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Vertex functions for confined quarks in momentum-space quark-hadron models

I. S. Celenza, C. M. Shakin, Wei-Dong Sun, J. Szweda, and Xiquan Zhu
Department of Physics and Center for Nuclear Theory,

Brooklyn College of the City University of New York, Brooklyn, New York 11210
(Received 2 April 1993; revised manuscript received 9 December 1993)

We consider the excitation of a quark-antiquark pair from the vacuum by a scalar-isoscalar
source and define a vertex function for that process. We construct an equation for the vertex
function, making use of a quark-antiquark interaction that describes confinement, and solve for the
vertex function in a projected space defined using positive- and negative-energy projection operators
constructed in terms of Dirac spinors. The solution of our projected equation yields a vertex function
that is equal to zero when both the quark and the antiquark go on the mass shell. This result allows
us to study quark dynamics in momentum space in the presence of a confining interaction. The
role of our vertex function in extending the Nambu —Jona-Lasinio model to include a description of
confinement is considered. It may be seen that various amplitudes are free of the discontinuities
that arise when the quark and antiquark go on the mass shell and, therefore, dispersion relations
may be developed that are free of unphysical singularities. (In this work, we are mainly interested
in the scalar-isoscalar qq channel; however, the analysis may be extended to include sources carrying
other quantum numbers. ) The projected equations also allow for systematic approximations, such
as the neglect of retardation and the neglect of pair-current eKects, etc. Solutions are presented
for the coupled equations obtained with the use of projection operators. We conclude that the use
of projection operators, supplemented by the neglect of retardation, is a useful procedure for the
calculation of vertex functions of the type considered in this work.

PACS number(s): 12.38.Aw, 12.39.Pn, 14.65.—q

I. INTRODUCTION

We should say at the outset that we are not here inter-
ested in studying the bound states of mesons and baryons
in the presence of an interaction that describes confine-
ment. Indeed, there are quite satisfactory methods avail-
able for solving such problems. (The solutions are usually
made in coordinate space, since the confining potential is
most easily represented in coordinate space. ) The prob-
lem that does concern us is the calculation of hadronic
current correlators [1] when we make use of quark mod-
els. The theory that we have developed for mesonic cor-
relators [2,3] describes the coupling of quark-antiquark
states to states of the two-pion continuum (or the 7r-p
continuum in the case of the axial-vector isovector cor-
relator [3]). Thus, we consider a coupled-channel system
of qq states and states of two (or more) mesons. In such
problems it is quite useful to be able to use dispersion re-
lations. However, standard many-body techniques, when
applied to this problem, would yield amplitudes with a
cut structure starting at P = 4m, corresponding to the
quark and antiquark going on the mass shell. (Here, mz
is the constituent quark mass. ) That feature would elim-
inate the possibility of writing meaningful dispersion re-
lations. Therefore, we need a formalism which eliminates
the qq cuts from the various amplitudes of the model. It
is one goal of this work to show how one may formulate
a model in which such qq cuts are absent in the relevant
kinematical domain.

It is also important to note that the vertex function
we consider in this work is not a vertex function for the

ful/ qq interaction, but only describes effects of the con-
fining field. The full vertex function can be characterized
in terms of the qq T matrix, appropriately defined [2].
That T matrix would contain (complex) poles associated
with the formation of mesons as qq bound states. For
example, in Ref. [2], we show how the p meson emerges
in the study of qq dynamics in the vector-isovector qq
channel.

The vertex function studied in this work does not con-
tain the meson resonance poles, since it is only the vertex
for the confining field. If the confining field itself gen-
erates bound states, these would appear in our vertex
function. However, for the confining fields we consider,
such bound states appear at higher energies than those
relevant for our problem. (See the Appendix. )

The utility of studying the vertex for the confining field
in isolation may be seen in our analysis of hadronic cur-
rent correlation functions [2]. In Ref. [2] we consider the
eQects of the short-range qq interaction of the Nambu-
Jona-I asinio model [4], the confining interaction and the
coupling of the qq states to the two-pion continuum. The
expressions for the hadronic current correlator are such
that the efI'ects of the three interactions mentioned above
may be separately identified. The vertex for the confining
field appears naturally as an element of that formalism
and is the object of our study. (See Sec. IV.)

