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We use the BLM method to relate perturbatively calculable observables in +CD, including the
annihilation ratio R +, , the heavy quark potential, and radiative corrections to structure function
sum rules. The commensurate scale relations connecting the effective charges for observables A and
B have the forin cry(Qq) = nor(Qg) (1+ regis —P + ), where the coefficient rqg~ is independent
of the number of ffavors f contributing to coupling constant renormalization. The ratio of scales
Qz/Qir is unique at leading order and guarantees that the observables A and B pass through new
quark thresholds at the same physical scale. We also show that the commensurate scales satisfy the
renormalization group transitivity rule which ensures that predictions in PQCD are independent of
the choice of an intermediate renormalization scheme C. In particular, scale-Axed predictions can
be made without reference to theoretically constructed renormalization schemes such as MS. +CD
can thus be tested in a new and precise way by checking that the observables track both in their
relative normalization and in their commensurate scale dependence. The generalization of the BLM
procedure to higher order assigns a different renormalization scale for each order in the perturbative
series. The scales are determined by a systematic resummation of running coupling constant effects.
The application of this procedure to relate known physical observables in +CD gives rather simple
results. In particular, we find that up to light-by-light-type corrections all terms involving (s,
and m in the relation between the annihilation ratio R + and the Bjorken sum rule for polarized
electroproduction are automatically absorbed into the renormalization scales. The final series has
simple coefFicients which are independent of color: crs, (Q) = aR(Q*) —crn(Q*') + uR(Q**'), where
8 = (3Cs /4rr)n. The coefficients in the commensurate scale relation can be identified with those
obtained in conformally invariant gauge theory. In the conformally invariant limit, this result agrees
with a previous analysis by Broadhurst and Kataev, and coincides with Crewther s relation, which
establishes a nontrivial connection between R +, and the Bjorken sum rule.

PACS number(s): 12.38.Bx, 11.10.Gh, 11.15.Bt, 13.65.+i

I. INTRODUCTION

One of the most serious difIiculties preventing precise
tests of QCD is the scale ambiguity of its perturbative
predictions. Consider a measurable quantity such as p =
R,+,—(s) —3Ee~. The PQCD prediction is of the form

&=«~.(t) 1+ri(t) ' +rz(t) ', + "~ (t) ~.'(I )

Here n, (p) = 92/4rr is the renormalized coupling defined
in a specific renormalization scheme such as the modified
minimal subtraction scheme (MS), and p, is a particu-
lar choice of renormalization scale. Since p is a physical
quantity, its value must be independent of the choice of
p, as well as the choice of renormalization scheme. Nev-
ertheless, in practice we only have truncated P QCD pre-
dictions, which are p dependent. In the specific case
of B +, where we have predictions [1,2] through or-
der o.„the sensitivity to p has been shown to be less
than 10% over a large range of in@ [3]. (Additional
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references relevant to the historical development of the
calculation of R,+,— can be found in [4].) However, in
the case of the hadronic 6-quark production cross sec-
tion (da /dpT2) (pp —+ B + I), which has been computed
to next-to-leading order in n„ the prediction [5] for
the normalization of the heavy quark pT distribution at
hadron colliders ranges over a factor of 4 if one chooses
one "physical value" such as p, = — gm~& + p&~ rather
than an equally well-motivated choice tj, = ~m~& + pT2.

There is, in fact, no consensus on how to estimate the
theoretical error due to the scale ambiguity, which con-
stitutes a reasonable range of physical values, or indeed
how to identify what the central value should be. Even
worse, if we consider the renormalization scale p as to-
tally arbitrary, the next-to-leading coefficient ri (p) in the
perturbative expansion can take on the value zero or any
other value. Thus it is difFicult to assess the convergence
of the truncated series, and finite-order analyses cannot
be meaningfully compared to experiment.

The p dependence of the truncated prediction p~ is
often used as a guide to assess the accuracy of the pertur-
bative prediction, since this dependence refIects the pres-
ence of the uncalculated terms. However, the scale de-
pendence of p~ only reflects one aspect of the total series.
This point has also been recently emphasized by Maxwell
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et al. [6]. For example, consider the orthopositronium
J++ = 1 decay rate computed in quantum electrody-
namics: r = rp [1 —10.3 (n/7r) + . .

] . The large next-
to-leading coefFicient rq ——10.3 shows that there is im-
portant new physics beyond Born approximation. The
magnitude of the higher-order terms in the decay rate is
not related to the renormalization scale since the QED
coupling o. does not run appreciably at the momentum
transfers associated with positronium decay.

Thus we have a difIicult dilemma: If we take p as an
unset parameter in PQCD predictions, then we have no
reliable way to assess the accuracy of the truncated series
or the parameters extracted from comparison with exper-
iment. If we guess a value for p and its range, then we are
left with a prediction without an objective guide to its
theoretical precision. The problem of the scale ambigu-
ity is compounded in multiscale problems where several
plausible physical scales enter.

In fact three quite distinct methods to set the renor-
malization scale in PQCD have been proposed in the lit-
erature.

(1) Fastest apparent convergence (FAC) [7]. This
method chooses the renormalization scale p so that the
next-to-leading order coefficient vanishes: rq (p) = 0.

(2) The principle of minimum sensitivity (PMS) [8].
In this procedure, one argues that the best scale is the
one that minimizes the scale dependence of the truncated
prediction p~, since that is a characteristic property of
the entire series. Thus in this method one chooses p, at
the stationary point dp~/dp = 0.

(3) Brodsky I.epage Mac-kenzie -(BLM) [9]. In the BLM
scale-fixing method, the scale is chosen such that the
coefBcients r, are independent of the number of quark
ffavors f renormalizing the gluon propagators. In lead-
ing order, one chooses the scale so that f does not ap-
pear in the next-to-leading order coefBcient. That is, if
rx(p) = rxo(p) + rex(y)f, where rxo(p) and rqq(p) are f
independent, then one chooses the scale p given by the
condition rqq(p) = 0. This prescription ensures that, as
in quantum electrodynamics, vacuum polarization contri-
butions due to fermion pairs are all incorporated into the
coupling n(p) rather than the coefficients. In the case of
non-Abelian theory, the BLM method automatically re-
sums the corresponding gluon as well as quark vacuum
polarization contributions since the coupling o., is a func-
tion of Pp oc ll —

s f In general, .the coefficients in the
perturbative expansion using BLM scale fixing are the
same as those of the corresponding conformal-invariant
theory with P = 0.

