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A @CD-based effective action is constructed to describe the dynamics of confinement and symme-
try breaking in the process of parton-hadron conversion. The decon6ned quark and gluon degrees of
freedom of the perturbative @CD vacuum are coupled to color singlet collective fields representing
the nonperturbative vacuum with broken scale and chiral symmetry. The effective action recovers
+CD with its scale and chiral symmetry properties at short space-time distances, but yields at large
distances (r & 1 fm) to the formation of symmetry-breaking gluon and quark condensates. The ap-
proach is applied to the evolution of a fragmenting qq pair with its generated gluon distribution,
starting from a large hard scale Q . The modification of the gluon distribution arising from the
coupling to the nonperturbative collective field results eventually in a complete condensation of glu-
ons. Color Qux tube con6gurations of the gluons in between the qq pair are obtained as solutions of
the equations of motion. With a reasonable parameter choice, the associated energy per unit length
(string tension) comes out 1 GeV/fm, consistent with common estimates.

PACS number(s): 12.38.Aw, 13.85.—t

I. INTRODUCTION

The physics of QCD exhibits different relevant excita-
tions at difFerent length scales. At space-time short dis-
tances (below 1 fm) the relevant degrees of freedom are
quarks and gluons whose interactions are well described
by perturbative QCD [1, 2]. The long distance physics
on the other hand is governed by the hadronic degrees
of &eedom, and the particles which are observed at large
scales are hadrons whose interactions are well described
by chiral models [3]. The change of resolution of our
microscope with which we probe the physics of QCD is
formally described by a renormalization group equation,
or evolution equation, that determines the scale depen-
dence of the theory [4—6].

The transition from the short distance (high momen-
tum transfer) regime to the long distance (low energy)
domain can be cast in terms of an evolution equation for
an egj'ective QCD action that embodies both fundamental
partonic degrees and hadronic degrees of freedom. By
increasing the distance scale (decreasing the momentum
scale), the evolution [7] of the effective field theory must
lead &om one set to the other set of degrees of freedom.

Experiments on high energy QCD processes, such as
e+e annihilation, deep inelastic ep scattering, Drell
Yan, etc. , strongly support the conception that the ob-
served parton &agmentation into hadrons is a universal
mechanism. Moreover, the dynamical transformation of
color charged quarks and gluons in high energy QCD pro-
cesses into colorless hadrons is commonly believed to be
a local phenomenon [8]. Thus, a consistent description of
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the local hadronization mechanism must be independent
of the details of the partons' prehistory and should in
principle apply also to hadron-hadron, hadron-nucleus,
or nucleus-nucleus collisions.

To date most of the theoretical tools to study proper-
ties of QCD are inadequate to describe the dynamics of
the transformation from partonic to hadronic degrees of
&eedom: Perturbative techniques are limited to the de-
confined, short distance regime of high energy partons [9],
QCD sum rules [10],and efFective low energy models [11]
are restricted to the long distance domain of hadrons, and
lattice QCD [12] lacks the capability of dynamical calcu-
lations concerning the quark-gluon to hadron conversion.
On the other hand, phenomenological approaches to par-
ton fragmentation [13]are mostly based on hadronization
models with ad hoc prescriptions to simulate hadron for-
mation from parton decays.

In this paper I follow a rather difFerent, universal ap-
proach to the dynamic transition between partons and
hadrons based on an effective QCD field theory descrip-
tion, as recently proposed in Ref. [14]. In the spirit
of the aforementioned evolution of efFective field theory
from high energy to low energy scales [5, 7], the key el-
ement is to project out the relevant degrees of freedom
for each kinematic regime and to embody them in an ef-
fective QCD Lagrangian which recovers QCD with its
scale and chiral symmetry properties at high momen-
tum transfer, but yields at low energies the formation
of symmetry-breaking gluon and quark condensates in-
cluding excitations that represent the physical hadrons.
In Sec. II, I will first formulate the general field theoret-
ical &amework. On the basis of the dual vacuum picture
of coexisting perturbative and nonperturbative domains
an efFective action is constructed that embodies the cor-
rect scale and symmetry properties of QCD. The concept
is here more phenomenologically motivated than the re-
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lated formal approach of Ref. [7]. However, there ap-
pears to be a clear correspondence bertween those two
descriptions. In Sec. III, I shall demonstrate the applica-
bility of this effective QCD field theory to the dynamics
of parton-hadron conversion by exemplarily considering
the evolution of gluons produced by a fragmenting quark-
antiquark pair. The change of the gluon d.istribution in
the presence of a confining composite Geld is studied and
Aux tube solutions of the gluon field resulting from the
equations of motion are analyzed in terms of the string
tension that characterizes the efFective confinement po-
tential. Various perspectives of the approach are dis-
cussed in Sec. IV, in particular the applicability to the
QCD phase transition and high density QCD.

II. EFFECTIVE +CD FIELD THEGRY'
WITH SPONTANEOUS SYMMETRY BREAKING

The basic idea is that the vacuum state in QCD can
be visualized as a color dielectric medium [19],described
by a phenomenological Lorentz scalar and color singlet
field y whose vacuum expectation value (VEV) is nonva-
nishing: (O~y~0)—:yp g 0. The field y plays the role of a
collective field in the long wavelength limit; for instance
y could be composed of f b,F „F&F&„or (F„„F„),or
other combinations [20], where F„ is the usual SU(3)
field strength tensor. Now suppose one produces an exci-
tation in this medium (i.e. , the vacuum characterized by
yp) by introducing an external current. To be specific,
consider the creation of a qq pair by a virtual photon
from e+e annihilation. Then, as a natural consequence
of the "antiscreening" nature [19]of QCD as non-Abelian
gauge theory, the qq pair will repel the medium around it
and create a hole of some small volume 0 in the vacuum,
inside which the properties are di8'erent from outside: In-
side 0, at small distances r (( Bi~, one has (y) g yp,
and the relevant degrees of freedom are the microscopic
colored quanta (the qq plus its emitted bremsstrahlung
gluons). Because of asymptotic freedom, they behave ap-
proximately as free particles and the usual perturbative
description applies. Thus, (y) = 0 as r i 0. Outside 0,
at distances r )& 0 /, i.e. , in the long wavelength limit,
the physics can be described by the collective, macro-
scopic field y with VEV (g) = gp. Since yp is assumed
to characterize the long range order of the infinite volume
QCD vacuum, the change Rom (y) = 0 to (y) = yp can
be interpreted as the restoration of the long range order
associated with confinement. In the above example of a
&agmenting qq pair, the change of the y field is generated
by the dynamics. of the qq system itself as it spreads out
in space-time. Thus, the interaction between the quanta
and the collective field y can provide a dynamical inter-
polation between the short distance and the long range
properties of QCD in the process of parton-hadron con-
version.

Thus, in order to quantify this picture, the goal is to
construct an e8'ective field theory that describes the dy-
namics of both partonic and hadronic degrees of freedom
and their interplay. The approach is based on the con-
cept of the efFective action [4, 7], which will be represented
here as (r = r" denotes the space-time four-vector)

S.& — d4r Z, A + Zy, U + Z, A, ~

The three contributions to the action, which will be dis-
cussed below, correspond to the QCD Lagrangian with
the quark (g;) and gluon fields (A ), an effective low en-
ergy Lagrangian introducing composite fields y and U,
and a term that couples the "microscopic" fundamental
quark and gluon degrees of freedom to the "macroscopic"
fields y and. U which represent the hadronic degrees of
freedom.

A. C[Q, A]

The QCD Lagrangian in (1) contains the gluon fields
A" coupled to massless quark fields @; (i = 1, . . . , ~&),

1
2[@,A] = ——F„„.F."" + g, iq„a& —g.&,A~T.