Note that, in the case of hadronic current correlation
functions, the momentum-space correlator depends upon
one, or more, scalar functions which are functions of the
square of a single four-vector, P . In the simplest exam-
ple, the scalar-isoscalar current correlator is
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iC—g(P ) = d xe' (O~T[q(x)q(x)q(0)q(0)]~0), (1.1)
-iJS(P ) = P".

P/2 + k

~ ~ ~ p

where C~(P ) is the function of interest and q(z) is the
quark field. Thus, we see that there is a continuous vari-
able P, in the problem. (If P=O, we can take P to
be the relevant variable. ) Therefore, the calculation of
correlation functions is unlike the calculation of bound-
state properties. In the latter case, we have an eigenvalue
value problem that requires we determine speci6c values
of P2 =M2

A description of confinement in models of hadrons can
be made in various ways. In some bag or soliton models,
confinement is introduced as a property of the vacuum,
where a free quark or gluon is taken to have in6nite en-
ergy. However, in potential models of meson structure,
a linear potential is often used to represent con6nement.
That potential has its orgin in the formation of a Aux
tube between a quark and an antiquark as they move
apart. In this work we consider confinement as imple-
mented by a linear potential. (See Sec. III.)

There are quark models, based upon the Nambu —Jona-
Lasinio (NJL) model [4], that have been extensively stud-
ied, but which do not describe con6nement. The NJL
model provides an elementary model of dynamical break-
ing of chiral symmetry. In the study of that model,
one can use a full array of many-body techniques and
may construct quark self-energy operators and associated
Green. 's functions. The model provides values of the vac-
uum quark condensate, the pion mass, and the pion decay
constant in terms of a few parameters. These include a
coupling constant Gg, a momentum cutofF A, and a cur-
rent quark mass m, when we consider the fiavor-SU(2)
version of the model. In order to motivate the calcula-
tions we report here, we will review a few features of the
NJL model. The Lagrangian is

l:(x) = q(x)(i p —mo)q(x) + Gs/2([q(x)q(x)]'

+[q(&)&»rq(&) 1'). (1.2)

Now, consider the scattering amplitude for a scalar-
isoscalar qq channel. Suppressing reference to matrices
in Dirac, color, and isospin space, we can write the scat-
tering matrix as [5]

t P2 = — Gs)=
1 G,J.(P)-

where Js (P2) is the quark-loop integral shown in
Fig. 1(a). Note that

d4I .i Js(P ) = (—1)n,ny—Tr iS(P/2+ k)
(2~)4

xiS(—P/2+ k), (1.4)

where S(p) = [P —m~ + ie],n„ is the number of col-
ors, and ny is the number of Havors. Further, mz is
the constituent mass obtained by solving the gap equa-
tion of the NJL model. One readily sees that Js(P )
has a cut starting at P2 = 4m that corresponds to the
quark and antiquark becoming physical particles. This

-P/2+ k

-iJs (P ) = —. ~ ~ ~ + ~ ~ ~ ~ ~ + ~ ~ ~ ~ ~ ~ + ~ ~ ~

(c)

FIG. 1. (a) Quark-loop integral that arises in the analysis
of the NJL model. A four-dimensional integral over A: is im-
plied. [See Eq. (1.3).] (b) Inclusion of a long-range potential
(wavy line) in the calculation of the quark-loop integral. The
filled triangular region represents the vertex function of that
potential. (c) An integral equation for the vertex function is
represented in a schematic fashion. (See Fig. 2.)

feature clearly limits the application of the NJL model
to relatively small values of P . However, a number
of researchers have disregarded this problem and have
made predications concerning the properties of the p, u,
and more massive mesons, for example [6]. (Note that
m ) 4m, etc.)

