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Matter accretion by cosmic string loops and wakes
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We develop quantitative methods for the study of structure formation with cosmic strings in an
expanding universe. The gravitational effects of arbitrary string configurations are calculated using
linearized gravity. The growth of density Huctuations is then studied using these gravitational forces
as a source term in the Zeldovich approximation. We use either the adhesion modification or an
N-body tree code to project this Buctuation growth into the nonlinear regime. These methods are
applied to specific loop and long string solutions beginning at equal matter and radiation t,~ on
scales corresponding to about 10 Mpc today (h=0.5). We reproduce analytic results for spherical
and planar collapse. We show that these methods are applicable to accretion about closed oscillating
loops and in the wakes of moving long strings which possess significant small-scale structure, quan-
titatively confirming the wiggly string approximation with a renormalized string energy density p, .
We demonstrate the efFiciency of the fragmentation of wakes created by wiggly strings by the present
day. These methods are sufficiently computationally efficient to employ in the study of an evolving
string network. For the cosmic string scenario, we conclude that reliable quantitative predictions
must take into account non-caussianity, vorticity generation, and nonlinear fragmentation effects.

PACS number(s): 98.80.Cq, 98.62.Ai

I. INTRODUCTION

There has been renewed interest recently in models in
which large-scale structure formation is seeded by topo-
logical defects such as cosmic strings [1,2]. Observational
data are providing increasingly stringent constraints on
the simplest inHationary models based on cold dark mat-
ter (CDM) and Gaussian fluctuations. Indeed, it can
be argued that cosmic string scenarios currently exhibit
better consistency between the galactic and microwave
background [Cosmic Background Explorer (COBE)] nor-
malizations [3—5], though this is due in part to the large
uncertainties associated with predictions in these mod-
els. While progress has been slow with strings, this is
not because of obvious Haws, rather it is a consequence
of their calculational complexity.

Few studies of structure formation with cosmic strings
have taken our knowledge quantitatively much further
than the original proposals of Zeldovich [1] and Vilerikin
[2]. Unfortunately, most work occurred during the initial
Hurry of interest when string network evolution was inad-
equately understood and oversimplified. The superseded
picture of scale-invariant evolution then prevalent, with
a few loops being produced per Hubble volume per Hub-
ble time, is now often termed the "old string scenario"
(though it may have some validity for models with loops
nucleated during inflation). Subsequent high-resolution
numerical simulations of string evolution demonstrated
scaling densities, but revealed the presence of significant
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small-scale structure on strings or "wiggliness" (Bennett
and Bouchet (BB) [6,7]; Allen and Shellard (AS) [8]; see
also Albrecht and Turok (AT) [9]). This substructure
has important dynamical coiisequences and also causes
loop formation on scales much smaller than the horizon.
These results suggest that long strings are more irnpor-
tant than loops in seeding density perturbations [10—12].
We should point out a significant caveat here concerning
the eHect of the small-scale structure on the nature of
the scaling solution, although this should be limited by
gravitational radiation back reaction. This has been the
focus of recent analytic study (see, for example, [13,14]).

In more recent work, Albrecht and Stebbins [3,4] have
studied the string power spectrum taken &om AT simu-
lations, projecting this forward to the present day using
linear theory transfer functions for both cold and hot
dark matter. This was an invaluable first step, but fur-
ther developments are necessary. because strings create
nonlinear objects at early times and the power spectrum
provides an incomplete description of non-Gaussian per-
turbations. As emphasized in the formal synchronous
gauge treatment of Veeraraghavan and Stebbins (VS)
[15], there are also a variety of motivations for study-
ing string perturbations in position space. Note that the
VS approach in the comoving synchronous gauge is being
pursued by another group [16].

