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Quenching an expanding chiral condensate
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We simulate quenching in the O(4) cr model of hadronic matter expanding along the z axis,
with randomly generated initial conditions imposed at a given boost invariant time ro ——gt2 —z2.
A comparison of our results with the simulations of Rajagopal and Wilczek for a nonexpanding
case shows that the normalized power exhibits approximately the same frequency of oscillations in
the laboratory time in both cases. However, the response of the expanding system depends on vo..
e.g. , for 7o ——1 fm it is about 2 orders of magnitude smaller than for the nonexpanding system.
Also, the relaxation time becomes shorter with expansion present. When 7o —+ oo the two cases
become identical. Kinematical windows for the production of a disoriented chiral condensate are
also discussed.

PACS number(s): 12.38.Mh, 12.39.Fe, 25.75.+r

I. INTRODUCTION II. SIMULATION

It has been conjectured recently that some processes
of multiparticle production are realizations of a quench
&om some randomly excited state of hadronic matter to
a zero temperature state whose subsequent evolution fol-
lows classical equations of motion [1]. The randomly
excited initial state gives the initial conditions for the
coherent radiation of the chiral fields (o, vr) which form
an O(4) four-vector and satisfy the equations of motion
derived &om the Lagrangian

I = d x 20„;0" ——;,—v +H~ ) 1.1

where P;—:(cr, a) is a vector in the internal space, and
A, v, H are the parameters of the model.

As in [1] we are going to consider classical solutions
of the equations of motion obtained from (2.2) below.
In terms of multimesonic states they approximate coher-
ent states of mesons. Therefore, we are going to discuss
just one of the many possible production mechanisms, a
mechanism which is presumably not very common but
is of considerable interest because it may lead to some
disoriented chiral condensates [2—4].

Without discussing the region of validity of the model
of Ref. [1], we shall merely work out some modifications
implied by the longitudinal expansion superimposed on
such processes (related earlier papers are [3,6—9]). This,
we believe, adds a realistic element to the simulations
(compare, e.g. , [5]). The prospects of observing disori-
ented chiral condensates are covered in [2—4], and are not
discussed in this note. However, at the end of the paper
we do make a comment on the existence of a kinematic
window for production of Centauros, a window which is
implied by the expansion.

We solve numerically the system of equations derived
&om (1.1). The longitudinal expansion, along the z axis,
is introduced through the change of variables [5]

z =- ~sinhg, t = 7. cosh', (2.1)

with the transversal coordinates (x, y) unchanged.
gt —z2 is now the invariant time in which the evolution
of the system takes place, and rl = 2ln(t + z)/(t —z)
is the so called quasirapidity. One may call (r, q) the
comoving coordinates: (2.1) defines a transformation to
a local frame which moves with the velocity tanhq = z/t
with respect to the Minkowski (lab) frame. The field
P; now depends on the invariant time r and the local
velocity of expansion is determined by g. Note also that
the metric of the space-time in which P; evolves is

ds = dr —v. dg —dy —d2:

The system of equations to be solved is now

Ia( a& 1@2
2 27 BT ( 8'r ) 7 Bri

Acr(cr + vr —v—) + H,

Ia( a&
~Br ( Or~

(2.2)

with && = Q /Qz2+82/By2. Incidentally, an alternative
expression for the left-hand side (LHS) of (2.2) can be
used because
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where V = z/t = tanhrl. It show's that very close to the
light cone, and at 6xed r = rp, the second term in (2.2)
is negligible in nonpathological cases.

Now, the evolution follows the invariant time ~; thus
the random initial conditions for P; are

(&') = (&') = 0 (&,') = —",
(2.3)

Lz = ~ocoshgLg, (2.4)

and a constant correlation length in g, i.e., Lg, results
in a whole spectruxn of correlation lengths Lz. This re-
mains generally true for all correlations tohich may ap
pear in the evolution of our system system; e.g. , short
range correlations in Lg may, for the space-time points
close to the light cone (large g), result iu observations of

at a given initial rp. (2.3) says that we choose P; and

P, on each site of the lattice (Ax, Ey, Aq) independently
and randomly from the Gaussian distributions centered
around zero having variances v /4 and v, respectively.
Indeed, in terms of the Minkowski coordinates, the ran-
dom beginning of the process is now set on a hyperboloid
Tp = const, not on the hyperplane t = const, as in Ref.
[1]. Also the condition (P;) = v imposed on the ini-

tial random process means different things depending on
whether P; is BP;/Br or, as in Ref. [1],8$;/Bt In all o. ur
simulations we take, as in [1], v = 84.7 MeV, H = (119
MeV), and A = 20.0.