These scale-setting methods can give strikingly dif-
ferent results in practical applications. For example,
Kramer and Lampe have analyzed [10] the application of
the FAC, PMS, and BLM methods for the prediction of
jet production fractions in e+e annihilation in PQCD.
Jets are defined by clustering particles with invariant
mass less than ~ys, where y is the resolution parame-
ter and ~s is the total center-of-mass energy. Physically,
one expects the renormalization scale p to reflect the in-
variant mass of the jets, that is, p should be of order
~ys. For example, in the analogous problem in QED,
the maximum virtuality of the photon jet which sets the

argument of the running coupling n(Q) cannot be larger
than ~ys. Thus one expects p to decrease as the resolu-
tion parameter y —+ 0. However, the scales chosen by the
FAC and PMS methods do not reproduce this behavior
(see Fig. 1): The predicted scales ppMs(y) and @pic(y)
rise without bound at small values for the jet fraction
y. On the other hand, the BLM scale has the correct
physical behavior as y + 0. Since the argument of the
running coupling becomes small using the BLM method,
standard QCD perturbation theory in n, [pgLM(y)] will
not be convergent in the low y domain [11]. In contrast,
the scales chosen by PMS and FAC give no sign that the
perturbative results break down in the soft region.

In this paper we shall use the BLM method to show
that all perturbatively calculable observables in QCD,
including the annihilation ratio A,+,—(Q ), the heavy
quark potential, and the radiative corrections to the
Bjorken sum rule can be related to each other at fixed
relative scales. The "commensurate scale relation" for
observables A and B in terms of their effective charges
has the form

O.'B
&A(QA) &BiQB) (~ + &A/B + ' ' ') (1.2)

The ratio of the scales A~y~ ——Q~/Q~ is chosen so that
the coeKcient rA/B is independent of the number of fIa-
vors f contributing to coupling constant renormalization.
This guarantees that the effective charges for the observ-
ables A and B pass through new quark thresholds at
the same physical scale. We shall show that the value
of AA/B is unique at leading order, and that the relative
scales satisfy the transitivity rule [12]

~A/B ~A/C ~C/B (1.3)

This is equivalent to the group property defined by Pe-
terman and Stiickelberg [13] which ensures that predic-
tions in PQCD are independent of the choice of an inter-
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FIG. 1. The scale p/~s according to the BLM
(dashed-dotted), PMS (dashed), FAC (full), and ~y (dot-
ted) procedures for the three-jet rate in e+e annihilation, as
computed by Kramer and Lampe [10]. Notice the strikingly
different behavior of the BLM scale from the PMS and FAC
scales at low y. In particular, the latter two methods predict
increasing values of p as the jet invariant mass M ( g(ys)
decreases.
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mediate renormalization scheme C. (The renormaliza-
tion group method is also separately developed by Gell-
Mann and Low [14] and further pushed ahead by Bogoli-
ubov and Shirkov [15].) In particular, scale-fixed pre-
dictions can be made without reference to theoretically
constructed renormalization schemes such as MS; QCD
can thus be tested by checking that the observables track
both in their relative normalization and commensurate
scale dependence [16].

II. COMMENSURATE SCALE B.ELATIONS

It is interesting that the task of setting the renormal-
ization scale has never been considered a problem or am-
biguity in perturbative QED. For example, the leading-
order parallel-helicity amplitude electron-electron scat-
tering has the form

..(++;++) = n(t) + n(u) . (2.1)

n(Q*) + „n'(Q**) +
„n'(Q**') +

2~
"' ~2 + "' ~3

the values Q* = e ~ m, t, etc. [17], can be determined

Here n(Q) = n(Qo)/(1 —II[Q, Qo, n(Qo)]) is the QED
running coupling which sums all vacuum polarization in-
sertions II into the renormalized photon propagator. The
value n(0) is conventionally normalized by Coulomb scat-
tering at t = —Q = 0. Notice that both physical scales
t and n appear as arguments of the running coupling
constant in the various terms contributing to the scat-
tering cross section; if one chooses any other scale for the
running coupling, in either the direct or crossed graph
amplitude, then one generates a spurious geometric se-
ries in f (n/vr) ln( —t/p ) or f (n/n) ln( —u/p ), where
f represents the number of fermions contributing to the
vacuum polarization of the photon propagator.

In general, the "skeleton" expansion of Feynman am-
plitudes in QED guarantees that all dependence of an
observable on the variable f is summed into the running
coupling constant; the coefficients in QED perturbation
series are thus always f independent once the proper
scale in n has been set. Note that the variable f is defined
to count only vacuum polarization insertions, not light-
by-light loops, since such contributions do not contribute
to the coupling constant renormalization in QED.

The use of the running coupling constant n(Q) in QED
allows one to sum in closed form all proper and improper
vacuum polarization insertions to all orders, thus going
well beyond ordinary perturbation theory. For example,
consider the perturbative series for the lepton magnetic
anomalous moment:

either by the explicit insertion of the running coupling
into the integrand of the Feynman amplitude and the
mean value theorem, or equivalently, by simply requiring
that the coefficients r be independent of f (L. ight-by-
light scattering contributions are not related to coupling
constant renormalization and thus enter explicitly in the
order n coefficient. ) Thus the formula for the anoma-
lous moment using the running coupling is form invari-
ant, identical for each lepton E = e, p, 7, since the de-
pendence on lepton vacuum polarization insertions is im-
plicitly contained in the dependence of the running cou-
pling constant. These examples are illustrations of the
general principle that observables such as the anomalous
moments can be related to other observables such as the
heavy lepton potential V(Q2) = —47m(Q )/Q2, which
can be taken as the empirical definition of the on-shell
scheme usually used to define n(Q ).

The same procedure can easily be adapted [9] to non-
Abelian theories such as QCD. One of the most useful
observables in QCD is the heavy quark potential, since
it can be computed in lattice gauge theory from a Wil-
son loop, and it can be extracted phenomenologically
from the heavy quarkonium spectrum. If the interact-
ing quarks have infinite mass, then all radiative correc-
tion are associated with the exchange diagrams, rather
than the vertex corrections. It is convenient to write the
heavy quark potential as V(Q ) = —4mC~nv(Q)/Q
This defines the "effective charge" n&(Q ) where by def-
inition the "self-scale" Q = t is the —momentum trans-
fer squared. The subscript V indicates that the coupling
is defined through the potential.