The central theme of this paper is.the development of
accurate and practical methods for the study of string
structure formation, with work currently proceeding to
link these with an expanding universe network simulation
(see also [17]). We determine the time-dependent metric
in linearized gravity for arbitrary evolving string con-
figurations. Using the resulting gravitational forces as a
source term in the Zeldovich approximation, we grow the
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induced perturbations in a cold dark matter universe. We
can project these into the nonlinear regime using the ad-
hesion approximation. EfFectively, a viscosity-dependent
term restricts the shell crossing which otherwise would
occur at early times. Alternatively, late-time evolution
is also studied using an N-body tree code. Here, we con-
sider relatively small scales (simulation box size about
5h Mpc with h=0.5) in a cold dark matter universe
beginning at the equal matter-radiation transition t q.
In this limit, we are able to avoid a number of subtleties
including defect compensation and the use of retarded
time potentials (refer to VS). The specific string realiza-
tions we study in this paper are accretion about oscil-
lating loops and wake formation behind moving straight
and wiggly strings. Having made quantitative compar-
isons of our methods against well-known analytic results,
we proceed to consider more general cases such as the
nonlinear &agmentation of a wiggly string wake.

rameter Gp/c2 10 s, where )M is the string mass per
unit length (we employ units in which c=l). This corre-
sponds to energy scales naturally associated with a grand
uni6ed phase transition. For local gauge strings, the mi-
crophysical width of the string will be many orders of
magnitude smaller than its typical curvature radius, so
we can take a zero thickness limit. In this case, the string
sweeps out a two-dimensional world sheet in spacetime
x)' = 2:"(0., w) [= (xo, x)], with v timelike and cr spacelike
parameters. In flat space, the variation of the Nambu ac-
tion (corresponding to the area of this world sheet) yields
the equations of motion

x —x" =0,
where we have taken v = x = t and the "transverse"
gauge,

II. FORMALISM

A. Cosmic strings: The source

X +X =1

x' = 0,

(2)

(3)

This discussion is motivated by the possibility of cos-
mic vortex strings forming at a phase transition in the
early Universe [18]. Galaxy formation scenarios with
strings generally require values of the dimensionless pa-

with overdots and primes denoting derivatives with re-
spect to t and o, respectively. Except for the constraints
(2) and (3), solutions to (1) would be trivial, being sim-
ply a superposition of left- and right-moving modes. A
simple closed-loop solution we will use is [19]

x(cr, t) = —(ei[(1 —)(:) sin(r + sr sin3o + sin(r+] —e2[(1 —r) cos(r + sK cos3o + cos0 cosa+]
4m

—es[2+K(l —)(;) cos cr + sin 0 cos o.+]),

where o~ = (2m/L)(o+t), the loo'p has length L and
period L/2, and the parameters K, H take values in the
range 0& ~ & 1 and —vr & 0 & vr. Note that string
motion is generally relativistic, with a rms velocity for
points on a loop (v ) ) = 1/~2. The energy-momentum
tensor of the string in flat space is given by

T""(y,t) = p f d»(x"» —x'"x'")b~'~(y —x(»; t)) .

(5)

In an expanding Friedmann-Robertson-Walker (FRW)
universe, we cannot apply the gauge condition (2) as well
as v = t, so the equations of motion become

I

ax+ —(1 —x )x= 6 (e x)a

a—2 —Cx
a

where x is the comoving string position, ~ is conformal
time, and the o.-energy density along the string is given
by

The evolution is quite difFerent Rom that in flat space on
large scales comparable to horizon. However, if a loop is
much smaller than the horizon then, because the period
of the loop motion is much less than one Hubble time
(T L/2 « H ), we have

x»Hx
It is a good approximation, therefore, to treat small loops
as if they were in flat space. For infinite strings, the same
will apply to small-scale oscillations or wiggles. However,
on large scales Hubble damping will be significant and
must be taken into account.

For the purposes of these small-scale simulations, we
employ flat space evolution; a loop remains at the same
physical size, while shrinking in the comoving coordinates
characterizing the surrounding matter. Numerically, this
allows us to use either an explicit analytic solution such
as (4) or else straightforward evolution algorithms.