There are several important physical consequences of
these new initial conditions. In contrast with [1], where
the results do not depend on the choice of the initial time,
in our case the results do depend on 7p [e.g. , at rp = 0,
on the light cone, (2.2) become singular]. As rp increases
the hyperbolic surface becomes more and. more like the
plane t = const and, in the limit 7p —+ oo& our results
must coincide with those of Ref. [1]. Therefore wp is a pa-
rameter which should be given a physical interpretation.
Perhaps it marks in the evolution the end of the quark-
gluon era and the beginning of the meson era. In fact, it
is quite tempting to reduce the connection between the
chiral evolution and the @CD perturbative quark-gluon
evolution to the random boundary conditions at their in-

terface.
One should stress also a different physical meaning of

the initial correlation lengths (b,x, Ay, Aq). We intro-
duce the initial correlations within the transverse dis-
tances (Ax, Ay) and within segments of the longitudinal
velocities Ag (tanhrl = z/t = velocity at a given space-
time point) with the condition Ax = b,y = rpAq. This
corresponds to the natural assumption that the system is
isotropic in the local rest frame (comoving frame). How-

ever, the longitudinal expansion implies that the initial
correlation lengths as viewed &om the laboratory system
are asymmetric; Ex and. Ay may be taken as in [1], but

long range correlations in Az.
In our simulations we use, as in Ref. [1], the standard

Bnite difference leap&og scheme, and the values of the
parameters used are given in the Ggure captions. We
checked our program by repeating some of the simula-
tions of Ref. [1]; e.g. , we reproduced the results shown
in Fig. 1(a) of [1]. While comparing various results with
each other one must remember that the amplitudes of
the modes depend on the random initial conditions; two
randomly generated inputs of an ensemble satisfying the
same conditions (2.3) may produce outputs differing in
size by a factor 2, 3, or even more. Nevertheless, as
we shall see, there are a few more robust characteristics,
which, hence, make the scheme less sensitive to the ran-
dom initial conditions.

The evolution of our system has cylindrical symmetry
and we calculate the normalized power of the transversal
and the longitudinal modes separately:

1
MI, ~(r) = d r~drle'" '~~(r~, g;r), (2.5)

2

M„(r) = d rgdge'""m(rg, g;7-)
2

(2.6)

where k~ —— (k, k„), r~ = (z, y), V2 is the two-
dimensional volume of the expanding system (g is dimen-
sionless), and A = rl „—q;„ is the total length of the
quasirapidity interval. (2.5) may be compared with the
normalized power of the transversal modes of the static
case [1]:

1
Ml, (t) = d r~dze' ~'~a(r~, z;t), (2.7)

RW

Mg (t) = — d r~dze' ~'~7r(r~, g;r)
3

(2 8)

where g and v under the integral are expressed in terms
of t and z, and Vs ——2Vzt tanhg „(in a symmetric case

;„) is the three-dimensional volume of the
expanding system.

Figure 1 illustrates some of the relevant points of such
an operation. The main effects of presenting in the (t, z)
space a mode generated in the (r, g) space are large can-
cellations. Since the integrand in (2.8) is oscillatory ei-
ther in r or in t, the integration over z in (2.8} leads to

where VR~ is the three-dimensional volume of the non-
expanding system.

Before showing some of the results let us comment on
the problems one has to face while comparing the expand-
ing system with the static one. The laboratory system
resides in the (t, z) not the (r, g) space and it is impor-
tant to know how the evolution generated in (r, q) looks
to the observer in (t, z). To this end we calculate the
quantity
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FIG. 1. A schematic map of
the zeros of the pion field in the
(t, z) and (i, il) spaces.
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substantial cancellations; indeed, integrating over z at a
constant t we have to cross several values of ~ which are
zeros of m (r~, ri; w). The other factor which also reduces
Mk (t) is that the process of integration over z takes us
right up to the Tp hyperboloid (compare Fig. 1), where
the initial random conditions take place and help to de-
crease MA, . Because of the complexity of this procedure
(the whole evolution in 7 and rj has to be remembered at
each step) we do it only for the transversal modes.