It would be useful to extend the NJL model to describe
confinement. One way to do this is to add a long-range
potential to the model that already has a mechanism that
gives rise to chiral symmetry breaking. Such a program
has been discussed in fairly general terms by Gross and
Milana [7,8]. One particularly useful feature of their anal-
ysis is their ability to "decouple" the discussion of con-
finement &om that of chiral-symmetry breaking [8]. We
do not wish to repeat their argument here, except to note
that their result depends upon a constraint satisfied by
the long-range potential in their formalism that is the
relativistic analog of a condition in the nonrelativistic
theory that would require the linear (confining) poten-
tial to vanish at the orgin, that is VI.(r) = 0 for r = 0.
Because of the possibility of considering the confinement
problem independently of chiral symmetry breaking [8],
in this work we will limit ourselves to the discussion of
only the long-range potential. (That potential is denoted
by a wavy line in the figures. )

Consider the sum of diagrams in the upperpart of
Fig. 1(b). These diagrams serve to define a vertex, the
filled triangular shape in Fig. 1(b). In Fig l(c), we show
the equation satisfied by the vertex, where, for the scalar-
isoscalar channel, the driving term is unity in the Dirac,
fiavor, and color space. (Note that the Bethe-Salpeter
equation for a bound state would be homogeneous. That
is, there would be no driving term, and we would have
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P/2+ k P/2 ~ k P/2+ k

~ ~ ~ ~ J

-P/2+ k -P/2+ k' -P/2+ k

P/2+ k P/2 + k
P/2+ k' +~

~ ~ ~ ~ + ~ ~ ~

-P/2+ k -P/2+ k' -P/2+ k

P/ P/2 + k+

+ ~ ~ ~

an eigenvalue problem. That feature characterizes the
bound-state problem considered by Gross and Milana. )

The notation we will adopt is shown in Fig 2(a). In
general, the scalar-isoscalar vertex function is a Dirac
matrix that depends on three variables, I' p(P, P.k, k2);

--however, we will consider various reduction schemes that
convert the four-dimensional equation for the vertex to
three-dimensional equation for scalar functions of two
variables. The number of unknown scalar functions con-
sidered depends upon the reduction scheme. If we neglect
retardation, we may solve a three-dimensional equation
for a function of two variables or, in the general case,
coupled three-dimensional equations for two functions of
two variables. [Since P appears as a parameter in these
equations, functions of P and ]k~ may be considered
to be functions of a single variable. In the following,
we will sometimes write I (P, k), instead of I'(P, ]k]),
where no confusion will arise. Operators that have Dirac
matrix indices will be denoted by a caret; for example,
I' p(P, ]k]) is such an operator. ]

The reduction &om four dimensions to three is
achieved by restricting k in some fashion. One possi-
bility is to take k = 0. Another option is to follow
Gross and Milana [7,8] and assume that the only im-
portant singularities (for complex k ) are those poles

of the quark propagators that appear in the low-half
k plane. The first pole, at ko = P—/2 + E(k) —ie,
has the quark on its positive mass shell. The second
singularity has the antiquark on its negative mass shell:
k = P /2 + E(k) —is (T.he three-dimensional integral
associated with the residue of the second pole has no sin-
gularity. ) In general, the residue of the first pole appears
in the three-dimensional integral equation for I'(P, ]k]),
a vertex function which exhibits a cut in the P vari-
able for P ) 2mq. Here we will demonstrate that this
cut is absent (or negligible), if the long-range potential
is "confining. "

In Fig. 2(b), we indicate the kind of coupled equa-
tions for the vertex functions that arise in the Gross-
Milana scheme. (We recall that, since those authors
were studying meson bound states, their equations have
no driving term. ) In Fig. 2(b), the crosses denote on-
mass-shell quarks, or antiquarks on their negative mass
shell. The crosses on the quark lines specify that ko ——

Po/2+—E(k), or ko = Po/2+ —E(k'). The crosses on
the antiquark lines specify that kp = Po/2 + E(k) or
kIi

——Po/2 + E(k'), etc. With reference to Fig. 2(b),
we remark that, after performing the integration over ko,
we have coupled equations for two vertex functions, one
with the quark on-mass-shell and the other with the anti-
quark on its negative mass shell [7,8]. Gross and Milana
have shown that the coupling terms in these equations are
small if the quarks have large masses. For pseudoscalar
bound states and for the light up and down quarks, the
coupling terms are also rather small, except in the case
of the pion. If we drop the coupling terms we have an
equation of the form shown in Fig. 3.

