtained by
summing up these diagrams and integrating over the posi-
tions of the scatterings in the bubble.

pI. = pL, +~pL, )

PR —PR~ + ~PR )
0

(46)
(47)

where pL R contain the large, flavor-independent terms in
t

pL, ~, while b'pL, ~ are proportional to the 0 (n~), flavor-
dependent pieces in OL R that arise from interactions

t

with Higgs bosons. Examining the expression (12) for
02&, and formula (28) for JtL„we see that for down quarks,
bpL, is given in a mass-eigenstate flavor basis by

3tra.gr T2 KtM2K + Mq
160o M~~

(48)

For the scattering of up quarks, Mg and M„are inter-
changed, as are K and K~. The noncommutativity of bpl,
with M gives rise to flavor mixing in the broken phase.

The thermal masses OR for right-handed quarks are
flavor diagonal when approximated for large tempera-
tures T [Eqs. (13), (14)j. Hence in this approximation,
pR is diagonal and does not contribute to the flavor mix-
ing required for CP violation. In the broken phase, the
quarks appearing in the self-energy graphs are massive,

The quasiparticle wave is evidently damped along each
leg of its trajectory. The overall suppression for each
term in Rl,~ is just exp( —8/2E), where 8 is the distance
traveled by a quasiparticle in the barrier. In particular, it
is apparent that there will be no significant contribution
to RI,R &om paths which travel to a depth of more than
one coherence length into the bubble. Hence only an
extremely thin outer layer of the bubble contributes to
the coherent reflected wave.

This perturbative expansion for the reflection matrix R
is the basis for the calculations we are about to describe.
We will work throughout to lowest nonvanishing order in
the quark mass matrix. This expansion is valid as long as
MS (( 1. This condition is easily satisfied for all quarks
other than the top, for which the expansion parameter
is of order unity, and for which our results will only be
qualitative.

We also work to lowest order in the 0(o.gr) flavor-
dependent terms in pL, R that arise from Higgs contribu-
tions to the thermal self-energy. Decompose pL, R as

where we have omitted the flavor-independent terms of
order T . All masses are high-temperature, broken-phase
masses. Again, for the scattering of up quarks, Mp ++ M„
and K ~ K~.

In addition to working to lowest nonvanishing order in
the quark-mass matrix ~, we also work to lowest order in
bpl, R, which is equivalent to lowest nonvanishing order
in o.~. Given that in the range of momentum where our
analysis is applicable the diagonal components of pl. R
are much smaller than 1/E, we could justifiably work to
lowest order in p& R as well. However, we list results
valid to all orders in pL R in order to show the energy
dependence of A(~).

We find two leading contributions to b, (ur). The first
contribution is the dominant contribution when quark
masses are neglected when calculating the self-energy in
the broken phase. In this case hpR in Eq. (47) is diagonal
and commutes with the quark mass matrix. This is the
only contribution considered by FS, and comparing our
results with FS we can see the dramatic effect of decoher-
ence. In a second calculation, we calculate the contribu-
tion to b, (u) that comes from including the off-diagonal
terms in bpR. GHOP found the largest contribution to
b, (w) when considering the scattering of up-type quarks
with these terms included. In each case we take into ac-
count the finite coherence length of the quasiparticle by
using expansion (44) for the coefficient of reflection.

C. Calculation of E(car) neglecting bp~

The leading contribution to b, (ur) when hp~ is ignored
appears at 0 (M ). In this case the momentum of the
right-handed quasiparticles is diagonal and commutes
with the quark-mass matrix. Then the expression for
R~R, Eq. (44), can be written as

d~, m~-"~'
0

OO 0 OO

+i d~] dz2 dz3 Me
0 Z1 Z2

~2 —Z1 /A (5o)

where 1/A = 1/E —i(pL, —p&). For simplicity, we have cho-
sen a mass-eigenstate basis where M is diagonal. Evalu-
ating the integrals, we find that

~) (g ~2) 2 + ~2) 2~2) 2

+M2AM2A'+ . .) .