In fact, any perturbatively calculable physical quan-
tity can be used to define an efFective charge [7,18,19]
by incorporating the entire radiative correction into its
definition; for example,

R,+,-(Q ) = R,i, (Q ) 1+ (2.3)

where R is the Born result and Q = s = E, is the
annihilation energy squared. An important result is that
all effective charges n~(Q) satisfy the Gell-Mann —Low
renormalization group equation with the same Po and Pi.,
different schemes or effective charges only differ through
the third and higher coefficients of the P function. Thus,
any effective charge can be used as a reference running
coupling constant in QCD to define the renormalization
procedure. More generally, each effective charge or renor-
malization scheme, including MS, is a special case of the
universal coupling function n(Q, P„) [20]. Peterman and
Stiickelberg have shown [13] that all efFective charges are
related to each other through a set of evolution equations
in the scheme parameters P . Physical results relating ob-
servables must of course be independent of the choice of
any intermediate renormalization scheme.

Let us now consider expanding any observable or ef-
fective charge n~(Q~) in terms of ni

We thank A. Kataev for an illuminating discussion on this
point.

n&(Q&) = n&(p) 1+ (C+ Dvt f) + - . (2.4)

Since o.~ sums all vacuum polarization contributions by
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definition, no coefIicient in the series expansion in o.v can
depend on f; i.e. , all vacuum polarization contributions
are already incorporated into the definition of o.v. Thus
we must shift the scale p in the argument of o.v to the
scale [9] Qv = e'D ~l»p:

ciA(QA) —o'v (Qv) 1 + ri + (2.5)

where ri ——C + (33/2) Dvt is the next-to-leading co-A/V

efIicient in the expansion of the observable A in scheme
V. Thus the relative scale between the two observables
A and V, A~/v ——Qz/Qv, is fixed by the requirement
that the coefIicients in the expansion in o.v scheme are
independent of vacuum polarization corrections. Alter-
natively, one can derive the same result by explicitly inte-
grating the one-loop integrals in the calculation of the ob-
servable A using o.v(E ) in the integrand, where E is the
four-momentum transferred squared carried by the gluon.
(In practice one only needs to compute the mean-value
of lng = lnQ2v [21].) One can eliminate the f vacuum
polarization dependence that appears in the higher-order
coefIicients by allowing a new scale to appear in each or-
der of perturbation theory. In practice, often only the
leading-order commensurate scale is required in order to
test PQCD to good precision.

We can compute other observables B and even effective
charges such as o.MS as an expansion in o.v scheme:

B/V O'V
~a(Qa) = ~v(Qv) 1+ ri + (2.6)

where Qv = Qii/A~/v, and again ri must be inde-B/V

pendent of vacuum polarization contributions. We can
now substitute and eliminate n (vQ )v:

B/A O'A
~H(QB) = o'A(QA) 1 + ri +

7i
(2.7)

where Qg/Qg = Aii/~ —— Ag/v/Ag/v, and riB/A

ri — ri . Note also the symmetry propertyB/V A/V

AB/AAA/B ——1. Alternatively, we can compute the com-
mensurate scale Q~ = Q~/A~/~ directly by requiring

to be f independent. The result is in agreement
with the transitivity rule: the BLM procedure for fixing

The commensurate ratio A~yv = Q~/Qv differs from the
often-called Celmaster-Gonsalves relation [6,8,18,39] for the
scales A~/Av. As discussed in [20], a shift in the renormal-
ization scale as given by Az/A& leads to a vanishing NLO
coefFicient, which is equivalent to the FAC criterion. In con-
trast, in the BLM approach, only the f part vanishes.

Celmaster and Stevenson [40] have observed that the NLO
coefficient ri in an expansion series such as Eq. (2.5) de-
pends on the quantity A used in the right-hand side, and they
have expressed concern that this fact implies a "scheme de-
pendence" of the BLM procedure. This is obviously not a
defect: when one expands an observable B in terms of differ-
ent observables A, one clearly obtains different coefBcients.

the commensurate scale ratio between two observables is
independent of the intermediate r'enormalization scheme.

The scale-fixed relation between the heavy quark
potential effective charge and nMs is nv (Q)

Ms( Q)[ ( Ms/ )+' '] [] (
culation of nv in MS scheme is given in Ref. [22].)

The transitivity and symmetry properties of the com-
mensurate scales are the scale transformations of the
renormalization "group" as originally defined by Peter-
man and Stuckelberg [13]. The predicted relation be-
tween observables must be independent of the order one
makes substitutions; i.e. , the algebraic path one takes to
relate the observables. We think that the PMS method,
which fixes the renormalization scale by finding the point
of minimal sensitivity to p, does not satisfy these group
properties [12]. The results are chaotic in the sense that
the final scale depends on the path of applying the PMS
procedure. Furthermore, any method which fixes the
scale in QCD must also be applicable to Abelian the-
ories such as QED, since in the limit of small number
of colors N~ ~ 0 the perturbative coefficients in QCD
coincide with the perturbative coefIicients of an Abelian
analogue of QCD.

The commensurate scale relations given in Eq. (2.7)
open up additional possibilities for testing QCD. One can
compare two observables by checking that their efI'ective
charges agree both in normalization and in their scale
dependence. The ratio of commensurate scales AA/B is
fixed uniquely: it ensures that both observables A and
B pass through heavy quark thresholds at precisely the
same physical point. Calculations are often performed
most advantageously in MS scheme, but all reference
to such theoretically constructed schemes may be elimi-
nated when comparisons are made between observables.
This also avoids the problem that one need not expand
observables in terms of couplings which have singular or
ill-defined functional dependence.

The physical value of the commensurate scale in o.v
scheme refIects the mean virtuality of the exchanged
gluon. However, in other schemes, including MS, the ar-
gument of the efI'ective charge is displaced from its phys-
ical value. The relative scale for a number of observ-
ables is indicated in Table I. For example, the physical
scale for the branching ratio T —+ pX when expanded
in terms of ov is (I/2. 77)Mr (I/3)M~, which reflects
the fact that the final state phase space is divided among
three vector systems. (When one expands in MS scheme,
the corresponding scale is 0.157 Mr) Similarly, the phys-
ical scale appropriate to the hadronic decays of the gg is
(1/1.67)M„, - (1/2) M„, .

After scale fixing, the ratio of hadronic to leptonic de-
cay rates for the T has the form [9]

We thank Patrick Huet and Eric Sather for conversations
on this point.



3656 STANLEY J. BRODSKY AND HUNG JUNG LU 51

TABLE I. Leading order commensurate scale relations.