+~gauge + ~ghost ~ (2)

Here F" = 0~A" —0 A" + g,f b, Ab A, is the gluon
field strength tensor. The subscripts a, b, c label the
color components and g, denotes the color charge re-
lated to n, = g/(4'). The T are the generators
of the SU(3) color group, satisfying [T,Tb] = i f~b~T,
with the structure constants f b, The gau. ge-fixing term
Zs „s, ——[1/(2a)](@~A~) with gauge parameters a and
g„, and the contribution of Faddeev-Popov ghost fields
(, Zsh~, t ——(B~(*)(b~bB" —g,f b, A,")(b, will be irrelevant
later on, because a physical gauge g. A = 0 can be fixed,
which eliminates the presence of ghosts.

The Lagrangian (2) is well known to be invariant
under chiral transformations [3]. At the tree level
it is also invariant under scale transformations r„

= e rl„[15], generated by a so-called dilaton charge
D(&) = f d r Jp (r), where J is the scale current and

I D, y(r) = i (r„B~+ d~) p(r) for a generic quantum
field y with scale dimension d~. The convention is d~ = 1
for gauge boson fields and dy = 3/2 for fermion fields.
It follows that Z(g, A) has scale dimension 4 so that

D, Z(g, A) = 0 and therefore massless QCD proves
to be scale invariant at the tree level.

At high energies and short space-time distances,
asymptotic &eedom leads to unconfined gluon and quark
fields in (2) . However, in the physical world these
color degrees of freedom are confined, and. both chi-
ral and scale symmetry are explicitly broken. To de-
scribe the dynamics of the symmetry breakdown of the
transition between the perturbative, scale, and chiral-
invariant regime and the nonperturbative world with bro-
ken symmetries, one needs to supplement (2) (by adding
AZ = l:[y, U] + 8[@,A, y]) to construct an effective de-
scription such that at high energies the fully symmet-
ric QCD phase is recovered, but at low energies massive
hadrons emerge.
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H. 2[x, U]

The specific form of 2[X, U] in (1) is adopted from
Refs. [16, 17], where an effective low energy Lagrangian
was constructed, guided by the scale and chiral sym-
metry properties of the QCD Lagrangian. The con-
struction is based on the observation that even mass-
less QCD is no longer scale invariant when going be-
yond the tree level, because of the scale anomaly [15]
8"J& ——P(g, )/(2g, )F„F",where J is the scale cur-
rent as before. In addition chiral invariance breaks down
when finite quark masses are taken into account. As a
consequence, the QCD energy momentum tensor O~„ex-
hibits the well-known trace anomaly [18]

(3)

where P is the Callan-Symanzik function and p is the
anomalous mass dimension. This anomaly constrains
the form of the e8'ective low energy Lagrangian, be-
cause without it Poincare invariance would be broken,
and the mass of the proton would come out wrong, since
2m2 = (pie„"lp).

The extension of these symmetry properties of the
QCD Lagrangian to the low energy domain was modeled
by Campbell, Ellis, and Olive [17] as

2[x, U] = —(O„x)(0"x) —b —xo + x ln
I I

+ —
I

—
I

Tr (B„U)(B"Ut)1 (xb
.4 '

& "x.). 4 &x)
—c

I

—
I

Tr m~(U+ U ) ——
I

—
I motto .(xl t 1 (x)

(xo) 2 &xp)
(4)

This form introduces a scalar gluon condensate field
and a pseudoscalar quark condensate field U

f exp (r' P t /ttfr) for the oooet of the roesoo heists

P~ (f = 93 MeV, Tr[A, A~] = 2b;~, UUt = f2), with non-
vanishing vacuum expectation values

xo = (ol x lo) P o

Up ——c(OIU+Ut lo) g 0

that explicitly break scale and, respectively, chiral sym-
metry. In (4), b is related to the conventional bag con-
stant B by B = bxo/4, c is a constant of mass dimension
3, m~ = diag(m„, mz, m, ) is the light quark mass ma-
trix, and mp is an extra U(1)-breaking mass term for the
ninth pseudoscalar meson Po.

Notice that the anomaly constraint (3) is modeled by
the second and. fourth terms in (4) with the correspon-
dence

with broken symmetries. It is mediated by the coupling
between the fundamental quark and gluon degrees and
the collective fields y and U through coupling functions

g(x) and ((x):

&[0,&, x] = F -,-F."" —0, g(x) 0*((x) (8)

K(x) = 1 —((x)

The coupling functions ((X) and g(x) are chosen in the
spirit of Friedberg and Lee [20], who formulated a dual
QCD vacuum picture: High momentum, short distance
quark-gluon fluctuations (the perturbative vacuum) are
embedded in a collective background field x (the nonper-
turbative vacuum), in which by definition the low mo-
mentum, long range Huctuations are absorbed. Confine-
ment is thus associated with the color dielectric stucture
of the QCD vacuum. This property is modeled by a color
dielectric function

(O
~'"'~ ~- 0) = -h

4o.,
that satisfies

K(o) = 1, r.(xp) = 0, (1o)

and
3

(olqql» = c
I

—
I

(oIU+U'Io).
0xo)

c. z[y x x]

thereby generating color charge confinement, because a
color electric charge creates a displacement D = )ATE,
where F" = F ", with energy 2 f d rD /K which is in-
finite for nonzero total charge if v falls ofF faster than
1/i/r for large distances r. The particular form of K(X)
is not crucial as long as the properties (10) are satisfied
[21]. A specific choice is [22]

The key ingredient in (1) is the connection between
the scale and chiral symmetric, short distance regime of
colored fluctuations and the world of colorless hadrons

~(x) = 1+
I

—
I

I3 ——4l 0(x),(x) ( x
(xo) ( xo )

which has the further properties of ~'(0) = tt.„"(0) = 0.
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Other forms used in the literature are, e.g. , lt(x) = Il-
(x/xo) I [23] (Friedberg and Lee originally proposed
n=m=1).

Similarly, absolute confinement can be ensured also for
quarks by coupling the quark fields to the y field through
[24]

current masses, but at y = yo it generates an infinite
asymptotic quark mass (the value of go is irrelevant in
the present paper).

D. Equations of motions
(

g(x) = go
I

i, v.(x)
(12)

which leads to an efFective confinement potential with the
masses of the quarks inside approximately equal to the

To summarize to this end, the complete effective action
(1) is determined by the Lagrangian

C,s = 2[/, A] + 2[x, U] + l:[v/r, A, x]

(x) I",-,-I"."" + 4;[ ~ ~" - g.&,A."T- —g(x)]W'

+ —(B„x)(0"x) + —Tr (B„U)(0"U ) — V(x, U),

plus the terms Zs „s, and Zsh, t of (2). The potential V is given by

V(x U)=b -x:+ x'l I, , I
+ — 1 —

I

—
I

( x i 1 (xi
.4 ' &"/'x. ) 4

+cT m, (U+U)
I

—
I

+ -m. &. I

—
I

(x t 1 2 2 (xi
&Xo) 2 i Xo)

Tr (B„U)(8"Ut)

(14)
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which has its minimum when x = xo ——(Oixi0) and
equals the vacuum pressure (bag constant) B = bXo /4
at X = 0. Typical forms of V(X, U) for different values
of B and m~ are depicted in Fig. 1.