To calculate b, (w) = Tr(R&&RI,~ —RI,&RL,~), we

and 02& acquires off-diagonal terms (which are usually
neglected at large temperatures). As pointed out by
GHOP, the resulting off-diagonal terms in bpR, which
do not commute with the quark mass matrix, lead to
additional contributions to A(u). For down quarks,

3n~ MgK M„in(M„/T ) KMg
32~00 M~
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need the reflection matrix BL,R for the scattering of CP-
conjugate particles. The CP-conjugate process di8'ers
only in that the CKM mixing matrix K is replaced with
K', which means pL, is replaced with pI ——pI. Hence

the reflection matrix BI, ~ is obtained from BI, ~ by re-
placing A with its transpose. The O(M2) and O(M4)
terms cancel out of the difFerence in b, (w), so that the
leading-order contribution is 0 (M ):

( ) T [) ) t2~2) t~2) t2~2 + P2) t~2P2~2P~2 + P2) t2~2P~2gt~2
ppt2~2) t2~2pt~2 ) 2pt~2) ~2p2~2 p2pt2~2) t~2p~2] (52)

where 1/At = 1/E + i (pI, —pR). Notice that each factor
of the quark mass matrix is accompanied by a factor of

E. The product MZ is the amplitude for the quasipar-
ticle to scatter through the quark-mass term while prop-
agating for one coherence length, which is quite small.
To lowest order in bpL„

The quantity det C is the basis-independent Jarlskog de-
terminant [21]:

det C = i det [M„,KMd Kt]
= —2J(m~ —m, )(m~ —m„)(m, —m„)(mt, —m, )

x(mb —m', )(m'. —m'„), (57)

Ag((u) = 4i fg(Ap E) Tr (bpI, ) M bpL, M

= ——fg(Apse) Tr M, bpI,

where Ap—:pI —pR, and fg is an energy-dependent
form factor given by

1
fg(*) = (1,), .

The subscript 9 indicates that this contribution to A(w)
occurs at ninth order in E. It is the largest contribution to
A(ur) due to down quarks when bpR is neglected. Again
note that for every factor of the quark mass matrix or
bpL„ there is an accompanying factor of E. Scattering from
either the Higgs condensate or the the charged Higgs bo-
son in the plasma during one coherence length has a very
small probability.

Referring to the diagrammatic expansion in Fig. 4, this
O(M ) contribution to A(&u) evidently can come &om
the interference of two paths which each have three chi-
rality flips (via the mass term), or it can come from the
interference of a path which has just one chirality flip
with a path that has five chirality flips. The three factors
of bpr. are distributed among the left-handed segments of
the two paths.

We now substitute expression (48) for hpI. and also
Ap 8—:(pL —pR)l = (w —Ag)/p, using Eqs. (28) and (29),
and where 00 50GeV is the left-right average of the
flavor-independent pieces of OL, R introduced in Eq. (15).
Our expression for Ag(w) for down quarks becomes

where the superscript d indicates that this is the con-
tribution to b, g(u) due to the scattering of down
quarks. Here J is the product of CKM angles J
si 82 s3c] c2 c3 sin b 10 . Clearly, the largest contribu-
tion to Ag (~) comes from paths involving bottom quarks
(either incident, reflected, or virtual).

For the scattering of up quarks our expansion in the
quark-mass matrix breaks down because of the large mass
of the top quark. Because of its large mass, the top
quark is far off shell in the broken phase (by m& —Og
3p). We therefore expect that if we did not treat the
top quark mass as a perturbation, the contributions &om
paths involving the top quark would be smaller than the
results obtained here. Our results for the up quarks are
thus qualitative, and overestimate their contribution to
the asymmetry relative to the contribution of the down
quar ks.

As mentioned above, results for the scattering of up
quarks can be obtained &om down-quark results by in-
terchanging M~ with M„and K with Kt. From the defi-
nition of the Jarlskog determinant in Eq. (57), we see that
it changes sign under these interchanges. Hence to lowest
order in M, the contribution to Ag(w) from up quarks,
Ag(~), differs only by a sign from the down-quark con-
tribution, b,g(u). If the top quark were as light as the
other quarks, the total contribution to Ag(u) would van-
ish (continuing to ignore the off-diagonal terms in bpR).
Because the top quark is very heavy, the dominant terms
in Ag(u), which come from paths involving top quarks,
will be reduced. Therefore, the total contribution to 49,
given by L9+ L&, will not vanish.

We reserve further discussion of this contribution for
the final section, and now describe our calculation of the
leading contribution to b, (u) when the off-diagonal terms
in bp~ are considered.