A remark on the longitudinal modes of the expand-
ing system is in order here. The expression we want to
discuss is

While integrating along the z direction at Axed t we cross
the zeros of ir at several (their number depends on t) val-
ues of 7.. The distances between the consecutive zeros
decrease as z increases. Thus there is no fixed period in
the z dependence of m. Hence no possibility of a reso-
nance at a speci6c k occurs and, consequently, a similar
reduction in the size of MA, . A, as in Mg takes place.
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FIG. 2. The power of a few first modes calculated following the procedure given in [1j (the static system). The power of the
pion field for the modes ka = 0.00, 0.20, 0.26, 0.48, 0.60 is plotted vs time (k = gk, + k&, a = 1 fm). The simulation was

done in a 32 box with some additonal test runs in a 64 box. The amplitudes of the curves follow the rule that the softer
is the mode, the larger the response. The only di8'erence from [1] is that the zero mode is added. Note that the zero mode
dominates. This mode is of the same (modulo factor 3) order of magnitude as the zero mode shown in Fig. 3, and hence about
two orders of magnitude larger than the one of Fig. 5.
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FIG. 3. The power of the
five transverse modes Mq~(v)
of the expanding system vs

[compare (2.5)], for the
following transverse momenta:
k~a = 0.00, 0.20, 0.26, 0.37,
0.48; a = 1 fm. 7p ——1 fm, the
steps dr = 0.1 fm, dg = 0.1,
and dx = dy = 1 fm were
used in numerical solutions of
Eq. (2.2). The random initial
conditions were taken in cells
AgAxAy = 10dq dx dy, which
correspond at 7p = 1 fm, g = 0
to those taken in Ref. [1].
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FIG. 4. The trans-
verse modes for k~a = 0.20,
0.26, 0.37, 0.48, a = 1 fm, of
the expanding system vs 7. for
a random initial condition dif-
ferent from that of Fig. 3. All
other parameters are the same
as in Fig. 3. As in Fig. 3 we
can see that the sequence of the
modes does not strictly follow
the rule that softer modes lead
to larger responses (powers of
the modes).
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FIG. 5. The power of the
first four modes shown in Fig. 3
translated into the (t, z) space.
Note the two orders of mag-
nitude reduction of the ampli-
tude. For interpretation of this
drastic reduction, see Fig. 1
and the text. To make the fig-
ure more transparent the mode
k~a = 0.20 is marked addition-
ally by dots.
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FIG. 6. Four trans-
verse modes of Fig. 3 but gen-
erated following the procedures
of [1] [the static case, compare
Eq. (2.7)]. We see that the rule
that softer modes lead to larger
responses is satisfied, except for
a shift of the maximum of the
softest mode (k~a = 0.20) to-
wards larger times.

III. RESULTS AND DISCUSSION

We start comparing the evolution in t or in w of the
modes of the expanding and static systems by presenting
the static case calculated with the same set of parameters
as in Fig. 1 of Ref. [1]. The modes are shown in Fig. 2;
the only difference is that we added the zero mode which,
as it turns out, dominates. Fig. 2 sets the scales of the
response of the system.

Now, we do a similar thing for the expanding system.
However, since the longitudinal modes [compare (2.6)]
have no counterpart in the static case we restrict our dis-
cussion to the transverse modes, Eq. (2.5). The results
are shown in Fig. 3. We see that to within a factor of
2 or 3 the size of the response of the expanding system
is of the same order of magnitude. There is, however,
a marked difference in the time of relaxation: the ex-
panding system relaxes up to ten times faster than the
static one. Also, we see that the sizes of the maxima of
M~ (w) do not necessarily follow the rule found in Ref.
[1]: M&Rw ) Mp~ when k ( k'. Although the zero
mode and the mode k~a = 0.20 dominate, the sequence
of the other three (k~a = 0.26, k~a = 0.37, k~a = 0.48)
breaks this rule. This can also be seen in Fig. 4 where we
present modes resulting from some randomly generated
initial conditions different from the ones of Fig. 3.

Now we translate the modes of Fig. 3 into the (t, z)
space. The results are shown in Fig. 5. By compar-
ing them with Fig. 3 we see that (a) the sizes of the
modes are reduced by two orders of magnitude, (b) the
relaxation times stay up to ten times shorter than in the
static case, and (c) the evolution in time t recovers some
of the characteristics of the static case; as in the case
of MPw(t) modes we observe first the period of growth
of Mi, (t)'s, then they reach a maximum, and then de-
crease, whereas the M~ (w) modes always start with the
maximal fluctuation.