The effective field theory defined by (1) and (13) repre-

sents a description of the duality of partonic and hadronic
degrees of freedom by coupling the high energy QCD
phase with unconfined gluon and quark degrees of free-
dom to a low energy QCD phase with confinement and
broken chiral symmetry which contains a gluon conden-
sate (6) and a quark-antiquark condensate (7). Small os-
cillations about the minimum of the potential V(x, U) are
to be interpreted as physical hadronic states that emerge
after symmetry breaking. They include [17] (i) glueballs
and hybrids as quantum Buctuations in the gluon con-
densate Xo, (ii) pseudoscalar mesons as excitations of the
quark condensate Uo, (iii) the pseudoscalar favor singlet
meson Po, and (iv) baryons as nontopological solitons
[25].

The field equations which derive &om (1) and (13) are

[v, (t~" —g.A."T-) —g(x)l &' = o

140—
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80—
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40—
20-

I I

B =150Me V
(m &0)

00 0.2 0.4 0.6 0.8 1 1.2 1.4
XiXo

FIG. 1. Typical shape of V(X, U), Eq. (14), with BV/BX =
0 at X = Xo and V = B at X = 0, where B = bXo/4 is the
bag constant.

ci„[v(X)E""]= —g, K(X) f b A„,bF,""
+g. 0;w & 4'*,

BV(x, U) 1 Br(x)

~g(x)—
x

OV(x, U) ctV(x, U)
19U " 8(B„U)

(18)
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Notice that the U field does not couple directly to the
quark and gluon Belds. Per construction [17], the dy-
namics of the quark condensate field U is solely driven
by the gluon condensate field y. It is important to real-
ize that the interplay between the y field and the quark
and gluon fields @ and A is the crucial element of this
approach.

It is also evident from the equations of motions and
the form of the potential (14) that in the short distance
regime when y = 0 as r -+ 0 and K(y) = 1, the system
of equations decouples and reduces to the usual Yang-
Mills equation. Similarly, in the long wavelength limit
r ~ oo, one has y ~ yo U M Up and ic(y) -+ 0, so that
the dynamics in this case is completely described by the
equations for the effective fields y and U.

E. Comments

The following remarks concerning the efFective La-
grangian (13) are important. (a) At short distances or
high inomentum transfers the exact QCD Lagrangian (2)
is recovered, since y = U = 0 and r.(y) = 1 [i.e. , ((y) = 0]
and g(y) = 0, whereas the long distance QCD properties
emerge as y/yo ~ 1 and U/Uo ~ 1 [17] and no colored
quanta survive. The transition from one set of degrees of
freedom (g, A) to the other (y, U) corresponds to consec-
utively integrating out all colored quantum Buctuations
and absorbing them efFectively in the collective color sin-
glet fields.

(b) The problem of double counting degrees of freedom
has to be carefully inspected. Although it does not arise
in one-loop calculations (to which I will restrict here),
processes with, e.g. , two-gluon exchange could also be
contained in the exchange of a color singlet y quantum.
A minimal possibility to avoid this problem is a rigid
separation of high and low momentum modes, by intro-
ducing a characteristic scale Qo. Above Qo the physics
is described in terms of quark gluon degrees and below
Qo the dynamics is governed by the collective degrees of
freedom [7].

(c) C[y, U] for the composite fields embodies the cor-
rect QCD scaling and chiral properties and accounts
for the important anomaly (3) of the physical energy-
momentum tensor of QCD. The coupling between quarks
and gluons to the composite Beld y in 8[@,A, g] can be
interpreted in analogy to a thermodynamic system in
equilibrium with a heat bath, with a net How of energy
between the system and the heat bath environment such
that the bare energy of the system is not conserved. How-
ever, the free energy of the system, here high momentum
quarks and gluons, is constant [26]. It corresponds to the
conserved energy-momentum tensor O„with its nonzero
trace (3).

(d) There is no need for explicit renormalization of
b, L = l:[y, U] + l:[g, A, y]. The composite fields y and
U are already interpreted as effective degrees of freedom
with loop corrections implicitly included in Al. and it
would be double counting to add them again. More-
over, in the present approach the low energy domain of
l:[y, U] is per construction bounded from above by the
onset of the high energy regime described by C[g, A].

In correspondance to item (b) the scale Qo that sepa-
rates the two domains, provides an "ultra-violet" cutoK
for C[y, U], and at the same time an infrared cutoff for
8[@,A].

This effective field theory approach overs a wide range
of physical applications and can be extended and refined
in various directions, as discussed in Sec. IV. The scope
of the remainder of this paper is, however, conceived
as an exemplary demonstration of how of the dynamics
of parton-hadron conversion emerges within this frame-
work.

III. CONFINEMENT OF GI UONS
IN A FRAGMENTING QQ SYSTEM

The effective QCD field theory defined by (13) is read-
ily applicable to describe the dynamic evolution from per-
turbative to nonperturbative vacuum in high energy pro-
cesses. In accord with the symmetry-breaking formalism
of Sec. II, the parton-hadron transition can be visualized
as the conversion of high momentum colored quanta of
the fundamental quark and gluon fields into color neutral
composite states that are described by the condensate
fields y and U and their excitations.

In the following I shall consider as an example the
fragmentation of a qq jet system with its emitted
bremsstrahlung gluons and describe the evolution of the
system as it converts from the parton phase to the
hadronic phase. The process is illustrated in Fig. 2:
A timelike virtual photon in an e+t annihilation event

partons hadrons
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I

Q2

I'IG. 2. Schematics of the parton shower evolution of a
fragmenting qq pair with its gluon con6guration as the vir-
tualities of the partons gradually degrade, starting from the
hard scale Q . At large gluon virtualities k the shower de-

velops by perturbative branching processes, but at k Qo
nonperturbative fusion and friction processes set in, such that
at A: = A no colored Buctuations remain.
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with large invariant mass Q )) A is assumed to pro-
duce a qq pair which initiates a cascade of sequential
gluon emissions. (Here and in the following A denotes the
fundamental @CD scale. ) The early stage is character-
ized by emission of "hot" gluons far off the mass shell in
the perturbative vacuum. Subsequent gluon branchings
yield "cooler" gluons with successively smaller virtuali-
ties, until they are within Qp, where Qp is of the order
of m~ = 4byo 1 GeV. At this point condensation sets
in, or loosely speaking, the "cool" gluons are absorbed
by the color neutral gluon condensate Geld y, the par-
ticle excitations of which must then decay into physical
hadrons by means of some local interaction in the non-
perturbative vacuum. A similar picture holds for the U
field.

It is well known that the bulk of produced particles
stems &om rather soft gluon emissions that are charac-
terized by small values x of the fraction of the initial
energy. Secondary production of qq pairs is comparably
rare on the perturbative level. It is therefore reason-
able to neglect the quark degrees of freedom and study
the purely gluonic sector. Furthermore, it is convenient
to work in a physical (axial) gauge for the gluon fields,
q A = 0, by choosing the gauge vector in (2) as rI~ = n„
with n being spacelike and constant, in which case the
ghost contribution vanishes. Consequently, the equations
of motion (15)—(18) reduce to

A. Evolution of the gluon distribution
in the presence of the collective Beld y

As I will show now, the equations of motion (19)—
(21) simplify to a perturbative evolution equation for the
gluon distribution which is coupled to the equation for
the mean field y. The key problem is the Grst equa-
tion, since the gluon Gelds A~, or equivalently E~, drive
the dynamics of the y field which in turn feeds back via
r(y). As mentioned before, the U field does not couple
directly to the gluon field. The procedure in the follow-
ing is therefore to "solve" Eq. (19) as a function of K

and then to insert the solution into (20), so that one is
left (aside from the simple third equation) with a single
equation for y, which, however, is nonlinear.