D. Calculation of Lh. (co) including bing

detC S (56)
Because bp~ contains two factors of M, when bp~ is

included, we need two fewer factors of the quark-mass
matrix in order to form an invariant analogous to the
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Jarlskog determinant. The leading-order term therefore
appears at O(M ).

To find A(u) when the off-diagonal terms in bp~ in
Eq. (49) are included, we again use the expansion for
BL,R in Eq. (44). We can no longer directly evaluate the
z integrals because of the noncommutativity of bpL, and
bpR with M. Instead we Grst expand. the integral expres-
sion for A(w) in powers of bpL, and bpR, and pick out the
lowest-order nonvanishing terms, of order (bpL, )(bpR). It
is then possible to evaluate the favor-independent inte-
gral coefficient. The resulting contribution to A(u), at
seventh order in 8, is

A7((u) = —8x f7(Ap E) Tr bpL, Mbp~M

—bPL, M bPRM 8 (58)

where f&(Ap E) is an energy-dependent form factor,

(59)

Note that A7(~) would vanish if either bpi, or bp~ com-
muted with M. Unlike Ap(w), b, q(~) is an odd function
of Lp and so vanishes at Lp = 0. This is because in
order to discern the CP-odd phase in the CKM matrix,
we need a CP-even phase, as is apparent in Eq. (17).
Examining Eq. (45) for RL,z, the only sources of relative
phases are the factors of the form exp(ipz). To get a non-
trivial CP-even phase, we evidently need an odd number
of factors of ip. While the trace in Ap(m) contains three
bp's, the trace in A7(u) contains just two, and so we need
a factor of Lp to have a nontrivial CP-even phase.

Because A~(w) is an odd function of ApP, it vanishes
at (d = Op in the middle of the energy range where
light quarks are totally reflected. This is where Farrar
and Shaposhnikov saw the generation of a large baryon
asymmetry, and where on a much smaller scale, Ap(~) is
peaked. We expect that contributions to the integrated
asymmetry from u ( Op will largely cancel against con-
tributions &om (d ) Op and leave a very small contri-
bution to the integrated asymmetry from Ay(w) for light
quar ks.

This contribution to the asymmetry arises from the
interference of a path that has three chirality Hips with
a path having one chirality Hip. The factor of bp~ can
occur along any of the left-handed segments of the two
paths, and similarly the factor of bpR can occur along
any of the right-handed segments.

Substituting the expressions for bpL, R for down quarks
in Eqs. (48), (49), and substituting Ap / = (cu —Op) jp
as before, expression (58) for b, y(u) simplifies to

2

(320pMi22, p ( p )
The superscripts d again indicates that this contribution
is due to the scattering of down quarks. The quantity 11'
is an invariant measure of CP violation analogous to the
Jarlskog determinant:

'Vg ——Im Tr M„ ln M„KM~ K M„KM~ K

x (m& —m, ) (m& —m&) (m, —m&) . (61)

Here we have used Im(K ~ Kt&.Kpi, K&~ )
= Jg &

e p~e~i, i [21]. Like the Jarlskog determinant,
'Vd vanishes if any two quarks of equal charge have the
same mass.

Recall that the Jarlskog determinant (57) simply
changes sign under the simultaneous interchanges Md ++
M„and K ++ K~. By contrast, Bp does not treat the up-
quark and down-quark mass matrices symmetrically, and
becomes a new quantity, V„, under these interchanges.
This new quantity contains two more powers of m&, and
is roughly —1000 times 'Vd. Hence the contribution to
A~(w) due to up-quark scattering, b,P, obtained from
the down-quark contribution by replacing Vp with V,
will be much larger than 47. Given that contributions
&om paths including top quarks should be reduced when
the off shellness of the top quarks is taken into account,
the value for L7 obtained here serves as an upper bound
for 47.

We now discuss our results for A(m) and their impli-
cations for the size of the baryon asymmetry.

V. PRESENTATION AND DISCUSSION
OF THE RESULTS

A. Results

In the previous section we computed the energy-
dependent reHection asymmetry A(tu). This asymine-

«y ls the difference of Tr BL,RBL,R and Tr BLRBL,R,t

the probabilities for a left-handed quark and its CP-
conjugate to be reflected. off the bubble, summed over
all quark flavors. We calculated the reflection probabil-
ities by solving an effective Dirac equation including all
relevant plasma effects as self-energy corrections, in the
presence of the space-dependent mass term.