To further motivate this work, we note that the
bosonization of the flavor-SU(2) NJL model yields a
scalar-isoscalar (sigma) meson, with m = (2m~) + m
[5,9]. This state is strongly coupled to the two 7r con--
tinuum and we have been interested in its fate when the
coupling to the two-7t continuum is taken into account
[5]. In Fig. 4(a) we indicate the mean-field term in the o

-P/2+ k' -P/2+ k

P/2 + k

~ +

P/ P/2 + k
+

P/2 + k

-P/2+ k

~ ~ ~ ~

P/2+ k

-P/2+ k

P/2+ k' P/2+ k

+ o ~ ~

-P/2+ k' -P/2+ k
+

-P/2+ k -P/2+ k' + -P/2+ k

P/ P/2 + k

P/2+ k
P/2+ k'

P/2+ k

P/2+ k -P/2+ k -P/2+ k
-P/2 + -P/2+ k

FIG. 2. (a) Representation of the four-dimensional inte-
gral equation for the scalar-isoscalar vertex I' s(P, P k, k ).
The wavy line denotes the interaction and the filled triangle
is the vertex. (b) and (c) Integral equations for the vertex
with either the quark on its positive mass-shell, or with the
antiquark on its negative mass shell [7,8]. In (b) we have
k = P /2+ E(k), and in —(c) we have k = P /2+ E(k).

FIG. 3. (a) Schematic representation of an equation for
the vertex, with the quark on its positive mass shell. Here
k = P /2+ E(k), an—d k' = P /2+ E(k). (b) In—clusion
of form factors (filled circles) that improve convergence of the
equation shown in (a). (See the discussion in Ref. [8].)
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self-energy and the contribution to the 0. self-energy to
one-loop order. In Fig. 4(a), we also show a correction to
the self-energy due to coupling to states of the two-pion
continuum. We can calculate the imaginary part of that
self-energy contribution for 4m2 & Pz & 4mz [5]. How-

ever, for P ) 4m we encounter the singularities of the
quark-loop integrals [5]. We suggest that the calculation
may be carried out for P ) 4mq) if we insert the appro-
priate vertex, I'(P, ~k~), as indicated in Fig. 4(b). Once
the iinaginary part of the last diagram in Fig. 4(b) is
calculated, one can obtain the real part via a dispersion
relation where only physical (hadron) cuts appear. That
program was developed, in some detail, in Refs. [2,3,10].

As stated earlier, we will consider reduction schemes
that lead to a three-dimensional integral equation for
I'(Po, ~k~). In the first, and simplest of these schemes, we
will replace the quark-antiquark propagators by another
propagator that fixes ko ——ko = 0 while maintaining the
same right-hand (unitarity) cut as that obtained from the
Feynman propagators. (See Sec. II.) In that approxima-
tion, we will find that we can study an integral equation
for a single function, of two variables, while, in general,
one has four functions of three variables to consider:

~ ~ o ~ o o ~ ~ ~ ~ ~ ~ ~+
K

+ ~ ~ ~ ~ ~ ~

K

~ ~ s ~ o ~ ~ ~ ~ ~ ~ ~ ~+

~ ~ ~ ~

(c)

FIG. 4. (a) Schematic representation of the self-energy of
the o field of the bosonized NJL model [2,6]. The first term
is the mean-field result. The first plus the second term gives
m~ = 4mq +m~. The third term arises when we consider the
coupling of the o field to the two-pion continuum at one-loop
order [5]. The second and third diagrams give rise to cuts
when P ) 4m . The third diagram also has a cut for
P & 4m, corresponding to on-mass-shell pions. (b) In-
clusion of vertex functions in the calculation of the diagrams
of (a). (c) An example of a discontinuity associated with the
quark and antiquark being on-mass shell that is absent for a
con6ning interaction. Here the crosses denote a quark and
antiquark on their positive mass shells. (This diagram has an
additional cut starting at P = 16m that we do not consider
in this work, since P & 4m~ here. )

I'(P, P . k, k ) = I'i (P ) P . k, k )+ pl 2 (P, P . k, k )

where

+ gl's(P, P k, k )

+ P gI'4(P, P k, k ),

(k. P)P"
P2

(1.5)

We may call the representation presented in Eq. (1.5)
the "covariant representation. " The use of P rather than
g in Eq. (1.5) is useful when performing various trace
operations in order to obtain coupled equations for the
functions I', (P, P k, k ), or the functions I';(P, ~k~).