B. Linearized gravity: The force

x"
(1 —x j (8)

The forces that the string network exerts on nearby
matter can be found using linearized gravity provided
Gp (&1. We consider metric perturbations 6"" about
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the flat space Minkowski metric g",
g"" = q"" + h"", ~h""~ && 1, (10)

and then the Einstein equations can be linearized in hI' .
If we choose the harmonic gauge

0„(h„"—2'b„h"„) = 0,

then the Geld equations reduce to

OpO h"" = —16vrGS"", (i2)

where S~ is given in terms of the string energy-
momentum tensor (5):

S""= T""—z "~T~2'9 (i3)

The retarded solution of the wave equation (12) can then
be written as (see, for example, [20])

grating (15) along the string. The previous time step
is stored for 6 ' so that appropriate di8'erences yield
the derivatives in (21). We also apply force softening,
as in N-body codes, if points approach the string too
closely and near cusps. This is to prevent unphysical
"kicks" due to the time discretization —the alternative
would entail sophisticated variable time stepping. Given
that we are most concerned about small scales we ig-
nore retarded time eR'ects and integrate over all points
on the string simultaneously. Similar simulations were
performed by Vachaspati [21] for some special loop tra-
jectories. The diH'erence &om this work is that expression
(15) was differentiated analytically before numerical eval-
uation, force softening does not appear to have been em-
ployed, and the motion of test particles was studied, not
the growth of density perturbations. However, the link-
ing of string source terms directly to N-body codes has
been discussed by Bertschinger [22], though by appar-
ently approximating the string as a velocity-dependent
linear mass source rather than with (15).

S""(y, t —
~y

—«~)dsxh"" y, t = —4Gp (i4)
C. The Zeldovich approximation

Using (5) and the solution of the wave equation (14), we
can integrate over x to obtain

~~( )
P (0', tq~t)do'

~y
—«(o., t„,) ~

[1 —n . «(0, t„t)] '
~

~

To study string-induced density fluctuations in a flat
Robertson-Walker background we employ the Zeldovich
approximation. The cold dark matter particle trajecto-
ries r' are given by

where

(15) r' = a(t)[q'+ g*(q, t)], (22)

where q' is the unperturbed comoving position of the par-
ticle and g' is its comoving displacement. In the presence
of perturbing string seed, the particle will obey

t...= t —
~y

—«(~, t...)~,
P

d 2 seed+ matter )dt
(23)

where the force F' «„due to the surrounding matter is
given by

To determine how the strings acct particle motion,
we employ the geodesic equation BC.

matter rz (24)

d2r dr~ dr&

ds2 + ~' ds ds

for which the linearized connections are

I'p, = 2& '(h(~, ~ + h(~,~ —h~~, () .

If the velocities of the particles are much smaller than
the speed of light (c=l), then we have

V' 4 = 4+Gp (25)

In the linear regime with (~g~ && ~q~), it is possible to
rewrite (23) using (25) as an equation for the comoving
displacement [23]:

with the gravitational potential 4 satisfying the Poisson
equation

dP df'
1) (( 1,

dt ' dt (20) a
~

+ 2 ——+ 3—
~

vP' = I",'„~ .
t'8' a 0 ii)
L, Bt2 a Dt a)

and the geodesic equation becomes simply

2
pi 1 I 00 hOi

dg2

In evaluating this motion numerically, we proceed by
evaluating 6,- and h ' at each point in space y by inte-

We solve this driven ordinary differential equation using
a standard fourth-order Runge-Kutta scheme.

Finally, we evaluate the source term due to the strings
F, & using the weak-field gravity accelerations found in
(21). While this is reasonable, it depends on a number
of assumptions. First, we assume that the self-gravity
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of the strings and the gravity of the surrounding matter
does not significantly affect string motion; we have veri-
fied this assumption analytically [24]. As a consequence
we can treat strings as a weak external source. Second,
there is a gauge choice ambiguity in matching motion
for linearized gravity (21) to that in a FRW background
(22). However, the harmonic gauge (11) appears to be a
natural (nonunique) identification because for weak fields
we obtain the Newtonian limit with the gravitational po-
tential given by 4 = —2hpo. Note that the gravitational
effects induced by defects are manifestly causal, so we
need not be too concerned about effects such as global
deficit angles in realistic string simulations.

Compensation is another issue that we justifiably ig-
nore in these preliminary small-scale simulations. When
strings form, there is a corresponding underdensity cre-
ated in the background energy density. This original
underdensity (along with subsequent radiation from the
strings) will spread out and thereafter always compensate
the string overdensity on scales approaching the horizon,
effectively "cutting off" defect gravity on large scales. A
long-distance cutoff for the gravitational force at some
fixed fraction of the horizon is an approximate means
to implement this compensation near the horizon. Here,
however, we are considering simulations which initially
are much smaller than the horizon.