The real part of the self-energy accounts for the gluon
interactions which control the kinematical properties of
the quarks. It accounts for the interactions with the R"s
which differentiate between quarks with different chirali-
ties, as well as interactions with the charged Higgs boson
which provide the favor-changing processes needed for
the generation of a CP-violating observable. These ef-
fects are embodied in the concept of quasiparticles which
was used in the mechanism of Farrar and Shaposhnikov.

The novelty of our calculation resides in our treatment
of the imaginary part of the self-energy. We interpreted.
the latter as a measure of the coherence of the wave func-
tion of the quasiparticle, and we introduced the concept
of the coherence length Z. We extracted Green's func-
tions which, in conjunction with chirality Hips due to the
mass term and flavor changes due to interactions with
the charged Higgs bosons, lead to the construction of all
possible paths contributing to the reflection coeKcients
(Fig. 4). It is the interference between these paths which
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survives in the asymmetry, as expected from the general
principles described in Secs. II and III. An important
feature is that each path has an amplitude proportional
to exp( —l:/2E), where 8 is the length of the path. This
confines the scattering to a layer of thickness Z at the sur-
face of the bubble, a property already predicted on phys-
ical grounds in Sec. III. The asymmetry results &om
processes which involve a sufficient number of changes
of flavor as well as a sufficient number of factors of the
quark-mass matrix, every one of which brings along a
factor of E. Consequently, the asymmetry is suppressed
by many powers of MZ, the dimensionless product of the
quark-mass matrix and the coherence length of the quasi-
particle, l, and powers of (bpL, )E and (bpR)/, products of
the coherence length with the flavor-dependent terms in
the momentum matrices for left- and right-handed quasi-
particles.

Specifically, we find the asymmetry dominated by (i)
contributions at order Z &om processes involving the
scattering of up quarks, with two flavor mixings, propor-
tional to (bpl, )(bpR), and given in Eq. (60),

&7(~) = —16 f7(6l(cu —Oo)) Im Tr[bpL, ~bpRM ] P
(62)

f7(68(~ —Ao)) 17„k'( 27o~T l '
(320p M~2 )

= 10 ' f7(68((u —Bo)),

(63)

where

f7(&) =
(1+~')4 ' (64)

and (ii) contributions at order P from processes involving
the scattering of down quarks, with three flavor mixings,
proportional to (bpL, ), and given in Eq. (56):

bs((u) = —8 fg(6E((u —Op)) Im Tr[(bpl, ) M bplM ] E

(65)

277I A T
640pM~2 j

(66)
= 4 x 10 fs(6E(ur —Bp)),

per bounds. In the broken phase, the kinematics of the
top quark is determined entirely by its large mass, as op-
posed to the light quarks, whose kinematical properties
are dominated by their interactions with the plasma in
both phases. The reflection asymmetry is produced in an
energy range near where level crossing occurs, well below
the top quark mass. At these energies the top quark can
only propagate far oK shell. As discussed in Sec. IV, this
diminishes the amplitude for any path which involves fla-
vor changing &om or to the top quark. In consequence,
the up-quark contribution to As(~) is suppressed rela-
tive to the down-quark contribution, and the up-quark
contribution to A7(w) given in Eqs. (62) and (63) is an
upper bound.

The two contributions b, 7(u) and A~z(ur) decompose
naturally into a product of three factors, as given in
Eqs. (63), (66), each of which refiects an important aspect
of the physics involved. Let us consider them separately.

The first factor contains powers of niv/M~, which
originate &om the flavor changing insertions bpl. or bpR
on the path of the scattered quasiparticle.

The second factor is an energy-dependent function
f(x). Although, the precise form of this function is
sensitive to the details of the calculation, its general
shape is not. This function is a form factor which re-
flects the increased likelihood of chirality flips at energies
for which the various flavors involved has similar mo-
menta. That occurs in the region of level crossing around

Op 50GeV (Fig. 2). The form factor peaks at a
value of order one, and has a width of order the quasipar-
ticle width, p. These properties are apparent in Fig. 5.
Note that fp is peaked at w = Ap while f7, though cen-
tered about the same energy, actually vanishes there as
the result of the vanishing of the CP-even phase at that
energy, as described in Sec. IV D.