~Ms(0 435Q)
)t

o.„,(1.67Q) o.~ (2.77Q)

n (1.36Q) o.~ (Q) o.~ (0.614Q)

o'r I.s (1.18Q) o.g, (1.18Q)

o.~, (0.904Q)

I'(T -+ hadrons) 10(7r —9) o'~s(0 157M')
I (T M p p ) 817l eg ClclED

x 1 —14.0(5)™+
jr

10(7r2 —9) nsv. (0.363M~)
281~eh &~ED

x 1 —8.0(5) + .
jr

(2.8)

(2.9)

III. NEXT- TO-LEADING-ORDER BLM
FORMULAS

We will now generalize the BLM procedure to relate
physical observables beyond leading order. As we will
see, each order in the expansion will acquire its proper
commensurate scale. Consider the expansion series of
a physical effective charge nq(Q)/vr in terms of another
physical efFective charge n2 (Q) /7r:

Thus, as is the case of positronium decay, the next-to-
leading coe%cient is very large, and perturbation theory
is not likely to be reliable for this observable. On the
other hand, the commensurate scales for the second mo-
ment of the nonsinglet structure function M2 and the
efFective charges in the Bjorken sum rule (and the Gross-
Llewellyn-Smith sum rule) are not far from the physical
value Q when expressed in nv scheme. At large n the
commensurate scale for M is proportional to 1/~n, re-
flecting the fact that the available phase space for parton
emission decreases as n increases. In multiple-scale prob-
lems, the commensurate scale can depend on all of the
physical invariants. For example, the scale controlling
the evolution equation for the nonsinglet structure func-
tion depends on x~; as well as Q [23]. In the case of
inclusive reactions which factorize at leading twist, each
structure function, fragmentation function, and subpro-
cess cross section can have its own scale.

The commensurate scale relations between observables
can be tested at quite low momentum transfers, even
where PQCD relationships would be expected to break
down. It is likely that some of the higher twist contribu-
tions common to the two observables are also correctly
represented by the commensurate scale relations. In
contrast, expansions of any observable in n~s (Q) must
break down at low momentum transfer since n~s (Q) be-
comes singular at Q = A~s. [For example, in the 't Hooft
scheme where the higher order P = 0 for n = 2, 3, ...,

n~s(Q) has a simple pole at Q = A~s. ] The commensu-
rate scale relations allow tests of @CD without explicit
reference to schemes such as MS. It is thus reasonable
to expect that the series expansions are more convergent
when one relates finite observables to each other.

(Q) + (~ + ~ f)~ (Q)&[

+(C»+D»f+ E»f ) l

~ &~2(Q) & +
7r )

(3.1)

According to the BLM ansatz, we can reorganize this
series and resum higher-order terms that are induced by
running of the coupling constant effects. We can perform
this procedure order by order, and absorb these higher-
order terms into the renormalization scale of each order.
Postponing the justification, we eventually obtain a series
of the form

The extension of the BLM procedure to higher orders has
also been discussed recently by Grunberg and Kataev [24] and
by Samuel and Surguladze [3].

We must exclude from the analysis the potential f depen-
dence in the NNLO term induced by light-by-light diagrams.
These diagrams are finite and do not participate in the renor-
malization of the running coupling constant. As a conven-
tion, the coefBcient D&2 in Eq. (3.1) will include only the f
dependence from the running of the coupling constant. The
extra f-dependent terms from light-by-light scattering dia-
grams will be considered as part of the Cq2. This separation
is straightforward in the practical examples considered in this
paper.
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0!2 — 0!2+ Ai2
vr ( 7l' j

(n2(Q**') l '
7I j (3.2)

where the running coupling constant effects have been
resummed into the renormalization scales Q*, Q**, and
Qkll II

We now analyze the steps involved in this process of
resummation. First of all, let us make an important ob-

servation: the Bi2f term and the Ei2 f term come ex-
clusively from the one-particle-irreducible vacuum polar-
ization graphs with one and two fermion loops. These
fermionic contributions belong to the running coupling
constant effects, and should be fully absorbed into the
renormalization scale Q*.

There are also some gluonic contributions in the run-
ning coupling constant effects, and consequently some
part of Aq2, Cq2, and Dj2 should also be absorbed. into
Q*. The exact amount is dictated by the behavior of the
running coupling constant. The running of n2(p) for a
general SU(N) group can be characterized by

n2(pp) 1 (11 4 l (p l (n2(pp) l '
4&3 3 j k~oj 4

1 (11 4 ) 2 (p& '34
2 (20 l (p & (ri2(go)&+—

I

—C~ — Tf -I »'I —.
I

— —C~ —
I

—C~+4C~
I
Tf »I —,

I
+j E~'j 3 E3 j k~oj

(3.3)

In the above formula, C& = K, C~ = (N —I)/2N are the quadratic Casimirs of the adjoint and the fundamental
representations. T is the normalization of the trace of generators of the fundamental representation: Tr(t t ) = Tb
Conventionally T is chosen to be 1/2.

Let us use n2(p) as the strong coupling constant in the calculation of the physical effective charge ni(Q). If we

identify the renormalization scale p with the momentum transfer of the exchanged gluons in the leading order (LO)
Feynman diagrams, and set pp ——Q, the contribution from these diagrams will have the form

LO

n2(Q) 1 (11 4 ) (o.2(Q) r

4&3 3

1 (11 4 l 34 2 (20 (~2(Q) l '
~

—C~ — Tf L2 —— —c~ —
(

—c/+4'
~
Tf I+

16 i3 3 j 3 i3 j
~2(Q*) (3.4)

The quantities Lq and L2 are two numerical constants,
which may be interpreted as the mean values of the
ln(p, /Q ) and ln (p /Q2) terms. In general L2 P I i
due to loop integration or due to the presence of more
than one Feynman diagram involving a tree-level gluon
propagator. This is the structure of terms that we should
absorb in Eq. (3.1). In other words, we can shift the
renormalization scale in Eq. (3.1) until we fully absorb
those higher-order terms with the f dependence structure
as described in Eq. (3.4). To make this step more clear,
let us focus on the NLO coefficient of Eq. (3.1), which
is given by Ai2 + Bi2f. When we perform a scale shift

Q ~ Q*, we eliminate the Bi2f term completely, but
at the same time, we also modify the A~2 term, because
the net change to the NLO coefBcient is proportional to
s C~ —sTf, as indicated by the structure of the NLO

coefFicient in Eq. (3.4). The value of Li is determined
by the condition of eliminating the Bi2f term. Now,
proceeding to the NNLO coefficient of Eq. (3.1), which
is given by Ci2 + Di2 f + Ei2f, we can determine the
correct value of L2 to eliminate the Ei2f term. The
modification to the Ci2 and the Di2f term is given by

the form of the NNLO coefficient in Eq. (3.4). The ex-
act form of the scale shift Q ~ Q* is given later in Eq.
(3.15). We should clarify that the scale setting happens
automatically when we use the running coupling constant
inside the Feynman diagram calculation (like the skele-
ton expansion in @ED). The mathematical process here
of eliminating the Bi2f and Ei2 terms allows us to de-
termine the exact amount of the scale shift.