Solving the equation of motion (19) for the gluon field
is equivalent to the calculation of the complete Greens
function with an arbitrary number of gluons. Instead,
I will restrict to evaluate the two-point Greens func-
tion only (Fig. 3), i.e. , the full gluon propagator which
includes both the one-loop order gluon self-interaction
through real and virtual emission and absorption, and
the effective interaction with the confining background
field y. In the framework of "jet calculus" [28], this gluon
propagator, denoted as Ds(x, k; xp, Q2), describes how

0„[K(y)P" ] = g.K(y) f—b.A„,bF,"
BV(y) BK(y)

p X ~ pva
x x

B„O"U = —4c
(

—
[ Tr[ms] .

(xl'
(&p)

(20)

(21)

The solution of these equations is a still formidable task,
because not only the gluon fields but also y and U are
quantum operators. To make progress, I will now proceed
by (i) treating the quantum gluon fields perturbatively,
and (ii) employing the mean field approximation for the
composite fields y and U. Representing

tree,
choice of b

~ 0 ~ ~ ~ ~ r

Q2

, k2

~( ) = x( ) + ~( ), (22)
~ ~ ~ ~ 0 ~ 0

xp, Q
2

~ ~ 0 ~ 0 ~ ~ 0

x, k2

2

where g is a c number and y a quantum operator (simi-
larly for U), the mean field approximation is obtained by
neglecting the quantum fluctuations y and keeping only

Thus, the approximations (i) and (ii) correspond to
the semiclassical limit in which gluonic quantum fluctu-
ations interact with a classical mean field. To a good ap-
proximation this should provide a reasonable description:
first, because renormalization-group-improved @CD per-
turbation theory allows for an accurate description of the
evolution of the gluon field [27] at short distances where

y = 0, and second, because the dynamics of the sys-
tem around y = y is governed by a large number of
virtual excitations, corresponding to coherent modes of
Geld quanta, so that a quasiclassical mean field descrip-
tion should be applicable in the low energy regime [20].

0 ~ ~ ~ ~ ~ ~ 0 O% 0 0 0 ~ ~ ~ ~ ~ ~ \ 0 0

2
&0 ) x, k2

FIG. 3. Diagrammatic representation of the two-point
Greens function of gluons, including both the gluon
(self-)interactions and the effective interaction with the con-
fining background field y (indicated by the dashed lines). This
gluon propagator describes the evolution of a gluon from a
chosen cascade branch in x and k, starting from xp and Q .
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k~ =(k', k2) . (23)

The A:+ component of a particle's momentum, the light
cone momentum, is always positive definite, k+ ) 0, and
the light cone energy k = (k&~ + m2)/(2k+) is also posi-
tive. Furthermore, the light-cone-time r+ = (t+z)/~2 is
conjugate to A: and the light cone coordinate r is con-
jugate to A;+. The invariant momentum space element
1S

d3k

(27r) s2E
d k b+(k2 2)

dk+d kL

(2m) 4 16~' k+ (24)

a gluon, produced with an invariant mass Q2, evolves
in the variable x (momentum or energy fraction) and the
virtuality k2 (or transverse momentum k&) through these
interactions. To one-loop order, it is obtained by calcu-
lating the corresponding cut diagrams. In the present
case, one has, in addition to the usual gluon branching
and fusion processes, g ~ gg and gg + g, contributions
&om energy transfer and two gluon annihilation processes
g ~ gy and gg —+ y, respectively. This is illustrated in
Fig. 3.

To write down the determining equation for the gluon
propagator Dg, it is convenient to employ light cone vari-
ables, de6ned by the identification of components of four-
vectors as

k"=(k+ k, k~), k+ = (k +k ),1

P+ = Q,
4m

) Pg ——0, (25)

i.e. , P = Q, where as before Q denotes the in-
variant mass of the timelike photon that creates the
pair, the determining equation for the gluon propaga-
tor Dg (x, xo, k, Q ) can now be represented in the form
(cf. Appendix A)

Choosing the light cone gauge for the gluon fields, g. A =
A+ = —A = 0, results in well-known simplifications
in the perturbative analysis of light-cone-dominated pro-
cesses and has the advantage that there are neither neg-
ative norm gluon states nor ghost states present [30].
As a consequence only the transverse components A&
(i = 1, 2) are dynamical field variables, since A+ is iden-
tically zero and A is determined at any "time" r+ by
A&~ and A&. The particular choice g = (p~ + pz)/2 has
the advantage that interference terms do not contribute
[2] to leading logarithmic accuracy (they are suppressed
Cx 1/k ). Therefore, in the leading logarithmic approxi-
mation (LLA) [31,9, 27, 32], it is enough to realize that
for every choice of 6 (Fig. 3, top), one can group the other
gluons in a unique way to groups forming dressed rungs
of a ladder (Fig. 3, middle) whose discontinuity is taken
(Fig. 3, bottom) .

Introducing the variable x = k+/P+ (the light cone
fraction), and parametrizing the momenta of initial quark
and antiquark as P:—pz + pq with

Dg(x, k;xp, Q2) = xob(x —xp) b(k —Q ) Fg(Q, Qo)

+Fg(Q, k ), , tv(x', x, k ) Dg(x', k;xo, Q ) Fg(k, Qo) .
Q2 ~ X

(26)

This equation has a simple physical significance: The
first term is the inclusive sum of virtual emissions and
reabsorptions, and therefore does not change the number
of gluons in the gluonic wave function of the fragmenting

QQ pair, whereas the second term describes the change
of the gluon distribution as a result of real decay or fusion
processes. The Sudakov form factor urg(k') =

' dx'dx, tv(x', x, k')
x X' (28)

I

teracting particle while degrading its virtuality from Q
to k2. As the gap between Q and k grows, such a
fIuctuation becomes increasingly unlikely. The total in-
teraction probability

Fs(Q, k ) = exp —,tvs(k )
k2

is the integral over the inclusive probability for all possi-
ble gluon interaction processes i:

is the probability a gluon propagates like a bare, nonin- iv(x', x, k') = to(, ) (x', x, k') .
proceses i

(29)

In the present case of qq jet evolution, the contribution of
perturbative tmo-gluon fusion processes gg ~ g for A; &) A is
very small [29], but the nonperturbative gluon recombination

gg ~ y in the range Qo k & A is of essential importance
in order to achieve complete con6nement.

The normalization is such that
Q2

1 = Fg(Q, Qo) + Fs(Q, k ), ivs(k )
Q2

x Fg (k, Qo), (30)

in accordance with unitarity (probability) conservation.
Multiplying (26) by F, difFerentiating, and accounting
for (30) yields
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I
k2 Dg(z, k;zp, Q ) =, ig(z', z, k ) Dg(z', k;xp, Q ) —iog(k ) Dg(z, k;zo, Q ) . (31)

As summarized in the Appendixes, one obtains, for the individual interaction probabilities m~, ~
to one-loop order

[with the assignment xi +x-2, (xi —x2) for branchings and zi, (x2 —zi) +z-z for fusions],

2igg~gg(xil zz, k ) =

2
egg gg (xi z2 k )

2
iUg~gx(xi, zz, k ) =

2
vugg~ x( zi) zz 1 k )

n, (k2) (z2 &

7g~gg

ck (k ) 87I egg g zi (zz zi)
~2

Ax(kz) (x2 l
4~gx

Ax(k2) Sar egg~~ zi(zz —xi)
2' A A x

fzilt
&g gg I

—
lz2 j

(zil
~x .g I

—
I(z2

(32)

where cgg~g = egg~~ ——1/8 and

z 1 —z~
pg~gg(z) =2C&

l
z(l —z) + +

1 —z z )
~g gx(z) =4 I,

(,
(z) = 8

l

z —z + —
l2)