For the purposes of this work, we define

k.'„= (P') '/4 —m,', (1.7)

which is positive for P ) 2mq. Therefore, we will
write I'(k „,~k~) or I'(k „,k), in some cases, instead of
I'(Po, ~k~). Note that, for Po ) 2m~, k „= [(P ) /4—
m ] ~ is the magnitude of the quark momenta in the
center-of-mass frame. (In the absence of confinement,
quarks of momentum of magnitude k „can propagate to
infinite distances. )

In Sec. II, we describe the first of our reduction
schemes. That scheme is most appropriate for a prob-
lem where pair currents are not important, so that the
quarks and the antiquarks may be represented by the
Dirac spinors u(k, si), v( —k, s2), respectively. After we
see how the model performs in that case, we go on to
study equations, analogous to those investigated by Gross
and Milana, in Sec. III. As noted by those authors, in
passing &om a nonrealativistic formulation of a bound-
state equation to a relativistic formulation, some conver-
gence factors are lost in the (reduced) three-dimensional
relativistic integral equation. Therefore, one needs to
consider a procedure for insuring convergence. [See
Fig. 3(b).] In Sec. IV, we use the vertex function obtained
in Sec. II to see how Js(P2) of Eq. (1.4) is modified, if
we insert that vertex function when evaluating the quark-
loop integral that defines Js (P2). In Sec. IV we develop a
representation of the vertex using positive- and negative-
energy (Dirac) projection operators. We find that this
representation yields coupled equations that have well-
behaved solutions, and some of these solutions are ex-
hibited. Section V contains some further discussion and
some conclusions. Finally, in the Appendix we show how
our momentum-space equation leads to a vertex that van-
ishes when both particles go on to their positive mass
shell. This property is related to the in&ared behaviour
of the confining potential, as is to be expected.

Before entering our general discussion, it is worth
pointing out that, for convenience in our numerical analy-
sis, we have used a potential of the form V(r) = Kre
(See Sec. III.) For the parameters chosen, V(r) has a
maximum value of about 1.5 GeV. However, for the en-
ergies of concern in our work (P &1 GeV), V(r) acts
very much like the linear potential V = Kr. Therefore,
our vertex functions behave like vertex functions for a
linear potential for the values of P considered here.
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II. USE OF PROJECTION OPERATORS IN THE
CALCULATION OF VERTEX FUNCTIONS

Let us introduce the standard projection operators

where g(P, k') = h(k'o)g(P, k'), with

1 m 1

(2') E(k') [P —2E(k') + ie]
(2.8)

and

A~+l(k) = "+ ~,
2m@

A~-l(-k) = "+
2m@

(2.1)

(2 2)

where k(' = (E(k), k) and k~ = ( —E(k), k).
Now consider the case where ko is fixed by some pre-

scription. In that case we may write, for P = 0,

I'(P', ski) = I' (P, ski)+ pr (P', ski)

+Itr (P, (k()+ g Itr (P, (k)).

If we consider the projected
A~+l(k)r(P ~k~)A~ l(—k), we find

A~+l(1 )r(p', ~k~)A~-l( —k)

(2 3)

operator,

= I'(P, ski)A~+i(k)Ai i(—k), (2.4)

where r(Po, ~k~) is a linear combination of three of the
four functions appearing in Eq. (2.3):

r(P' Ikl) = ri(P', Ikl) + m, r.(P', ~k~)

+P'E(k)I', (P', ski). (2 5)

In this section we will write an equation for the function
r(P, ~k~) that is defined in Eqs. (2.4) and (2.5). It is
important to note that I'(P, k „),which is the value of
r(Po, ~k~) of Eq. (2.5) when ~k] = k „, appears when
calculating the part of a diagram where both quark and
antiquark go on their positive mass shells. For con/ning
potentials, we have I'(P, k „)= 0.

The motivation for considering the projected ver-
tex operator becomes clear when we consider reduction
schemes implemented for the four-dimensional equation
satisfied by r (s(P, k) = I' )s(P2, P . k, k2). We have, in
the case the interaction does not contain Dirac or isospin
matrices, the four-dimensional equation

I'(P, k) = 1+ i S(P/2 + k')r(P, k')
2~ 4

xiS(—P/2+ k')[—iV(k, k')]. (2.6)
[See Fig. 2(a).]