After this first step, our series will look like

0!2+ Ai2
vr ( 7r

(3.5)

The next step to follow is now clear. We should absorb
the Di2f term into a new renormalization scale Q** for
the NLO term, since the f dependence comes from the
vacuum polarization corrections to the NLO term. Natu-
rally part of the C~2 term should also be absorbed. From
the form of the running coupling constant in Eq. (3.3),
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(Q) + (A + B f) I~

r

+(Ci+Dif+Eif') I

'
I

+ .~ &nMs

)
(3.6)

2
Ms(Q) + (A + B f) I

Ms(Q)
I

7r )
3

7r

(3 7)

then the coefEcients Aj2, By2, C~2, D&2, and &z2 «Eq.
(3.1) are given by

Ag2 ——Ag —A2,

C12 ——Ci —C2 —2(A1 —A2) A2,

D12 Di D2 2(A1B2 + A2B1) + 4A2B2l

Ei2 ——Ei —E2 —2(B1 —B2)B2,

(3 8)
(3.9)

(3.10)
(3.11)
(3.12)

and the NLO BLM formulas [for a general SU(N) group]
are given by

11 C~A/2: A] 2 + B$2)
4 T

3 C~ 11 C~
C12 ———— (7C& + 1lCZ) B12 + C12 + — D12

16 T 4 T
121 C~

(3.13)

(3.14)

we know that the absorbed term should be proportional
to 3 C~ —3Tf A. fter this procedure we arrive to the
form indicated in Eq. (3.2). To the order considered
here, we do not have enough information to set the scale
Q*** of the next-to-next-to-leading order (NNLO) cou-
pling constant. A sensible choice is Q"' = Q**, since
this is the renormalization scale after shifting the scales
in the second step of the BLM procedure.

In practice, most physical observable in perturbative
@CD are computed in the MS scheme, with the running
coupling constant Axed at the physical scale of the pro-
cess. Specifically, if the perturbative series for ni(Q)/vr
and n 2 (Q) /vr are

3 9 &11 4Q* = Qexp B12+ I

—C~ — T—f
I2T 8T' g 3 3

.(B -E )
"(Q) (3.15)

—1 1Q** = Q exp A12 ——(5C~ + 3C~)B12 + D124T 4

11 C~+—
2 T (3 16)

R(Q) = 3) Qf 1+
f

(3.17)

The perturbative series of nR(Q)/a is (using T = 1/2 for
the trace normalization)

Notice the presence of n2(Q)/m in the expression of
Q*. In general Q* will itself be a perturbative series in

n(2Q)/ r7Th. is fact has first been pointed out in Ref. [9],
and also been further explored by Grunberg and Kataev
on the extension of the BLM approach [24]. We have ex-
ponentiated the perturbative series, since physically the
renormalization scale Q* should always be positive. To
the order considered here, the scale for the coupling con-
stant in Eq. (3.15) is not well defined, but can be chosen
to be Q. This intrinsic uncertainty is similar to the Q***
scale uncertainty of the NNLO term in Eq. (3.2), and
can only be resolved by going to the next-higher order.

For a general gauge field theory, it is interesting to
point out that the scale setting procedure described here
leads to the correct expansion series coeKcients in the
"conformal limit. " The conformal limit is defined by
Po, Pi —+ 0, and can be reached, for instance, by adding
enough spin-half and scalar quarks. Since all the running
coupling effects have been absorbed into the renormaliza-
tion scales, the scale setting method described here cor-
rectly reproduces the expansion coefFicients in this limit.
It should be pointed out that other scale setting methods
in general do not guarantee this feature.

The application of the scale setting formulas to cur-
rently available NNLO @CD quantities gives some very
interesting results. The following is a list of some effec-
tive charges known to the NNLO.

(1) nR(Q)/7r: the efFective charge obtained in total
hadronic cross section in e+e annihilation, defined by

143 23 2

12 3 )
&3+ —

&5 I
C~C~ ——C&32

(151
162 (3.18)

nR(Q) nMs(Q) (nMs(Q) l (41 11 l 1 f 11 2

8 3 ) 8 i 12 3 )
+

I

"' — ~ C~ —-C~+
I

——+ —
~

/ nMs(Q) l (90445 2737 55 121 2l 2
t' 127

vr ) q 2592 108 18 432 ( 48

970 224 5 11 21 f 29 19 10+
I

— + C3+ —&3+ ~'
I
c~+

I

——+ —
C3 ——C. I c~ f81 27 9 108 ) q 96 6 3

2

1!l l ~l ~ (ll l l d 'd '(Kf@f
,08 +1,44, ~

I C „(„)

We thank Dieter Muller for discussions on this point.
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The term containing (Pf Qf) / Pf Qf arises &om light-by-light diagrams. The dimension of the quark representation
is d(R), which usually is K for SU(N). For QCD we have d 'd ' = 40/3. It is interesting to point out that the
vector part of the Z hadronic decay width shares the same efFective charge as B(Q). The QED and top-quark mass
effects [25,26] of this decay width, as well as higher-order corrections to the axial part [26,27], can be found in the
literature.

(2) o. (M ) jm': the efFective charge obtained from the perturbative hadronic decay rate of the v lepton, defined by

n (M)
vr

(3.i9)

The perturbative series of a (M )/7r is

(3.20)

n (Q) o.Ms(Q) (nMs(Q) ) (947 ll l 1 6 85 2

) &144 3 ) 8 & 72 3 )
(nMs (Q) ) f 559715 2591 55 121 25 2 ( 1733 143 55 ) 23

f 24359 73 5 ll 2) ( 125 19 10
+

I

— + Cs+ —(5+ I A+
I

— +

& 3935 19 1

2592 18 108

The appropriate number of fiavors to be used here is f = 3. There is no light-by-light contributions in n /7r

(3) ng, (Q)/7r: the efFective charge obtained from the Bjorken sum rule for polarized electroproduction, defined by

[28]

dx [g,'"(x, Q ) —%"(x, Q )—:— 1
3 g~ 7l

(3.21)

Notice that there are difFerent normalization conventions in the literature for the polarized structure functions. Here
we follow the normalization given in Ref. [28]. For a recent review on this sum rule, see Ref. [29]. The perturbative
series of ng, (Q)/m is

~g. (Q) ~Ms(Q) ™Ms(Q)&»
A F

)nMs(Q)) f 5437 55 ) 2 ( 1241 11 ) 1

f 3535 1 5 ) 133 5 ) 115
i296 2

'+ 9 ' '
"+ 864

+ i8 ' '
+ 648f' (3.22)

For ng, ja we do not have light-by-light contributions, either.