Finally, the third terms on the right-hand sides of
Eqs. (63) and (66) are the Jarlskog determinant det C
and another CP-violating invariant B„,which are given
explicitly in Eqs. (57) and (61), respectively. They con-
tain the expected dependence on the flavor-mixing angles
and vanish in the limit where any two quarks with the
same charge have equal masses. We have already argued
that in general a CP-violating observable such as A(w)
is the result of quantum interference between amplitudes

where

1
&s(*) =

(, +,), .

The contribution to A7(u) from down quarks is
10 f7(6E(u —Bp)), while the contribution to b9((u)
&om up quarks is smaller than the down-quark contribu-
tion.

Our results for up quarks should be regarded as up-

0.50

0.25

0.00

—0.25
, 'f„(~—Gp/y)

For our numerical results we set T = 100 GeV. We take the
broken-phase W mass as Miv = T/2, and scale the broken-
phase quark masses accordingly. We use a generous value for
the product of sines and cosines of CKM angles: J = 5 x 10

20 30 40 50 60
~ (Gev)

70 80

FIG. 5. The energy-dependent form factors f7 and fp, eval-
uated at (u —Ap)/y = 6E(cu —Ap). Note that fp is peaked at
m = Ap 50 GeV, while f7 vanishes there.
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with different CP-even and CP-odd phases. These phys-
ical processes can easily be identified &om the structure
of the traces in Eqs. (62) and (65). To do so, we repre-
sent each of these traces as a closed fermion path with
various mass insertions (M~) and flavor-changing inser-
tions (bpL, and bp~) in the order they appear in the trace.
The mass operator changes the chirality of the quark but
not its flavor while the flavor changing operator leaves
the chirality intact. Any cut performed across two por-
tions of the loop with opposite chirality divides the loop
into two open paths whose interference contributes to the
asymmetry. This is illustrated in Fig. 6. These paths are
in one-to-one correspondence with the paths constructed
with the Green's functions method elaborated in Sec. IV.

We now calculate the contributions to n~/s. The con-
tribution from b, g" (ur) is, from Eq. (18),

A& 3 1 G4)—10 nor — np((u) [1 —np((u)] Ag((u)
8 T 2'

9

R~ L R

R

L

k L x
R

Lg

FIG. 6. This loop summarizes all the contributions to
b, g(u), and corresponds to the trace in Eq. (65). [An analo-
gous loop summarizes the contributions to Aq(&u). ] The solid
blobs represent insertions of bpL„which describes the mixing
of quark 6avors through interaction with the charged Higgs
bosons. The crosses stand for insertions of the quark mass
matrix. The loop is then a trace in Qavor space of the prod-
uct of all the insertions. Any individual contribution to the
reBection asymmetry can obtained by cutting across two seg-
ments of the loop of opposite chirality. This produces two
open paths whose interference contributes to the asymmetry,
as shown in the right side of the 6gure.

1 d(d—10 — np ((u) [1 —np ((4()]T 2'
x fg(6E((d —Op))
2x10—zs

Similarly, for the contribution from 6&(u) we find

x
8

(68)
(69)

(7o)

the same structure as the ones obtained in Eqs. (63) and
(66). In fact, the only difFerence relative to the results for
A(u) obtained via the "Green's function" method is that
for the "soap bubble" model, the energy-dependent form
factors fq and fg are replaced with form factors fq(x)
and fg(x), where

Because of the peculiarities of top quark kinematics, we
cannot say whether the up-quark contribution to n&/s
is in fact larger than the contribution &om down quarks
given in Eq. (69). The result (70) certainly overestimates
the integrated asymmetry. Furthermore, given our many
simplifying assumptions discussed in Sec. II, which have
the virtue of maximizing the baryon asymmetry, the re-
sult Eq. (70) represents a conservative upper bound on
the magnitude of the "baryon-per-photon" ratio:

(71)

Clearly, the mechanism of Farrar and Shaposhnikov can-
not account for the observed baryon asymmetry or any
substantial &action of it.