Here C~ = N, = 3, and z is the fraction of x values of daughter to mother gluons. In (32),

fk'l
cr, (k ) = b ln

lqA')
11N —2'

12m

is the one-loop-order @CD running coupling (in the present case Ny = 0), and

(35)

denotes the coupling to the y field in momentum space, with (x denoting the Fourier transform of ((y) in (8).
Equation (26) for the propagator Dg(z, k; zo, Q2) corresponds the evolution equation for the gluon distribution

g(z, k&), which is defined [33] as average number of gluons at "light cone time ' r+ = 0 in the multigluon state2 lP)
with light cone fractions z—:k+/P+ in a range dz and transverse momenta in a range d k~.

d d2
zg(z, k~)=, e-*(" -".'~l {PlI'„(o,r , r~)I. „(0,-0, O~) lP) . (36)

Thus, as is evident from Fig. 3, the probability for finding a gluon with x and k& is given by the identification

g{z,k~) = Dg(x, k';1, Q ) {37)

On account of the explicit expressions (32)—(3S), and taking as evolution variable the gluon transverse momentum
k&2 rather than the invariant mass k [34], one finally arrives at the master equation for the evolution of the gluon
distribution:

It is convenient to visualize the izutial qq pair (25) as a single incoming "gluon" with momentum P, i.e., with xo = 1 and
invariant mass q (cf. Fig. 3).
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k~, g(z, k~) =+ ~.(k~)
2 7t

a, (k~2)

27'

1

d — —k —— A: 0 k
0

87r cgg g dz g /

z
(A'l, ' () ( 1 —z

k~) o 0 )
—-g(') z*, (1 —z)x, k~ &, „(z) O(k~ —q,')

~x(k~)+ dz g k~ g(x k~ ) pg~gx (z)
27t 0 Z Z

Ax(k~2) (A ) (,)( 1 —z
cgg~x dz g I

x x k~
I &x~gg (z)

27r (k~2) 0 z

This equation reBects the probabilistic parton cascade
interpretation of the LLA [35—37], in which the change of
the gluon distribution on the left-hand side is governed by
the balance of gain (+) and loss (—) terms on the right-
hand side. Notice that (38) is free of infrared divergences,
because the singularities in (33) at z = 0 and z = 1 cancel
between gain and loss terms. A diagrammatic illustration
of these gain and loss terms is shown in Fig. 4. Also
notice that the gluon fusion terms (second and fourth
terms) involve the two-gluon distribution g( ) (xq, x2, k&),
the presence of which causes the evolution equation to be
nonlinear.

By means of a Mellin transformation the multiple
convolutions of z integrals inherent in the iteration of
Eq. (38) can be converted into products of independent
successive interaction probabilities. I et me define the
gluon distribution in the moment representation as

1

g((u, k~): = dx x g(x, k~)
0

dy e " xg(x, k~)
0

g( ) ((u, z, k~ ) dxx- g(')
~
*,( 1 —z

(40)

which carries an additional z dependence. In general
g~ ~ is a complicated correlation function not available
in analytical form, except for certain special cases [28,
38]. It is therefore inevitable on an analytical level to
assume a phenomenological form of g~ ~ that allows to
convert Eq. (38) into a tractable linear form. This can
be achieved with the following ansatz of product form
[29, 39]:

g (
z, xk~

)

= p(k~) g (xk~) g (
zk~ [,(z) ( 1 —z 2) 2 2 (1 —z

) z

(41)

where y = ln(l/x), in which the variable w is conjugate
to ln(l/z), implying that the low x behavior is deter-
mined by small values of ~. Analogously, the two-gluon
distribution is represented as

X
X1

Ko o o o o o

X2

X
X2

o o ~ o o o o

XI

X
X1

0 0 4 0 0 0 OM

X2 ~

K2

oooo~
X1

X2

2 zg(2)(~ z k2~) —p(k2~) —g(u), k~) . (42)

where p(k&) is a parameter that characterizes the mag-
nitude of the probability for finding two gluons at the
same point in phase space, depending on their typical
transverse size r~ I/k~. Since the two-gluon correla-
tion must become substantial when the number of gluons
per unit area ng/(vrR&) becomes so large that the glu-
ons overlap spatially (R~ =0.5—1 fm), one expects that
p 1 when k& Qo (Qo ——1 GeV), and monoton-
ically increasing as k& ~ A . Using (41) in (40), the
two-gluon distribution in the moment representation can
be approximated in the soft limit (z « 1) as

FIG. 4. Diagrams for the interaction probabilities that
determine the evolution of the gluon distribution according to
(38). In the probabilistic interpretation terms with positive
signs lead to a gain of gluons and terms with negative sign to a
loss. The gluon with momentum fraction x is the "observed"
particle.

In the moment representation the evolution equation
(38) now becomes a linear algebraic equation for the
Mellin transformed gluon distribution:

k~ 2 g((u, k~) = p(u), k~) g(u), k~),
J

(43)

where p(u, k&) plays the role of a generalized anomalous
dimension,
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&(~ kx) = '
g(kx Qo) +g gg(~) 2 l +gg g(~) + +g gx(~) 2 +ag x(~)

—= pqcD(~, k~) + px(~, k~). (44)

The functions A(u) are given by

11 1 2 1
Ag~gg((u): 2 C~

12 (d Ct)+ 1 (8+2

1 —S(~)
4) + 3

p
&gg~g(~) = „&g~gg(~)

1 3 1 1
&a~ax(~) =— —2 S(u))

4 2 &+1 Gd+2

p 1 2 2
&gg~x ~)=

2 +, —
+2

—
+3 (45)

ons are most preferably radiated, but at the same time
take away only a very small portion of the total energy.
For simplicity I will divide the kinematic range of the k&
evolution into two distinct domains as indicated in Fig. 2.

(i) Q & k& & Qo and k&/A )& 1: In this region
Ax 0 and BAx/o) ink& 0, so that (44) reduces to

n. (k~2)
~(~ k~) = &g~gg(~) .2' (48)

(ii) Qo & k& & A and k&/A -+ 1: Here Ax ~ (4vr)
and BAx/Oink& & 0, in which case (44) becomes

A„(k2~) (A'l
~(~, k~) = "

&g gx(~) —l, I &gg x(~) .
27r 4k~)

(49)

where S(w) = @(m+ 1)—g(l) with the digamrna function
i/)(z) = d[lnl'(z)]/dz and —@(1)= p~ = 0.5772 the Euler
constant.

The anomalous dimension p(w, k&2), Eq. (44), reduces
at k& » A to pqcD, the @CD anomalous dimension in
the LLA [34], since in this kinematic region r(y) = 1 and
therefore Ax = 0. However, at k& Qo, Ax(k&) becomes
nonzero, so that the evolution of the gluon distribution
receives modifications due to the coupling of gluons to the
y field. In the region Qo & k& & A, the perturbative
@CD contributions oc n, vanish per construction, so that
the gluons solely interact with the y 6.eld, the coupling
to which increases, because K ~ 0, i.e. , A~ ~ 1. This
behavior is evident in Fig. 5, which shows p(w, k&) versus
u for diferent values of k&.

The formal solution of Eq. (43) is

)9 2 o. (k~2) ('1
k~ „, ing(~, k~) = ' 2C~

l

——
)9k2~ 2vr

= p(')(~ k )

115
,2)l

(50)

whereas in region (ii) one gets, in the same order of ap-
proximation

As stated before, the low x region corresponds to the
limit w -+ 0, so that an expansion of p(w, k&) around
w = 0 gives the dominant contributions at small x. Up
to to order u one has, in region (i),

g(e, ki) = exp ~P, p(e, k) )l (46) 0.8

0.6
from which the x distribution can be reconstructed by
considering the inverse Mellin transform

1
x g(x k~) = . d~ x g(~ k~),

27rz c
where w is now a complex variable and the contour of the
integration C runs paralell to the imaginary axis. For
the full anomalous dimension (44) this inversion must be
done numerically [40].