(4) ny;(Q)/m: the efFective charge obtained from the
Gross-Llewellyn —Smith sum rule, defined by [28]

1
dx [FP (x, Q') + IP (x, Q')j:—6 1—

~F (Q) ~g. (Q) & ~Ms(Q) &

&F~C

144+ 6~' ~ f (3.24)

(3.23)

As pointed out in Ref. [28], the efFective charge o.F, /7r dif-
fer from ng, /vr only by the light-by-light contributions.
The perturbative series of nF, /vr is given by the pertur-
bative series of og, /m plus the additional term in the
formula

For QCD we have CF = 4/3, the number of colors is
%~ = 3, and d " d ' = 40/3. Since the radiative cor-
rections to the Bjorken sum rule are identical to those of
the Gross-Llewellyn —Smith (GLS) sum rule up to small
corrections of order n, (Q ), a basic test of QCD can be
made by considering the ratio of the Gross-Llewellyn-
Smith and Bjorken sum rules:



3660 STANLEY J. BRODSKY AND HUNG JUNG LU

!I,'d*[F:"(*,Q')+F. "(*,Q')]
+GLSiBj (Q

3 s— J dx [gi (x, Q2) —gr (x, Q2)]

(3.25)
Since the Regge behavior of the two sum rules is similar,
the empirical extrapolation to e ~ 0 should be relatively
free of systematic error. Moreover, PQCD predicts

(AqcD
RGi,siB;(Q ) & ~ 0) = 1+ O(n. (Q)) + 0

)
(3.26)

i.e. , hard relativistic corrections to the ratio of the sum
rules only enter at three loops. Thus measurements of
the ratio of the sum rules could provide a remarkably
complication-free test of @CD any significant devia-
tion from Bci,spy;(Q, e ~ 0) = 1 must be due to higher
twist effects which should vanish rapidly with increasing

2

A recent analysis on the NNLO @CD analysis of the
Gross-Llewellyn —Smith sum rule and the higher twist ef-
fects can be found in Ref. [30]. More discussions on the
efFects of the higher twist contributions to the Gross-
Llewellyn —Smith and polarized Bjorken sum rules can
be found in Refs. [31—33] and [34], where in this last
reference the higher twist terms to these deep-inelastic
scattering sum rules were calculated.

(5) n~, (Q) /vr: the efFective charge obtained from
the Bjorken sum rule for deep-inelastic neutrino-nucleon
scattering, defined by [35]

dx F,"~(x,Q') —F,""(x,Q')

2 q ~ )
The perturbative series of n~, (Q)/vr is

nF, (Q) (Q) (Q)
I

+5 s —10 s C~+

l(313 47
+I + js —35(s IC~(32 2 r

( 4235 7 5 l (335+
I —,296+ 6&s 3&s I

~+
I 288)

91 95
3 2 )

&s+ —
&s

I
C~C~

1 l 155——CslC~ f+
6 ) 648

(3.28)

For n~, /m we do not have light-by-light contributions, either.
As the first example of a beyond leading order commensurate scale relation, we shall express n (M )/vr in terms of

nz(Q)/7r. The appropriate number of flavors in this case is f = 3, because 7 decay occurs below the charm threshold.
[Incidentally, the light-by-light contribution in n~(Q)/vr vanishes for the three flavor case. ] The application of the
NLO BLM formulas leads to the following commensurate scale relation:

n (M ) nR(Q*)

Q*=M exp
19 169 n~(M )
24 128

(3.2o)

(3.30)

Notice that all the (s, (s, and vr terms present in the perturbative series of n~(Q)/vr and n (M )/7r have disappeared
when we related these two physical observables directly. Notice also the vanishing NLO and NNLO coeKcient in Eq.
(3.29). That is, up to the NNLO, the two effective charges are simply related by a BLM scale shift. This result is
expected since R can be expressed as a weighed integral of R(Q) (see, for instance, [1]).

As the next example, let us express n~, (Q)/vr in terms of n~(Q)/m. We will leave the f dependence explicit. The
application of the NLO BLM formulas leads to

ns. (Q) aa(Q*) 3 (na(Q")\ 9 ( ll 1 3 d b d b (Et df)+
4 q ~ ) 16 q144 6 ) C+N P& Q2&

(n~(Q***)l '
(3.31)

7 (ll 7 2 vr2l (ll 2 l n~(Q)Q* = Q exp ——2&. +
I

—+ -&. —2&a ——
I I

—C~ —-f
I4 I, 96 3 ' 24) q 3 3 ) vr

523 28 20 ( 13 2 Cdi
216+ o

~' 3 ~'+
I 54+ o~' C

(3.32)
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~., (Q) = ~R(Q*) —~R(Q**) + ~R(Q***) (3.34)

where

As explained previously, the scale Q'** in the above
expression can be chosen to be Q**. Notice that aside
from the light-by-light contributions, all the (3, (5, and
vr dependences have been absorbed into the renormal-
ization scales Q* and Q**. Understandably, the 7r2 term
should be absorbed into renormalization scale since it
comes from the analytical continuation of B(Q) to the
Euclidean region. However, at present we do not have a
full understanding for the disappearance of the (3 and (5
terms.

For the three fiavor case, or neglecting the light-by-
light contribution, the series simplifies to

Broadhurst and Kataev have recently observed a num-
ber of interesting relations between nR(Q) and ag, (Q)
(the "seven wonders") [36]. In particular, they have
shown the factorization of the P function in the correction
to the Crewther's relation [37]. The simple form of our
result Eq. (3.34) also points to the existence of a "secret
symmetry" between nR(Q) and og, (Q). We see that this
hidden simplicity is only revealed after the application of
the NLO BLM scale setting procedure. We believe all
these results are intimately related to the Crewther's re-
lation [37], which establishes a nontrivial connection be-
tween the total e+e annihilation cross section and the
polarized Bjorken sum rule. In fact, as pointed out by
Kataev and Broadhurst [36], in the conformally invari-
ant limit, i.e., for vanishing P functions, the Crewther s
relation becomes

~~. (Q) =
4 ~g, (Q) (3.35) (1+~R')(I —~, ) =1. (3.37)

3CF
~R(Q) = ~R(Q). (3.36)

Observe the astonishing simplicity of the expansion se-
ries in Eq. (3.34). These last formulas suggest that for
the general SU(N) group the natural expansion parame-
ter is o.. The use of o. also makes explicit that the same
formula is valid for @CD and @ED. That is, in the limit
Nc ~ 0 the perturbative coefficients in @CD coincide
with the perturbative coefFicients of an Abelian analogue
of @CD.