In Sec. III, we advertised another method of comput-
ing the asymmetry using a model in which the essen-
tially infinitely thick bubble is replaced with a thin layer
of thickness Z. We referred to this model as the "soap
bubble" model. This model implements quantum deco-
herence in scattering in the simplest way and provides
an analytic form of the asymmetry which has exactly

The corresponding contribution to (njs/s)(q from down
quarks is only 10 . Hence the largest contribution to

nrem/s

from the scattering of down quarks comes at O(E ). For up
quarks the O(f. ) contribution to nn/s is larger than the O(f. )
contribution.

2x 1 —„',(23x' + 7x' —3x')
(1+*')'I1+ (*/3)']'

1 1 ——x1 2
3

44 (('+ *')(4+ (*/4)'l(' )

(72)

(73)

The terms omitted in fg(x) are of order 1% of the term
listed. These form factors differ slightly in form and mag-
nitude from their counterparts obtained via the "Green's
function" method, but have the same overall shape. For
example, fg(68(ur —Op)) is peaked at u = Op, while

fq(6f(~ —Op)) vanishes at that energy. This model leads
to a baryon-per-photon ratio comparable in magnitude
to the values found in Eqs. (69) and (70). We do not
present the calculations for this model in order to avoid
redundancy.

Our results ought to be compared to the results of
Farrar and Shaposhnikov. They calculated b, (~) with-
out taking into account quasiparticle decoherence. They
found a significant baryon asymmetry n~/s of order
10 &om a region of energy for which the strange quark
is totally reflected. Taking into account the decoherence
of the quasiparticles, we find such total reflection to be
impossible and the asymmetry to be reduced to a negli-
gible amount. This conclusion corroborates the Bndings
of Gavela, Hernandez, Orloff, and Pene (GHOP) [8].

Finally, we would like to comment on the more realis-
tic situation of quasiparticles interacting with a wall of
nonzero thickness. Typically, in the standard model and
in most of its extensions, the wall thickness b is of or-
der (10—100)/T, much larger than the coherence length
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1/T and other typical mean free paths. As the
wall thickness increases from 0 to a value a few times
E, the increment of mass over the latter distance is re-
duced by a factor E/6 which has the effect of reducing
the reHection probabilities accordingly as a power law.
As the thickness increases further to a distance of a few
wavelengths k 5/T, a WEB suppression of order
exp( —kh) is expected to turn on and to suppress the pro-
cess further. Clearly, the interior of a thick wall is not
a suitable environment for the occurrence of the subtle
quantum-mechanical phenomena which are to take place
in order to generate a CP-violating observable.

B. Conclusions

We have demonstrated that the FS mechanism oper-
ating at the electroweak phase transition cannot account
for the baryon asymmetry of the Universe. Our conclu-
sions agree with the results obtained in Ref. [8].

Our arguments are powerful enough to establish more
generally that the complex phase allowed in the CKM
mixing matrix cannot be the source of CP violation
needed by any mechanism of electroweak baryogenesis in
the minimal standard model or any of its extensions. In-
deed, the generation of a CP-odd observable requires the
quantum interference of amplitudes with different CP-
odd and CP-even properties and whose coherence per-
sists over a time of at least 1/m~. On the other hand,
QCD interactions restrict the coherence time to be at

Although, according to the authors of Ref. [6], the possibil-
ity of a thin wall is not ruled out.

most E 1/(g, T), typically three orders of magnitude
too small. It is clear from the interpretation of the 3arl-
skog determinant or any other CP- violating invariant we
gave in Sec. V A and Fig. 6 that the processes necessar-
ily proceed through interference between amplitudes with
multiple Havor mixings and chirality Hips; as a result, the
asymmetry between quarks and antiquarks appears to be
strongly suppressed by many powers of Em~. This line of
argument does not rely on the details of the mechanism
considered and can be applied to rule out any scenario
of electroweak baryogenesis which relies on the phase of
the CKM matrix as the only source of CP violation.

QCD decoherence might be avoided in mechanisms
which do not involve light quarks. For example, the effect
of decoherence is negligible for the top quark: Em& 1.
A mechanism which involves the scattering of only the
top quark is viable, but at the cost of introducing a new
source of CP violation [22]. Other scenarios based on
various extensions of the minimal standard model such
as the two-Higgs-doublets model [23] or supersymmetry
(SUSY) [24] are also negligibly affected by the above con-
siderations.

Although the standard model contains all three ingre-
dients required by Sakharov, it proves to be too narrow a
framework for an explanation of the baryon asymmetry
of our Universe.
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