D. The adhesion modi6cation

Comparisons with N-body codes have demonstrated
that the Zeldovich approximation can be projected some-
what into the nonlinear regime. Ultimately, however,
shell crossing occurs and the particles continue unaffected
along their trajectories. For defect models, shell crossing
occurs relatively early on small scales, so it is a prob-
lem which must be addressed if density fIuctuations are
not to be unrealistically "washed out. " Here, in the first
instance, we introduce a viscosity term into the displace-
ment equation (26) making what is known as the ad-
hesion approximation which simulates gravitational vis-
cosity between the particles [25]. This has been stud-
ied in the context of Gaussian initial density fIuctuations
in order to successfully reproduce the many features of
N-body simulations at low computational cost (see, for
example, Weinberg and Gunn [26]). The equation of mo-
tion of the particles (26) is merely altered by a second
derivative of g' with a coefficient v which parametrizes
the intensity of the viscosity. On the one hand, we can
tune v to minimize shell crossing while, on the other,
ensuring that evolution in the linear regime is not signif-
icantly affected. Ideally, we anticipate choosing v to give
well-known virialization results for the pertinent scales
under study. For example, we would typically want to ob-
tain the final virialized radius to be half the turnaround
radius. In practice, we choose v to replicate wake thick-
ness results &om N-body simulations.

The formation of a wake behind a moving straight
string is illustrated in Fig. 1 to illustrate the contrast
between the Zeldovich approximation with and without
the adhesion term included in (26). Without adhesion,
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FIG. 1. Comparison of the Zeldovich approximation (a)
with the adhesion modification (b) for the wake left behind a
moving string. The string, lying perpendicular to the plane
of the points, travels from left to right with velocity v = 0.5c
(t, = t,~ and the box size today ty = to is 10 Mpc). In (a),
the shell crossing has broadened the distant "pancake" that
can be observed in the adhesion approximation with v=1.5.

shell crossing is severe and the wake is largely "washed
out;" however, its inclusion successfully prevents this and
creates a distinct and stable nonlinear feature, as would
be expected in realistic collapse. Since early nonlineari-
ties are a feature of string-induced fIuctuations, the ad-
hesion modification is essential to the usefulness of the
Zeldovich approximation at late times. For this reason,
cosinic strings (and other topological defects) may prove
to be the most suitable application of the adhesion ap-
proximation.

E. The N-body tree code

Although the adhesion approximation gives a good
qualitative picture of the main large-scale features formed
through gravitational collapse, it fails to give accurate
quantitative results on small scales. In order to be able to
compute density profiles and peculiar velocity diagrams
we have developed an N-body tree code for following non-
linear evolution this has an N ln N dependence on the
particle number ¹ This has been thoroughly tested and
directly compared with a simple N2 code. Energy conser-
vation was observed to be better than l%%uo. A comparison
between analytic and N-body results was also performed
for spherical collapse (as shown in Fig. 2). These were
dexnonstrably in excellent agreement until the moment
when the inner shells began crossing the specific shell
under study —a point at which the analytic calculations
break down.
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The tree code operates by breaking the numerical
grid into successively smaller boxes. Each box con-
tains information about the cumulative mass, dipole, and
quadrupole moments of all the particles within it. Un-
like in an N code, when the force on each particle is
calculated it is not necessary to sum over all of the other
particle contributions individually. Instead, the program
begins at the top of the tree and runs over all boxes at

that level. The angle subtended by the boxes, 0 -(box
size)/(box-c. m. -particle distance), determines whether or
not it has to go one step down the tree to calculate
the force on the test particle with the required precision
(0=0.2). On small scales (& 0.54x, the initial comoving
particle separation), we introduce force softening to en-
sure energy and momentum conservation. Although this
implies some loss in resolution, it is a consequence of our
fixed time step.