Taking into account the absence of running of the cou-
pling constant for conformally invariant theories, this last
equation effectively is equivalent to our result in Eq.
(3.34). Thus Eq. (3.34) can be regarded as the exten-
sion of the Crewther relation to nonconformally invariant
gauge theory.

The application of the NLO BLM formulas to related
the other effective charges presented here give results
with similar simplicity (see Appendix), except for those
cases involving o,F, . For instance, the obtained relation
for n (M ) and o.R, is

n (M ) np;(Q*) 5 (np, (Q**)i+ cg-
er 4

35( ~C'

( 43 85 95
(5 ~CA+

~
10+34(3 ——q5 ~CACR

12 6 6 ) 2

( 113
16

(3.38)

(3.4o)

53 ( 143 7, vr') (ll 2 ) o.p, (M~)Q* = M exp ——+ 2I,'3 +
~

— ——(3 + 2(3' + —
~ ~

—cA — f ~— (3.39)
24 384 3 24) i 3 3 p 7r

47 28 ( 1 28 8 l CAQ'* = M exp ——+ —(3 4(5+
~

(3+ (5
20 5 2 15 3 ) CR

We see that the n term is absorbed into the renormalization scale Q*, which corresponds to the transformation of
B into the Euclidean region. However, the resulting coeKcients in the expansion series are not as simple as in the
previous examples. In particular, we observe that the (3 and (5 terms persist in the NNLO coefficient, which also has
a t A dependence.

When the scale setting formulas are applied to relate physical effective charges to the somewhat artificial MS scheme
coupling constant, no comparable simplicity is observed. For instance, the application of the formulas to relate nR(Q)
to aMs(Q) leads to

R(Q) (Q*) + +12 + +12

+A +F
12 8

(3.41)

(3.42)

We thank A. Kataev for an illuminating discussion on this point.
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53
144

11 l 2
/' 101 ll ) 23 2 d ~'d ~ (ll

192+ 4 ~')~ " 32
+

3C d(~) I 48

11 ( 119 7 2
7r2'l f 11 2 ) nMS(Q)Q* = Q exp ——+ 2&2 +

I

— ——
&2 + 2(s +

I I

—&~ — f-I
4 288 3 24) k 3 3 )

(~ ")'
(3.43)

(3.44)

(—166 —80(s + 160(s)C~ + (ill + 768(s —960(s)&pQ** = Q exp
16C~ —24'

These last expressions clearly do not exhibit the simplicity of the cases shown in Eq. (3.29) or Eq. (3.34).

(3.4S)

IV. CONCLUSION

The problem of the scale ambiguity of PQCD predic-
tions has plagued attempts to make reliable and precise
tests of the theory. In this paper we have shown how
this problem can be avoided by focusing on relations be-
tween experimentally measurable observables. The con-
ventional MS renormalization scheme serves simply as an
intermediary between observables. For example, consider
the entire radiative corrections to the annihilation cross
section expressed as the effective charge o.R(Q) where

Q = ~s:

B(Q) —= 3) Qy 1+
f

(4.1)

Similarly, we can define the entire radiative correction
to the Bjorken sum rule as the effective charge ri~, (Q)
where Q is the lepton momentum transfer:

1
&u( Q2) en( Q2) ~& gx (Q)

(4.2)

We now use the known expressions to three loops in MS
scheme and choose the scales Q* and Q** to resum all
quark and gluon vacuum polarization corrections into the
running couplings. The values of these scales are the
physical values which ensure that each observable passes
through the heavy quark thresholds at their respective
commensurate physical scales. The final result is remark-
ably simple:

~R(Q*) &~R(Q**)) (~R(Q***)~
vr g 7r ) ( ~ )

(4.3)+ 0 ~ ~

A fundamental test of @CD is to verify empirically that
the observables track in both normalization and shape
as given by these relations. The coeKcients in the series
(aside for a factor of C~ which can be absorbed in the
definition of n, ) are actually independent of color and are
the same in Abelian, non-Abelian, and conformal gauge
theory. The non-Abelian structure of the theory is re-
flected in the scales Q* and Q**.The commensurate scale
relations thus provide fundamental tests of @CD which

can be made increasingly precise and independent of any
scheme or other theoretical convention.

We have also presented in this paper a number of other
commensurate scale relations using the extension of the
BLM method to the next-to-leading order. We have
shown that in each case the application of the NLO BLM
formulas to relate known physical observables in @CD
leads to results with surprising elegance and simplicity.

In principle, commensurate scale relations allow tests
of perturbative @CD with higher and higher precision as
the perturbative expansion grows. They also provide a
new way to specify QCD phenomenology. Because they
relate observables, the commensurate scale relations are
convention independent; i.e. , independent of the normal-
ization conventions used to define the color SU(K) matri-
ces, etc. Since the ambiguities due to scale and scheme
choice have been eliminated, one can ask fundamental
questions concerning the nature of the @CD perturba-
tive expansions, e.g. , whether the series is convergent or
asymptotic due to renormalons, etc. [38]. The precision
of the leading twist series will also allow sensitive tests
for higher twist contributions to physical observables.

We emphasize that any consistent renormalization
scheme, MS, MS, momentum-space subtraction scheme
(MOM), etc. , with any arbitrary choice of renormaliza-
tion scale p, can be used in the intermediate stages of
analysis. The final result, the commensurate scale re-
lation between observables, is guaranteed to be indepen-
dent of the choice of intermediate renormalization scheme
since the BLM procedure satisfies the generalized renor-
malization group properties of Peterman and Stuckel-
berg. An important computational advantage is that one
only needs to compute the f dependence of the higher-
order terms in order to specify the lower-order scales in
the commensurate scale relations. In many cases, the se-
ries coeKcients in the commensurate scale relations can
be determined from the corresponding Abelian theory;
i.e. , N~ m 0.

The BLM method and the commensurate scale rela-
tions presented here can be applied to the whole range of
@CD and standard model processes, making the tests of
theory much more sensitive. The method should also im-
prove precision tests of electroweak, supersymmetry, and
other non-Abelian theories. One of the most interesting
and important areas of application of commensurate scale
relations will be to the hadronic corrections to exclusive
and inclusive weak decays of heavy quark systems, since
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the scale ambiguity in the QCD radiative corrections is
at present often the largest component in the theoretical
error entering electroweak phenomenology.