B. Analytical estimates for x spectra and
gluon multiplicity

0.4

-Oe2

-0.8

I
g
,'I'

~

I

I
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I
I
I
I
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I
I
I
I
I
I

I
I
I
I
I
I
I
I

I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
To exhibit the main features of the evolution of the

gluon distribution in the presence of the y field, it is in-
structive to make some analytic estimates. 0f particular
interest is the low x region, because the soft, small x glu-

FIG. 5. The anomalous dimension p(w, kz) of Eq. (44)
versus ~ for difFerent values of k&.
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FIG. 6. Comparison between exact expression for the
anomalous dimension (44) and the approximations (50) (top)
and (51) (bottom).

k~ 2 lng(ur, k~) = — p2x k~2 3u)

(ii)
( k2 ) (51)

The accuracy of the expressions p~'~ and p~ "~ in the rel-
evant range of u is exhibited in Fig. 6, where the exact
expression p(ur, k&2) is compared to the small w expan-
sions (50) and (51) at large and small k&. Evidently the
approximation is rather good for cu ( 2.

Equations (46) and (47) can now be solved analytically
with the saddle point method. The k& dependence of o.,
is given in (34) and for Ax = (2/(4vr), Eq. (35), I will use
here the form

k2 0(QO L) (Qo/kz)
4m

'

in(Q2o/A2)
' (52)

which has the required properties that Ax
——0 ((x ——0)

for k&2 & Qo and Ax ~ (4Ir) ~ ((x ~ 1) for k& ~ A

[as before (x denotes the Fourier transform of ((x) in
Eq. (8)]. Introducing the variables t for the region (i)
and u for the region (ii),

Q2

t(k~) =
A:~~

&o
u(k~) =

k~

dk~' n, (k~2) 1

k~2 2' 2m 6

k~~ ( 2vr k~2 )

ln(Q2/A2)
ln(k2 /A2)

p 1 —(Qs/k~) 1 —in(Qo/k~)
8 (Q /A )1 (Q /A )

(53)

the combination of (46) and (47) yields, for the kinematic domains (i) [(ii)],

1
zg(z, t) =

27ri

1
zg(z, u) =

27ri

du exp my + v '(()ur)E g(~, 0),
C

du exp ~y + v" (~) u g(~, 0),
C

gg(") (~)
8m

3M

(1 111
12j

(54)

0

where y = ln(1/z). The saddle point us of the integrand in (54) is determined by the con.dition

~y + P(')t
S

0 (55)

and similarly ~&' . Using the method of steepest descent then gives the following results.
(i) In the region Q & kz & Qo,

z g(z kJ ) gg&g2 &gg ~j(z) + Gi(z, k&) exp
2

J — 0

11C~
12~6

Hi (k&) exp
\

H (k2)1

Gg(z, k~) =

1'(z) =zg(z, k~2 = Q2) = 6'(1
- X/4

Hg (k~2)

(
2

)
ln(Q2/A2)
ln(k2 /A2)

—z)b(k~ —Q ),
&

~--.~4
ln (—

Ez) (56)

(ii) In the region Qo & k& & Qo,
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xg(x, k~), „, , =N (x) —G (x, k~) exp
4p—H2(k~2) ln

~

—
~

N2(x) = xg(x, k~ = Qo),
- ii4 (1)

&2(x, k~) = —Hz(kz)

1 —(Qo/k~) 1 —ln(Qo2/k~2)

In Fig. 7 the x spectra of (56) and (57) are shown for diferent values of k& with fixed Qo ——1 GeV. Two diferent
initial distributions were chosen to start the evolution from k& ——(3.5 GeV), one flat in rapidity and the other one a
Gaussian form. The parameter p introduced in (41) was set equal to 1. For k&2 Q2o the gluon distribution xg(x, k&2)

is just the well-known LLA solution with its strong increase at small x as k2& decreases. For k& ( Qo, however, the
effect is reversed such that g(x, k&2) decreases as k& falls below Qo. This suppression, which is particularly substantial
at small x, rejects the "condensation" of gluons in the collective background Beld y.

The k& dependence of the total gluon multiplicity can also be estimated in the above approximation. The gluon
multiplicity is given by the ~ = 0 moment:

Ng(k~) = g(u) = O, k~2) = dx g(x, kj') .

Using Eqs. (43)—(45), one arrives in the soft limit (z (( 1) [41, 38] at the following integral equations that govern the
approximate behavior of the gluon multiplicity for the two cases (i) and (ii):

n k2 ' dI''
, , Ng( 'k) — —Ng(k~) j,

, Na(k~') . (59)

On account of the k& dependence of n„Eq. (34), and Ax, Eq. (52), the corresponding solutions are obtained as

(i) Ng(k~)

(ii) Ng(k~) q, „,)A,

(Q2/A2) q
i/4 exp 2 g(C~/7rb) ln(Q2/A2)

= N, (Q')
I ln(k L/A ) ~ exp 2 g(&~/7rb) ln(k /A )

S
A' 1+ [1+»(k~/Qo)]' —2k~/Q'

ln(Q20/A2)
(60)

In region (i) Q & k& & Qo, the multiplicity coincides
with the @CD result [34], characterized by a rapid growth
as the gap between the hard scale Qz and k&2 increases.
On the other hand, in region (ii) QO2 & k& & A, the
multiplicity becomes strongly damped. The exponent is
always negative so that the number of gluons rapidly
decreases and vanishes at k& ——0, ensuring that no
gluons and therefore no color fluctuations exist at dis-
tances R A . This behavior is evident in Fig. 8,
where N~(k&) is plotted versus A2/k&2, starting from
A'/Q' « l.

It must be emphasized that the perturbative evolution
of gluons is cut off at Q2o, and in the transition region
Qo & k& & A the evolution is purely nonperturbative,
although it is described here as an extension of the per-
turbative evolution above Qo and treated on the same
footing.

C. Flux tube configurations
of gluons interacting with the mean field y

In Secs. IIIA and IIIB the evolution of the gluon
conBguration between the fragmenting qq pair was an-
alyzed in terms of the nonperturbative modification as
a function of Ax(k&) = ( /(47r). However, the coupling
strength Ax or (x between the gluon field and the y field
must be determined by the dynamics itself, since (x is the
Fourier transform of the y-dependent coupling function
((y) in Eq. (8).