One of the often used, standard reductions of such an
equation proceeds by replacing the product of Feynman
Green's functions by a Green's function that has the same
right-hand (uiiitarity) cut and that restricts the value of
ko and ko in some fashion. In case the potential does not
contain Dirac matrices, we have

i'(a, k) = & y f a4k'V(kk') g(S'k'), ,

x AI+l (k') I'(P, k') A~ l
(—k'), (2.7)

representing one possible choice for g. Note that the re-
duced propagator of Eq. (2.8) is a member of an infinite
class of propagators that lead to the same right-hand
(unitarity) cut as the Feynman propagators of the origi-
nal equation, Eq. (2.5).

The extension to the case where the potential contains
Dirac matrices and isospin matrices is straightforward.
In the general case, Eq. (2.5) becomes

I'(P, k) = 1+ i 0'(1)S(P/2+ k')I'(P, k')

xS( P/2+—k')0'(2)V;(k, k'), (2.9)

where a sum over i is implied. Here, we have introduced
an interaction of the form [7,8]

V(k, k') = ) 0'(l)0*(2)V, (k, k'), (2.10)

where 0'(1) and 0'(2) are Dirac or isospin matrices asso-
ciated with the quark and antiquark vertices. [If desired,
we can replaced V; (k, k') by a single function, V(k, k'),
in Eqs. (2.9) and (2.10).]

For example, here we will study the form

V(k, k') = K(A ) [1 —ps(1)ps(2)7 i ~2], (2.11)

with K = (k —k') . (As before, the index 1 refers to the
quark and the index 2 refers to the antiquark. ) The anal-

ysis proceeds by multiplying Eq. (2.6) by Ai+ (k) on the
left and by A2 (—k) on the right, and then performing
a trace operation. The following functions appear:

a(k)= 4 Tr[Ai~+l(k)A2~ (—k)]
k2

2
(2.12)

, (k'k' )+2: E(k)E(k') —2m2
(k . k').

(2.14)

[The factor of 3 in Eq. (2.13) is an isospin factor. ]
Finally, we arrive at the equation for the (single) func-

tion, r(P, ~k~):

&(&', Ikl) = &+ f d/k'/U(/k/, /k'I)

(2.15)
where

and

b(k, k') = -Tr(A + (k)Ai+ (k')A2 (—k')A2 (—k)
—3[Aii+l(k)psA~i+l(k')A2~ l(—k')psA2~ l( —k)])

(2.13)
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2

U(lkl, lk'I)=, dpi, K(A )b(k, k').

(2.16)

In Eq. (2.16), dpi, denotes the solid angle for the vec-
tor k'. To proceed further, we need to specify the form
of K(42) appearing in Eq. (2.11). That is done in the
next section.

d = p [2m —E(k)E(k')]/(m k k' ).
Note that the A,~ are singular as z —+ 1:

2
A()2(z) =

2z
Aps(z) =—

(3.9)

(3.10)

(3.11)

III. POTENTIAL MODEL FOR CONFINEMENT
AND NUMERICAL RESULTS

Here, we follow the work of other authors [7,8] and
consider a coordinate-space potential of the form

and

(z —1i 2z
A»(z) = »I

I +,iz+ I) z2 —1'

2
Ais(z) =—

(3.12)

(3.13)
VL, (r) = ere (3 1)

We note that, if p is small enough, Eq. (3.1) represents
a linear potential over a range of several fermis. Usually,
taking p, 0.050 GeV is adequate. The advantage of us-
ing Eq. (3.1) is that finite values of p regulate the strong
singularities at k = 0 of the Fourier transform of VL, (r).
(There is no particular advantage gained in going to the
limit where p is made very much sinaller. )

If we use the potential of Eq. (3.1), we have

(Q2 y 2)2 (Q2 y 2)3 ) (3 2)

K m~ (k'2 )
U(lkl lk'I) =

E2 k, I k2 I
(aA02 + bA03+ cA12

+dAis), (3.3)

where

A„(z) = t"dt

, (t —z)
(3.4)

k2+kl2+ p2

2lkllk'I
) 1, (3 5)

a = 1/(2m ), (3.6)

b = p /(m lkllk'I),

c = [2m —E(k)E(k')]/(2lkllk'lm, ),

(3.7)