In general, an N body tree code algorithm has a
much larger dynamic range than particle-mesh codes
which solve Poisson s equation using fast Fourier trans-
forms. Although there are means to overcome this
problem in particle-mesh codes, for example, by using
particle-particle interactions on small scales, the com-
putational time can grow dramatically as clustering be-
comes stronger. The computational time of our tree code
was observed to be relatively insensitive to the degree of
clustering.

The boundary conditions for an N-body tree code sim-
ulation present considerable difFiculties only if they are
required to be periodic. Periodicity, however, is not
a feature expected of the cosmic strings which usually
extend well beyond the N-body simulation region. It
is far simpler and more appropriate, therefore, to em-
ploy "free" boundary conditions. Essentially, we merely
carve a spherical region out of an expanding universe and
evolve it independently; the fact that this region is unaf-
fected by (sufficiently homogeneous) exterior regions is a
well-known Newtonian limit. These boundary conditions
have been employed elsewhere (see, for example, [27]).
We have also experimented with N-body evolution in a
spherical region carved &om a larger cubic grid which is
concurrently evolved using the Zeldovich or adhesion ap-
proximation. While significantly less of the inner region
must be discarded in the final analysis, there seemed to
be few other advantages from this added complication.

The same treelike structures used in the N-body code
are used to calculate other physical quantities, such as
density and velocity profiles using appropriate window
functions. We have also developed an N lnN tree code
for the evaluation of the gravitational forces induced by
the strings.
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FIG. 2. Comparison of (a) the analytic spherical collapse
model, (b) the Zeldovich approximation, and (c) the 1V-body
tree code. The three methods are compared directly for one
shell in (d). Deviation between the N-body code and the
spherical collapse models occurs with shell crossing.

F. Vorticity and alternative approaches

It is significant that the generation of nonscalar per-
turbations, such as vorticity, does not appear to be ex-
cluded by our formalism. The force term in the Zeldovich
displacement equation (26) has two components given
in (21). The first term h; is irrotational but the sec-
ond term 6 0 may have a rotational component. This is
somewhat puzzling because in linear theory it is widely
believed that vorticity does not couple to gravitational
source terms. For a nonrelativistic source, it is clear that
h 0 terIns will be subdominant, so perhaps this oversight
is understandable. However, for relativistic sources such
as cosmic strings or other topological defects we can see
no a priori reason why the generation of nonscalar per-
turbations might not be significant. Of course, in an ex-
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panding background vorticity will die away, while density
Huctuations grow, so it might still be justifiably ignored.
We note here the distinction from other nonlinear vortic-
ity generation mechanisms using baryonic shocks which
have been discussed in the literature [28,29].

With these considerations in mind, we have brieHy con-
sidered the effect of the source term 6 0 during the initial
linear perturbation growth. For stationary loops in Hat

space, it is well known that the 6 ' terms average to zero
over one oscillation period; we have verified this numer-
ically (refer below to Sec. III) and we see strong cancel-
lation even for small loops in an expanding background.
However, for general moving string configurations this
cancellation is no longer expected. Preliminary results
indicate that these terms may have a substantial impact,
reducing the amplitude of some high-density peaks by
up to 50%, although the overall large-scale density pat-
terns were not greatly affected. Even if the rotational
component of this contribution were small then it might,
for example, be invoked to create primordial magnetic
fields through an analogue of the Harrison mechanism,
along with other wider implications for all defect models.
But this possibility is not the subject of this paper and
we leave a fuller discussion of vorticity generation, gauge
choice issues, modifications to the Zeldovich approxima-
tion, and quantitative numerical results for publication
elsewhere [30].

It is interesting to note, however, that other work on
structure formation with cosmic strings is being pursued
by Bouchet et al. [16] using the linear VS synchronous
gauge formalism (boo = ho' = 0), followed by evolu-
tion with an N-body code. While the VS formalism is
valid up to large (superhorizon) scales, it implicitly treats
only the irrotational contributions induced by the strings.
A quantitative comparison with our own work on small
scales may prove to be illuminating.

ing loop reduces to that of a point mass with M = pL.
The reason for this is that the time derivatives of the
metric tensor vanish when integrated over a complete os-
cillation period. Hence, only the Newtonian contribution
froxn h, will be effective in (21). However, this fact is
complicated by strong beams of gravitational radiation
&om cusp regions when the string moves close to the
speed of light. Nevertheless, for very small loops (many
times smaller than the grid resolution scale) we were able
to demonstrate spherical collapse which accurately repli-
cated the fall-off and density contrast of matter accreting
about a stationary point mass. Such spherical collapse
about a small loop is shown in Fig. 3.