The dynamics is governed by the the coupled system of
equations (19)—(21), which can now be solved numerically
by utilizing the definition (36) together with the general
solution for the gluon distribution given by (46) and (47).
To do so, one obtains the expectation value of Eq. (20)
by multiplying with the multigluon state vector (P~ and
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where

+ IP+) —I (R -) f drrr(y) = 0, (63)

(&+)' 1

Ig(Rqq): d kz o'8(k~) dzzg(zl k~)
1/Rq~ 0

ond integral in terms of the gluon distribution g(z, k&),
assuming cylindrical symmetry along the Rqq axis, and
minimizing t with respect to y, one arrives at the follow-
ing nonlinear integro-differential equation (r is the radial
coordinate perpendicular to Rqq):

1 d t9V(x)+ ——x(r) +
ALP r dr x

1.2

0.8
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1

~08
0.6

0.4
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R (fm)

x(g)

R = 1 fm

(64)

In pulling Ig out of the r integral, it is assumed that the
spatial distribution of gluons is approximately homoge-
nous. Equation (63) determines the energetically most
favorable flux tube conGguration. However, a physical
meaningful flux. tube solution has to satisfy the constraint
that the system as a whole, qq plus gluons, must form a
global color singlet, implying that all of the color flux
that originates &om the q must be directed towards the
q. In other words, the total color electric flux through a
plane between the q and q must equal the color charge
Qq = g, T on one of them [23, 42]. This translates into
the requirement that the gluons in the flux tube streched
between q and q with certain Rqq carry a total color
charge squared that is equal to Q, the one of qq. Define

(P+)
d r Jg(Rqq),

where A is the cross-sectional area of the flux. tube and

0.2

0 0,2 0.4 0.6 0.8 1.2 1.4 1.6 1.8 2
r( )

FIG. 9. (a) String tension t versus separation Rqq of the
qq pair, and (b) the solutions for X and r at Rqq = 1 fm
versus r which is the radial coordinate perpendicular to R~q
(Xo ——f and B ~ = 150 MeV).

reasonable parameter values [17] Xo ——f and bag con-
stant B = (150 MeV) were chosen for V(X), Eq. (14),
and the coupling function K was taken of the form (11).
One sees that with increasing separation Rqq of q and
q, the gluons first multiply which results in a growing
string tension, but then gluon condensation sets in, yield-
ing a saturating behavior of t with the string constant
approaching t 1 GeV/fm [Fig. 9(a)]. For Rqq 1
fm the gluon Geld is completely conGned within a flux
tube of radius r 1 fm [Fig. 9(b)]. For comparison,
a simple estimate within the MIT bag model [44] gives

(a+)'
Jg(Rqq) = d k~ dzg(z, k~)

1/R~g 0
(66)

Combining Eqs. (63)—(67), one arrives at

(67)

is the total number of gluons radiated from the initial
point of qq production up to Rqq. Then the above con-
straint then reads

100-
90=
80=
70 =

60=
50 =
40=
30=
20=
10=

0 0.2 0.4 0.6 0.8

B =150 Me V

0 93 MeV

R =1fm

1 1.2 1.4 1.6 1.8 2
r (fm)

d, +-d X(r) + ~V(x)
df' r dr x

(68)

which is now independent of the overall boost momentum
(P+), and thus of the initial hard scale Q = (P+), as
it should be.

Solving Eq. (68) numerically [47], subject to the
boundary conditions X'(0) = 0 and X(oo) = Xo, yields
the solutions for t, x, and )c(x) shown in Fig. 9. The

B =150MeV

0.8 —
Xo = 93 MeV

0.6 — R =1fm
0.4—
0.2—

0
-0.2—

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
r( m)

FIG. 10. (a) Form of the potential V[X(r)] and (b) the
effective squared mass M [X(r )] of the X field~ both at Rqq = 1
fm (Xo = f and B ~ = 150 MeV).
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t = 910 MeV/fm, but a rather large tube radius of 1.6
fm. Detailed calculations within the soliton model [23]
gave qualitatively similar results. Finally, Fig. 10 shows
in correspondance to Fig. 9(b) the form of the potential
V(y)—:V(y, U)~, 0, defined in Eq. (14), and the ef-

fective squared mass M (y) = d V(y)/dy for the same
parameter values as above.

IV. SUMMARY AND OUTLOOK

The effective QCD field theory approach presented
here to describe the dynamics of high energy partons in
the presence of a collective confinement field provides a
framework that has the potential to be developed towards
a systematic description of the hadronization mechanism.
The corresponding effective action has been constructed
such that it (i) incorporates both parton and hadron
degrees of freedom, (ii) recovers the exact QCD (Yang-
Mills) action with its symmetry properties at short space-
time distances, (iii) merges into an effective low energy
description of hadronic degrees of freedom at large dis-
tances, and (iv) allows for a dynamical description of
parton-hadron conversion on the basis of the resulting
equations of motion.

As an exemplary demonstration, the approach was ap-
plied to the evolution of a fragmenting qq pair with its
generated gluon distribution, starting from a large hard
scale Q2 all the way down to A2. The transformation
of the initially high virtual gluons to a gluon condensate
field y was studied in terms of the coupled evolution of
the gluon distribution and the mean field y. The solution
of the equations of motion yields color flux tube config-
urations with an associated energy per unit area (string
tension) of about 1 GeV/fm, consistent with the common
estimates.

In perspective, important points to be addressed in the
future, are the following:

(i) The establishment of the relation with the exact
renormalization group equation for the effective action
as derived by Reuter and Wetterich [5] is desirable. This
would allow one to quantify the effect of consecutively
integrating out all quantum fluctuations of gluons and
quarks with momenta larger than some infrared cutoff
scale Qo, the variation of which determines the confine-
ment dynamics.

(ii) With the inclusion of quark degrees of freedom and
possibly quantum fluctuations of the y and U fields, one
could calculate, e.g. , the mass spectrum of glueball and
meson excitations as physical hadrons. This would pro-
vide a complete description from a physical initial state,
via a not directly observable deconfined partonic stage,
up to the formation of observable hadronic excitations.

(iii) Ultimately one would like to address the micro-
scopic dynamics in full six-dimensional phase space [48],
with explicit inclusion of the color degrees of freedom
and the local color stucture. This could be realized. in a
transport theoretical formulation similar as in Ref. [49],
in which the partons propagate with a modified propa-
gator that embodies the efFects of the mean field y in

the effective mass. As the confining field becomes sig-
nificant the effective mass increases and asymptotically
becomes infinite so that the propagation of color fluctu-
ations ceases.

(iv) The possible applications are manifold. One par-
ticular interest is the expected (non)equilibrium QCD
phase transition in high energy systems as in heavy ion
collisions or the early Universe, an issue which could be
addressed along the lines of Campbell, Ellis, and Olive
[17] in combination with the space-time evolution of the
multiparton system [48] in the presence of the collective
field.
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APPENDIX A

For completeness a "derivation" of the evolution equa-
tion (26) is given in the spirit of Lipatov [50]. The full
propagator of a single gluon of momentum k may be rep-
resented as

d„ (k) Do„(k)
k2 [ 1 + 11(k2) 1 + II(k2) '

where D„= d~ /k is the free propagator, and, with
the choice of gauge for the gluon fields g A = 0,

(A2)

and k d~„(k) ~i, i o ——0 guarantees that only two physical
(transverse) gluon polarizations propagate on mass shell.
The self-energy part

II(k ) = Ilying(k ) + Ilg~„(k ) (A3)

contains both the gluon self-interactions and the
"medium" corrections due to the coupling to the con-
fining background field y. Expanding IIg~g and IIg~~
in powers of the squared couplings g, and (2, respec-
tively, the contribution to one-loop order is determined
by the total gluon "decay" probability, i.e. , the probabil-
ity of losing a gluon out of a momentum space element
between k and k + dk:

u)g(k )=, [IIg g(k' ) + IIg „(k' )]„„
= ~g++g + ~g++~ ~ (A4)

Here, mg+ g and mg~~ are the inclusive probabilities for
a gluon to emit (absorb) another gluon, due to the self
interaction, and the interaction with the y field, respec-
tively, corresponding to the diagrams in Fig. 4:
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1 1d
0 x X'

+wgg~g(x', x, k )

1

0 x X'

and "annihilate. " As outlined in Appendix B, one ar-
rives at [with the assignment xq ~ x2, (xq —x2) for
g ~ gy and xq, (x2 —xq) ~ x2 for gg ~ y]

A„(k2) f x2 5
~g gx(x& x2 k )= &g gx I2m (xy)

A„(k2) ~
A2

vagg~~(xg, x2, k ) = " 8vr cgg~g2'

+egg ~(x', x, k') (A5)

2 d&(1) 2a g
ZJ(0) d dk2 8 2 Pa —+bc y g (AG)

The individual contributions in square brackets
m(xq, x2, k ) can be obtained in the standard fashion
[51, 52] by evaluating the cross-section ratios (cf. Ap-
pendix B)

X1 X2 X1 (+~ 1
vg~gg I

—
I

X2

(A9)

(A10)

where egg~+ ——1/8 and

1 (1+ z'l
~g gx(z) =

4 I,
(z) = 8

I

z' —z + —
I

.(, 11

where g denotes the appropriate coupling for the process
under consideration (here g = g, or g = (z), cr~ l is the
Born cross section for the production of a gluon a, and
o ~ ~ represents the first order correction associated with
the "decay" a ~ bc.