(3 8)

with b, 2 = (k —k') 2.
Note that 4 does not describe energy transfer. If we

had placed the quark on-mass shell, rather than specify-
ing ko = 0, we would have 4 = —[E(k) —E(k')]2+ (k-
k') . As discussed by Gross and Milana [7,8], allowing
for energy transfer worsens the convergence properties of
the integral equation and requires the insertion of form
factors, as in Fig. 3(b). We have not considered that
option here.

With this specification of K(42), we can complete the
integration over angles in Eq. (2.16). We have

We have obtained solutions of Eq. (2.15) for the case
mq ——0.33 GeV, p = 0.05 GeV, and v = 0.30 GeV .
Values of I'(P, lkl), for several values of P, are shown
in Fig. 5. In the absence of confinement, the threshold
for the appearance of free quarks is P = 2mq, which
is P = 0.66 GeV in this case. We see in Fig. 5, that
for P ) 0.66 GeV, I'(P, lkl) has zeroes. These zeros
appear when lkl = k „. In addition, we see a signifi-
cant reduction of I'(P, Ikl) for sinall lkl. [The asymp-
totic value of unity is approached for all Ikl, if P is
large enough, since our confining potential has a finite
maximum value of several GeV. For ~ = 0.30 GeV and
p, = 0.050 GeV, the maximum value of the potential is
(e/p)e i=2.2 GeV at r = p i=4 fm. ] In Sec. V, we will
continue our analysis based upon the use of the positive-
and negative-energy projection operators. However, in
the next section, we first comment on the use of vertex
functions for con6ning potentials when developing a gen-
eralized NJL model.

IV. DESCRIPTION OF CONFINEMENT IN A
GENERALIZED NAMBU —JONA-LASINIO

MODEL

In this section we will apply the results represented in
Fig. 5 to calculate J&(P ). [See Fig. 1(b)]. This appli-
cation requires a further approximation. The quark and
antiquark are on their positive mass shells in the calcu-
lation of the imaginary part of Js(P ). However, in the
calculation of the real part of J&(P ) the quark or anti-
quark can be found off-shell. Thus, the use of I'(P, lkl),
taken from Fig. 5, as the vertex shown in Fig. 1(b), re-
quires the assumption that we may use I'(P, lkl) in the
larger space of Dirac matrices, without making a serious
error. At this point, the use of the vertex obtained &om
the reduced (pair-suppressed) equations in a ful/ Dirac
space is part of our model building e8'ort. We are inter-
ested in exhibiting the results of this approximation in
this section.

Recall that, in the NJL model, considered at one-loop
order, one finds a scalar ((r) boson, whose mass is ob-
tained from the equation
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1.0

0.8

0.6

—0.4

0.2 ,i S(P/2 + k) I (P', ]k~)
d4k

xiS(—P/2+ k).

i Js(P') = (-1)n,nf Tr

(4.2)

the value of Gs . The intersection of the dashed line with
the line representing G& is the point where P = m
and represents a solution of Eq. (4.1). Note that the o
boson mass is slightly above the threshold for the two-
quark continuum.

In Fig. 6, the solid line is the result for Js(P ), calcu-
lated using the vertex functions of Fig. 5. That is,

-0.2
0 0.2 0.4 0.6 0.8 1.0

(Ge&)

1 —Gs Js(P ) = 0. (4.1)

A solution exists for P = m, where m = 4m +m
as noted above. This feature may be seen from inspection
of Fig. 6, where the dashed line represents ReJs(Pz) and
the dotted line is ImJs(P ). [Note that ImJs(P ) is
nonzero for P2 & 4m .] The light horizontal line denotes

FIG. 5. Values of I'(P, ~k]), defined in Eqs. (2.4) and (2.5),
are given as a function of ~k~ for several values of P . Here
mq ——$.33 GeV, p = 0.050 GeV, and K = 0.30 GeV . The
values of P and k „are (a) P = 0.10 GeV; (b) P = 0.30
GeV; (c) P = 0.50 GeV; (d) P = 0.67 GeV, k „=0.057
GeV; (e) P = 0.72 GeV, k „=0.144 GeV; (f) P = 0.80
GeV, k „=0.226 GeV; with P = 0.10 GeV corresponding
to the uppermost curve, etc. [Note that for P & 2m~, we
have I'(P, k „) = I'(ko, k „) = 0.] The potential used for
these calculations is given in Eq. (2.11).