On scales comparable to the loop, however, accre-
tion can be inhomogeneous and anisotropic because of
the asymmetric loop shape and the presence of cusps
and kinks. Figure 4 contrasts accretion patterns about
the small loop in Fig. 3 and a much larger loop with
L 106,x given by (4). The xnismatch of the natural
time step for string evolution and structure formation
meant that the loop source here was only applied for one
oscillation period. Nevertheless, the appearance of strong
features in the accretion pattern is interesting. An in-
duced quadrupole moment is a useful feature in the "old
string scenario" because galaxies forming about loops
can acquire angular momentum through near-neighbor
torquing. We note, however, that the center of mass of
the loops in Fig. 4 is static, but typical loops move with
substantial velocities and will leave an elongated wake

B. Straight string wakes

The formation of wakes behind moving straight cosmic
strings has been discussed by Silk and Vilenkin [10],Steb-

III. STRING REALIZATIONS

A cosmic string network in the early Universe evolves
toward a scaling regime in which the number of strings
per horizon volume remains constant [6—9]. The strings
can be divided fairly neatly into two categories: (i) There
are small loops of length L & H which oscillate rela-
tivistically and lose their energy slowly through gravita-
tional radiation (or other preferred channels for global or
superconducting strings); (ii) there is also the long string
network which has slow coherent motions but relativis-
tic substructure —this rapidly loses energy through the
formation of small loops. We have successfully applied
the methods outlined in Sec. II to both loops and long
strings.

A. Loop accretion

Before embarking on simulations of general string con-
figurations, it is important to establish that our numeri-
cal code reproduces well-known analytic results. In par-
ticular, at large distances the average field of an oscillat-

FIG. 3. Spherical collapse about an oscillating Kib-
ble-Turok loop with size initially much smaller than the grid
spacing A~.
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bins et al. [11],and Vachaspati [12]. The string spacetime
is conical, that is, it is locally flat (so a static string exerts
no gravitational force) but there is a global deflcit angle
4 = 8mGp. Two particles with velocity v, moving past
a string on opposite sides will acquire a relative velocity
towards each other:

be = 8+Gyp, v, ,

where p, = (1 —v2)~~2. The eventual collision of the
particles results in the formation of a "pancake" or wake
behind the string. A straightforward planar analysis us-
ing (27) gives an initial condition @ for the Zeldovich
approximation (26). The thickness of the wake d is de-
6ned to be the distance between the turnaround surfaces
(where particles break away from the Hubble flow) and
is given by

which is over four times longer than the box sidelength
A. The string begins its journey at Ax = A/2 outside
the box, enters the grid at t,q, and travels through to
a distance Lx beyond the opposite side. At this point,
the computationally intensive integration of force terms
&om the string ceases, but the adhesion approximation
growth continues. The ensuing wake structure for a
string moving at v=0.5 is illustrated in Fig. 5, along with
its cross-sectional contours showing a sharp density con-
trast. From a determination of the turnaround surfaces
v& ——0, we hand that the outer width of the wake is 5 Mpc,
in close agreement with analytic expectations.

In Fig. 6, we compare our three structure formation
algorithms: Zeldovich approximation, adhesion approxi-
mation, and N-body tree code. This illustrates that the
adhesion approximation can provide a good Gt to the

(28)

The most prominent wakes are those formed when t; =
t,~ and, for the parameters Gp = 10, v, =0.5, and
h=0.5, the thickness of the wake is approximately 5 Mpc.