For the process g ~ gg and its reversal gg + g the
probability distributions (33) are well known [51,39]. As-
signing the momentum fractions as xg m x2, (xg —x2) for
g m gg and xq, (x2 —xz) + x2 for gg —+ g, one has

n, (k2) fx2l'
~g~ g (xl x2 k ) = ~g~gg

27r

n(k ) 2 A
mgg~g(x~) x2, k ): 8m cgg~g2'

The total interaction probability mg, Eq. (A4), deter-
mines via the unitarity condition (30) the Sudakov form
factor F~,

Fg (Q, k ) = exp —,mg (k ), (A11)
k2

which is the probability that a gluon does not at all in-
teract (i.e., emit or absorb other gluons) while degrading
its virtuahty from Q to k

The self-energy part (A3) is now readily evaluated on
the basis of Eq. (A4), and inserted in the representation
(Al), one obtains the single gluon propagator at one-loop
order:

1( 2 1)
~

j.
I (A7)

X2
""x2

D„„(k)= D„ (k) 1 +
A,

" 2

where in the second expression the factors in square
brackets arise from the difFerence of phase space and Bux
factors for fusions compared to branchings. The color
factor is cgg~g = 1/8 and

'd '
x va(x', x, k )X' (A12)

z 1 —z)
~, „(z) = 2C~

I
z(1 —z)+ +

1 —z z

(A8)

The corresponding "jet calculus" [28] Green's function

where C~ ——N = 3, and z is the fraction of x values of
daughter to mother gluons.

The new, additional processes are the friction process
g + gy, corresponding to energy-momentum transfer
from gluons to the y 6eld, and the fusion process gg —+ y,
by which two gluons couple color neutral to the y Geld

Since the conversion of partons into hadrons in the process
of fragmentation is an irreversible process, the spontaneous
production of gluons by the y field, y ~ gg, as well as the
energy transfer from the y field to the gluons, gy ~ g, is
omitted. These latter interactions would counteract the tran-
sition, which certainly is possible in the sense of local Huc-
tuations, but globally, and in the average, the parton-hadron
conversion is a one-way process in the present context.
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Ds(z, k;xp, Q ) of Eq. (26) describes how a system of
gluons evolves in the variable x and the virtuality k
through the gluon self-interactions and in the presence
of the confining background Geld y. It is given by the
convolution of the single gluon propagator (Al) with the
gluon distribution function g(x, k2). Defining

Ds(z, k'; zp, Q2) =—g„„D""(k) g(x, k ), (A13)

the self-consistent iteration of one-loop contributions to
all orders within the LLA gives the evolution equation
for the gluon distribution with respect to the variables x
and k2:

k g(x, k ) =k Ds(z, k;zp, Q )

Ic )Q

~

8~',
~

dz'gi'l(x, z', k') r„,(z, *',*+*')
2vr ), k')

1
~z'gi2)(z —*', ', k2) r„,(*- ', ', z)

k dx' 1

+ ",g(~' ~ ) Tir gx (,) g(T ~ ) ~~&g gx (~))27r

2~ q k'p
(A14)

XQX2 Xg
Ysm12

X3 X3

XQX2= C12-+3 2 'Y3-+21
I

X3 &*) (A15)

where the factor 1/2 in the first (third) term arises from
the indistinguishability of the two gluons emerging from
(coming in) the branching (fusion) vertex. The function

(zz, z2, k ) denotes the two-gluon density, and the
gluon fusion functions 1 are defined in accord with (A7)
and (A9) as

1 do. ~~~ g dk~2

(p) d 2 Ycl +bc( ) k2 ) (B1)

where g is the appropriate coupling of the process, O. ~o~

is the lowest order cross section for the production of
a gluon a, and o| ~ represents the Erst order correc-
tion associated with the "decay" a ~ bc. The vertex
function associated with the general ggy coupling is eas-
ily obtained &om the interaction Lagrangian l:[@,A, y],
Eq. (8), as

with zs ——zq + x2. Changing to variables (z, zq, k ) ~
(x, z, k&) and using (A15), one immediately arrives at
Eq. (31).

V„„(kg,k2, k) = —(~(k) b (kg k2)g„„

—(1 —a) kg„k2„ (B2)

APPENDIX B

Here I will outline the explicit calculation of the inter-
action probability densities pg~gz and I'gg~~ that ap-
pear in the evolution equation (A14) or (38) in addition
to the usual probability densities pg~gg and I'gg~g No-
tice that the vertex corresponding to three gluons cou-
pling to the y Geld is unphysical and therefore to be ex-
cluded, because y is required to be a color singlet Geld.
On the other hand, the coupling of four gluons to y is
possible; however, in the LLA such diagrams are kine-
matically suppressed and can be neglected [2].

Let o~ ~ denote the spin- and color-averaged cross sec-
tion for the production of a gluon at order N in pertur-
bation theory. The probability distribution p ~p in the
variable z = xb/z for the emission of a gluon 6 in the
process a —+ bc is given by the ratio of cross sections,

where

) ) v bv" b

CE)CL qQqQ Bl qBQ

x e*"(sz)e*"(s2)e" (sz)e2 (s2), (B4)

where the factor 1/16 in front results from the averaging

where (z(k ) denotes the Fourier transform of ((y) in
coordinate space, k~, k2 are the gluon momenta, and the
convention is that all four-momenta are directed into the
vertex. The process g ~ gy gives then (setting a = 1)

(x) k2 dk 2 (o) k2
3

f {2 @2' (a ~)'
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over initial two transverse polarizations and eight color
degrees, and it is summed over final color and spin polar-
izations s, . The sum over gluon polarizations Sl, s2 must
be performed over transverse polarizations only. This is
achieved by the projection

(2 kz dk2 I f
o.(1)(k2) &(0) (k2) x x dz

i
I8~2, k'

ao 4

z
+2

1 —z (B7)

) e"(s;)e' (s;) = —g" +
k~k +k k" k'k"k

(k k;) (k k;)z

(B5)

Hence, one can read o8'

doi'i I iI + z'i
)l

Assigning the momenta k" = (k+, k, k~) of incoming
(outgoing) gluon ki (k2) and the momentum k trans-
ferred to the y field as

k, =(k+, O, O ),

In complete analogous manner the process gg m y can
be calculated. The procedure is to evaluate y —+ gg,
with incoming momentum k and the outgoing momenta
ki and kq. Using the formula (A15) one obtains the two-
gluon fusion function for the reverse process gg ~ y. The
result is

k, =
l

(I - z) k+,''(I- )k,+'

k =
l

zk~+, , k~
l

(Bfi)

X1X2 x, i(» )= &x ssl
X3 k~s)

(X3 —X$ + Xz), (B9)

and carrying out the appropriate change of integration
variables, the result is

li
~.-„( ) =Sl" —~ + —
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