To clinch our claims we present in Fig. 6 the transverse
modes for the static case [compare (2.7)]. We see that,

qualitatively, the pattern is similar to the one shown in
Fig. 2; the size of the response is the same and the
sequence of the maxima of modes follows the rule M&
M&+ when k~ ( k&. In Figs. 6 and 3 we also see the

J
slower relaxation of the softest modes relative to the hard
ones.

IV. CONCLUSIONS

We use throughout this paper the initial invariant time
vp ——1 fm. This is a very important parameter for the
expanding system. It determines, among other things,
the size of the response of the system to the initial con-
ditions. If we accept that it marks the end of the quark-
gluon phase and the beginning of the mesonic evolution,
7p = 1 fm looks reasonable. When wp ~ oo the system
goes into the static case of Ref. [1]. We confirmed that
through direct simulations at large ~p's. The convergence
is slow, however, and even at 7p ——100 fm the expanding
system gives a somewhat weaker response than the static
one. So, if we settle for ~p ——1 fm, the response in the
laboratory kame is about 100 tiines weaker than for the
static case.

Clearly, the choice of wp is fairly arbitrary. We wish
to stick to the model of the quench where there are even
more uncertainties to face, e.g. , the randomness of the
initial conditions at rp and the choice of the range of the
initial correlations. Each of these two factors separately
may easily shift the powers of the modes up or down by a
factor of 2 or even more. Also, with increasing wp we ob-
serve a slow convergence to the static case. Therefore we
find that a precise value of 7 p is not of critical significance
provided its value is not much less than 1 fm.

We find that the dominant modes of the expanding sys-
tem in the (v, ri) space immediately reach their peak val-
ues and quickly relax to the equilibrium; their relaxation
time is much ( ten times) shorter than in the static case.
This fast relaxation clearly seen in Figs. 3—5 is, we be-
lieve, caused by the expansion which makes, e.g. , the am-
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plitudes of the field oscillations go down asymptotically
as w ~~2. This dependence is suggested by a Hartree-
like treatment of (2.2), where the nonlinear terms on the
RHS of (2.2) are replaced by some averages and the limit
of large w taken. Also, the modes in the (w, g) space do
not necessarily follow the rule found in the static case:
the softer the mode the larger its amplitude. Only the
softest modes consistently dominate; the sequence of the
sizes of the remaining ones depends on the specific ran-
domly generated initial conditions.

We find that the translation from the (7, il) space to
the (t, z) space reduces by two orders of magnitude the
size of the response of the system without influencing
the relaxation times. Since the (t, z) space is the one
where we might observe the evolution of the quenched
system, we have to conclude that expansion makes the
whole phenomenon much weaker.

We find, as in the static case, an impressive robustness
and stability of the oscillatory character of the response
of the expanding system to the random initial conditions.

Finally, let us discuss a kinematical property of the
expanding chiral model, which property may turn out
to be important in understanding the conditions under
which the disoriented chiral condensates (DCC's) may
appear and be detected. If such condensates are iden-
tified with the so called Centauro events, this discus-
sion refers to Centauros. From the available papers on
the subject [6—8] transpire the diKculties in securing,
through dynamical processes, production of large enough
objects which would have a better chance to be detected
as DCC's (see, however, Ref. [9] for a possible way out of

this difiiculty). On the other hand, from the discussion
of Sec. II of this paper it follows that, if the random ini-
tial conditions produce a droplet of DCC in the volume
LxLyLg at very large g )) 1, it may appear in the labo-
ratory kame as, in principle, an object large enough and
living long enough, because its lifetime and longitudinal
size are

Lt = 'TosinhgAg, Az = 70coshgLg

Indeed, in principle, At and Lz are arbitrarily large.
However, in order to obtain the available range of sizes
of DCC's, it is necessary to study correlations which we
did not in this paper. One can find more on this problem
in Ref. [6].

In any case, to achieve large Az we must have very
large g's. This suggests that Centauros should be com-
posed of the very fastest particles of, e.g. , the cosmic-
ray jets, and they should be hard to observe in routine
multihadron production experiments. This seems to be,
indeed, the case [10,11]. It may therefore turn out that
the diKculties of observing Centauros are of kinematical
rather than dynamical origin [12].
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