For a numerical comparison, we take a straight string

(a)~ ~

~ ~
~ ~

~ ~

~ ~

~0

~ ~
~ ~

~ ~
~ ~

~ ~ ~ ~
~ ~

~ ~ ~ ~
~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~

~ ~ ~ ~
~ ~

~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~

~ 0
~ ~

~ ~ ~ ~ ~ ~~ ~
~ ~ ~

~ ~ ~ ~ ~

~ ~

~ ~

Yil ~
' ~

g 5
~ ~8 ~

~ J ~ ~ ~ ~
~S ~ g

~ ~

~ '&~r ~ o re' ~'o/ t a/ Q( +trig ~of f

~ ~
~ ~ ~ ~ ~ ~ ~ ~ os ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ o J' ~~ ~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ 4 ~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ g~ ~~ 0 ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~
~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~~ ~
~ ~ ~ ~

~ ~
~ ~ ~ ~ ~

~ ~ ~

FIG. 4. Collapse about oscillating Kibble-Turok loops us-
ing the Zeldovich approximation (26)+an N-body tree code
for evolving the perturbations into the nonlinear regime. (a)
A stationary small loop with length L ( 0.5&x (but enhanced
mass density) produces spherical collapse. (b) A large loop
with I 10Am produced an elliptical object by the present
day.

FIG. 5. (a) Three-dimensional plot of the wake left behind
a straight cosmic string moving with velocity v=0.5. The
adhesion approximation has been employed with v 1.5 to
limit shell crossing. (b) Cross-sectional density profile of this
wake.
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N-body simulations &om appropriate choices of the vis-
cosity parameter v.

C. Wiggly string wakes
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FIG. 6. Comparison of structure formation algorithms in
the wake of a straight string. Collapse transverse to the wake
is plotted: (a) The Zel'dovich approximation, (b) the adhesion
modification with v = 1.5, (c) the N body code, and (d) a-
direct comparison of all three approaches for a single shell.

Long strings in a cosmic string network possess signifi-
cant small-scale structure (BB, AS), so we cannot expect
the resulting structures to have the idealized form illus-
trated in Fig. 5. Analytic treatments of structure forma-
tion with wiggly strings, such as Vachaspati and Vilenkin

[28] and Vollick [29], integrate over this substructure to
find a renormalized string energy p, and tension T. This
introduces a Newtonian force term for the straight string,
so the relative velocity bv in (27) becomes modified to

4m. G(P, —T)
bv = 8vrGpp, v, +

vs fe
(29)

We can eliminate the string tension by employing the
wiggly string equation of state, P T = p2 [32].

To further test our numerical approach we studied
the properties of the wake left behind wiggly strings,
possessing a number of randomly superposed harmon-
ics. In a specific example, we directly compared our
results for string perturbations centered on the wave-
length A/6 (p,=1.6 and v=0.5) with those obtained us-
ing the Zeldovich approximation but with (29) as an ini-
tial condition for the same p, and v. Agreement was re-
markable (better than 1'%%uo) for particle distances initially
greater than the typical wavelength of the wiggles. Of
course, points nearer the string acquire significant in-
homogeneities, creating instabilities which afFect subse-
quent infall as we shall discuss below.

The close agreement at large and intermediate dis-
tances confirms both the accuracy of our code and the
analytic idealization of wiggly string gravitational efFects
using a renormalized string energy density p, . This proves
useful for estimating the mass density of a wiggly string
wake in difFerent regimes, but ultimately the analytic ap-
proach has some serious inadequacies. Substructure on a
realistic cosmic string has a spectrum Rom a broad range
of scales, so it cannot be idealized simply by small-scale
wiggles —indeed, power increases in strength up to the
string correlation length. Furthermore, an analysis using
(29) again produces homogeneous straight string wakes
such as those shown in Fig. 5, so important issues such
as the actual nonlinear width and &agmentation of the
wake cannot be addressed.

In order to understand the formation and fate of wakes,
therefore, we need to study realistic wiggly strings which
can displace matter in all directions, rather than just
those with planar symmetry. To this end, we intro-
duced moving strings possessing a random superposition
of lower harmonics (the first, second, third, and fourth)
with the fundamental wavelength comparable to the box-
size A. The efFect of a particular realization is illustrated
in Figs. 6 and 7 where the string has renormalized en-
ergy density P, = 1.25@ and velocity v, =0.5 (these could
be realistic values on length scales well below the network
correlation length [33]). Despite the restriction of shell
crossing with the adhesion approximation, the accretion
pattern left behind the strings is considerably less dis-
tinct than that shown in Fig. 5. As expected the overall
mass of the wake is greater than that for a straight string,
but the nonlinear width is also broader. The most no-
table features, however, are the inhomogeneities that the
wiggles have introduced into the ensuing pancake struc-
ture.