The commensurate scale relations for some of the ob-
servables discussed in this paper (nR, n, ng, , and nR, )
are universal in the sense that the coefFicients of o., are
independent of color; in fact, they are- the same as those
for Abelian gauge theory. Thus much information on the
structure of the non-Abelian commensurate scale rela-
tions can be obtained &om much simpler Abelian ana-
logues. In fact, in the examples we have discussed here,
the non-Abelian nature of gauge theory is reflected in
the P-function coefficients and the choice of second-order
scale Q**. The lack of convergence of the non-Abelian
theory such as renormalon behavior could show up as a
progressive decrease of the higher-order commensurate
scales. The coefficients in these commensurate scale re-
lations are simply +1 and 0 and suggest that the under-
lying relation between observables without light-by-light
contributions is possibly a geometric series. Note that
the relative correction due to the three loop corrections
is +(n, /vr) or less than 1% for n, & 0.3.

A natural procedure for developing a precision QCD
phenomenology is to choose one effective charge as the
canonical definition of the QCD coupling, and then pre-
dict all other observables in terms of this canonical mea-
sure. Ideally, the heavy quark effective charge nv. (Q )
could serve this central role since it can be determined
from both the quarkonium spectrum and from lattice
gauge theory. However, in order for this effective charge
to be useful in practice, it will be necessary to com-
pute the relation of the heavy quark potential to other
schemes through three loops. At present, the most pre-
cisely theoretically and empirically known effective cou-
pling is nR(Q ), as determined from the annihilation
cross section; thus it is natural to use it as the standard
definition.

Alternatively, one can follow historical convention and
continue to use the MS scheme as an intermediary be-
tween observables. For definiteness, let us consider a 't
Hooft scheme with A = AMs having all P = 0 beyond
n = 1. The commensurate scale relations such as Eqs.
(3.15) and (3.16) then unambiguously specify all of the
scales Q', Q**, etc. required to relate nMs to the ob-
servables. The intrinsic QCD scale will then be unam-
biguously encoded as AMS. However, there is an intrinsic
disadvantage in using nMs(Q) as an expansion parame-
ter: the function nMs(Q) has a simple pole at Q = AMs,
whereas observables are by definition finite.

The BLM scale has also recently been used by Lep-
age and Mackenzie [21] and their co-workers to improve
lattice perturbation theory. By using the BLM method
one can eliminate o.~ qt,, in favor of o.~ thus avoiding an
expansion with artificially large coefFicients. The lattice
determination, together with the empirical constraints
from the heavy quarkonium spectra, promises to provide
a well-determined effective charge nv (Q) which could be
adopted as the QCD standard coupling.

After one fixes the renormalization scale p to the BLM
value, it is still useful to compute the logarithmic deriva-
tive of the truncated perturbative prediction din p~ jdlnp,

at the BLM-determined scale. If this derivative is large,
or equivalently, if the BLM and PMS scales strongly dif-
fer, then one knows that the truncated perturbative ex-
pansion cannot be numerically reliable, since the entire
series is independent of p. Note that this is a necessary
condition for a reliable series, not a sufFicient one, as ev-
idenced by the large coefBcients in the positronium and
quarkonium decay widths which appear when the scales
are set correctly. In the case of the two and three jet
decay &actions in e+e annihilation, the BLM and PMS
scales strongly differ at low values of the jet discriminant
y. Thus, by using this criterion, we establish that the
perturbation theory must fail in the small y regime, re-
quiring careful resummation of the n, ln y series. (A more
detailed discussion of the sensitivity of the jet fractions
to scale choice and jet clustering schemes is given in Ref.
[»].)

However, if we restrict the analysis to jets with in-
variant mass M & ~ys, with 0.14 & y & 0.05, then
we have an ideal situation, since both the PMS and
FAC scales nearly coincide with the BLM scale when
one computes jet ratios in the MS scheme (see Fig. 1),
i.e., the renormalization scale dependence in this case
is minimal at the BLM scale, and the computed NLO
(next-to-leading order) coefficient is nearly zero. In fact,
Kramer and Lampe [10] find that the BLM scale and
the NLO PQCD predictions give a consistent descrip-
tion of the 2-jet and 3-jet data from the CERN e+e
collider LEP for 0.14 ) y ) 0.05 at the Z. Neglecting
possible uncertainties due to hadronization effects, this
allows a determination of o., with remarkably small er-
ror: [10] nMs(M, ) = 0.107+ 0.003, which corresponds to

AM~
——100 + 20 Me V.

The central principle we have used in our analysis is the
fact that vacuum polarization contributions are summed
by the running coupling constant in gauge theory. The
argument of the running coupling constant is then fixed
by the requirement that all fermion vacuum polarization
is resummed into o.„rather than appear in the coeK-
cients. The fact that NLO correction to the scale Q*
is proportional to Po is consistent with the Peterman-
Stuckelberg renormalization group analysis and is cru-
cial for applying this method tc higher order. We have
also seen that this scale-setting procedure leads to correct
expansion coefficients in the conformal limit, since the P-
function dependence has been resummed into the renor-
malization scales. The same procedure can be applied to
multiscale problems; in general, the commensurate scales
Q*, Q'*, etc. , will depend on all of the available scales.

Note added in proof. After this paper was accepted
for publication, we have learned about two sets of re-
lated work [41,42]. Neubert [41] has introduced a weight
function formalism to account for the distribution of vir-
tualities in loop calculation, for the BLM resummation of
those terms in a perturbative series corresponding to us-
ing a running coupling constant at the vertices. Beneke et
al. have proposed a method to resum renormalon-chain
diagrams from the light quark loops in the gluon prop-
agator. It should be noted that the connection between
the BLM method and renormalon aspects has previously
been pointed out in Ref. [43].
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APPENDIX

In this appendix we present the results of applying the
next-to-leading order BLM procedure to relate the five

known effective charges o.R(q), n (Q), og, (Q), oF, (Q),
and o.F, (Q). Notice that in principle n (Q) is meaningful
only for the three-flavor case and for Q = M . However,
here we will use its analytical expression and leave Q and
f dependence explicit. We will leave the scale Q"* in the
following formulas unspecified. This scale in general can
be chosen to be Q**, or in the absence of the NLO term,
Q*. We use Tr(t t ) = zb for the normalization of the
SU(N) group generators.

The absorption of the vr terms into the renormal-
ization scales in various of the examples can be inter-
preted as the transformation of timelike observables such
as R(q) and R into the Euclidean region.

nR(q) in terms of n (Q).
2

oR(Q) a (Q') ( ll 1 ) d 'd ~' (+1@& t'o: (Q-*)l
+I

7r 7r (144 6 ) CFN Qf Q~~ ( vr

(q, /q)
19 169 l(11C

2 f24 1152 ( 3 3 ) 7r

nR(q) in terms of ng, (Q).

o.R(q) ng, (Q') 3 (' o.g, (Q**)l+ —CF
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