It should be noted that these preliminary simulations
were of fairly low resolution with 4x 0.25 Mpc and
between 323 and 64 particles. Nevertheless, we were
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(a)

FIG. 7. The adhesion approximation: (a) Cross-sectional
density profile in the xy plane of the wake left behind a wig-
gly cosmic string with renormalized p, = 1.25@ and veloc-
ity v =0.5. (b) Density profile of inhomogeneities within the
string wake (the az plane).

able to measure density contrasts exceeding b 10 within
the string wakes and peculiar velocities near n, , 300
kms . A more quantitative analysis will only prove to
be worthwhile when linked with realistic string network
simulations.

"Top-down" models of structure formation which pro-
ceed through pancake formation must have mechanisms
for their &agmentation into galaxies. This has always
been a failing, for example, of hot dark matter models
with adiabatic Gaussian perturbations. Here, we ob-
serve the 6rst concrete evidence of the potential eKcacy
of &agmentation mechanisms for realistic string wakes.
Not only has the pancake broken up into distinct high-
density patches (Fig. 7), these regions possess asymme-
tries which would favor the acquisition of angular mo-
mentum during further collapse. There have been some
heuristic discussions of wake &agmentation in the litera-
ture, notably in Ref. [28] where it is thought to be caused
by rapidly moving small loops or in Ref. [28] (and oth-
ers) where it is associated with hydrodynamic shocks in
the baryonic matter component. From this preliminary
analysis, however, it would appear that the seeds for the
demise of a wiggly string wake lies within its initial im-
print.

scales, particularly wake &agmentation. The most com-
putationally expensive component is the evaluation of the
gravitational forces &om the strings, since this entails an
integration over the entire string length at each point in
space. Further developments were required before this
could be scaled up to a full string network (with up to
a million string points). However, just as an N-body
tree code collects distant points together to reduce the
number of operations, the same is possible for distant
string segments. At the very least, we can study wake
formation and &agmentation using wiggly string sections
taken &om a realistic string simulation. By considering
only small scales we have avoided a number of diKcult
issues associated with string structure formation, such
as compensation and retarded time efFects. We believe,
however, that the approximations we have made are jus-
tifiable in this limit (Fig. 8).

The chief physical results we demonstrate in this work
are, erst, the confirmation of the renormalization ide-
alization for wiggly strings and, second, the inhomoge-
neous nature of the wakes they produce. The latter in-
dicates a natural and eKcient mechanism for the nonlin-
ear &agmentation of these pancakes. We have only con-
sidered structure formation with cold dark matter but,
while these efFects will be somewhat suppressed in hot
and mixed dark matter models, they should still oper-
ate. We also noted that our formalism apparently allows
the generation of vorticity by cosmic strings, an issue we
address in greater quantitative detail elsewhere [30].

It remains to make only a general comment. Cosmic-
string-seeded structure formation models have often been
discussed on the basis of an inadequate understanding of

IV. DISCUSSION AND CONCLUSIONS

The results in this preliminary study encourage us to
believe that the problem of structure formation with cos-
mic strings is numerically tractable. Integration of the
Zeldovich approximation (26) with the adhesion modifi-
cation is very efFicient and linking with an N-body code
enables us to obtain more accurate evolution on small

FIG. 8. The N-body tree code: (a) Cross-sectional density
profile in the xy plane of the wake left behind a wiggly cosmic
string with renormalized P,=1.25y, and velocity n =0.5. (b)
Density profile of inhomogeneities within the string wake (the
xz plane).
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either the evolution of a cosmic string network or the
complexity of the gravitational processes at work. The
lesson of this paper is that to make quantitative predic-
tions in the cosmic-string scenario (and probably other
defect models), there appears to be little alternative to
examining the full implications of non-Gaussianity and
nonlinear &agmentation. We have presented a formalism
which we believe makes this problem tractable —at least
on small to medium scales —and we are proceeding to a
study structure formation with a realistic string network
using these methods.
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