We may make several important observations upon in-
specting Fig. 6. First, ImJs(P ) = 0 everywhere (in-
cluding the region P2 & 4mz). Second, there is no
longer a prediction of a low-mass physical o. meson. That
follows &om the absence of solutions of the equation
1 —Gs Js(P ) = 0. Further, we see that the values of
Js(Pz) and Js(P ) are very similar for P 0.

In our early work, we have shown that, even in the pres-
ence of a two-pion continuum that is strongly coupled to
the sca1.ar-isoscalar qq states, a sigma-dominance model
provides an accurate representation of the dynamics for
P & 0 [10]. Because of the near identity of Js(P )
and Js(P ) for P & 0, many of the results obtained
using the original NJL model will be unmodified. For
example, if we consider the calculation of the nucleon
o term using a o-dominance model, within the context
of the NJL model [ll], there appears an enhancement
factor of [1 —Gs Js(0)] . That factor would now be
[1—Gs Js(0)],which differs little from [1—Gs Js (0)]
Therefore, the results of Ref. [11] are still useful in the
case of our generalized NJL model.

To understand further the utility of studying the vertex
of the confining field, we present an expression for the
scalar-isoscalar hadronic current correlator [see Eq. (l.l)]
derived in Ref. [2]. We find

Js(P') + Ks(P')
1 —Gs[Js(P') + Ks(P')] (4.3)

0.2—

0.1

G 1

S

O
O

(

-0.2
(

0.2
4m q

I

0.8
p (GeV2)

-0.1—

FIG. 6. The dashed line shows the value of ReJs(P2),
while the dotted line shows Im Js(P ). Here we took
mq = 302 MeV and used a cutofF on the magnitude of the
integration variable: ~k] & As, where As = 0.703 GeV. [See
Fig. 1(a) and Eq. (1.3).] The light horizontal line represents
Gs and the other solid line is Js(P ). [See Eq. (4.2).] Note
that Im Js(P ) = 0. The intersection of the dashed line with
the light horizontal line (1/Gs) determines the solution of the
equation 1 —Gs Js(P ) = 0, at P = m

J( )(P2) + K( )(P )

1 —Gv [J(' )(Pz) + K( )(P2))
(4.4)

This expression may be put into the form

C(p)(P ) = J( )(P ) + C(p)(P ) (4.5)

Here Js(P ) was defined in Eq. (4.2), while Ks(P ) is
calculated from the diagram on the right-hand side of
Fig. 4(b). (In Ref. [2], Js(P ) and Ks(P ) are denoted

as Js(P ) and Ks(P ).) It may be seen that Cs(P )
only has cuts starting at P = 4m, since the inclusion
of the vertex function for the confining field eliminates
the qq unitarity cuts.

The rather complex situation that emerges in the study
of the scalar-isoscalar correlator is described in Ref. [10].
A simpler case is the study of the vector-isovector cor-
relator [2]. There, an equation analogous to Eq. (4.3) is
derived
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and it is seen that C~~l (P ) exhibits a resonant structure
due to the formation of the rho meson, while JI l(P ) is

(~)
a smooth function [2]. Again, C~~l(P ) has no qq uni-
tarity cut and satis6es physically meaningful dispersion
relations. (Note that JI ~(P ) and KI l(P ) are denoted

as J~~l(P2) and K~~l(P2) in Ref. [2]. In that work the
full tensor structure of the correlator, C~

~
(P ), is given. )(s)

V. CALCULATION OF VERTEX FUNCTIONS
WITH THE USE OF PROJECTION OPERATORS

The various difhculties we have encountered in the use
of the covariant representation leads us to continue our
development based upon the use of the positive- and
negative-energy projection operators of Eqs. (2.1) and
(2.2). For the scalar-isoscalar vertex, we define

A~+l(k)r(P', P k, k')A~+~(k) = A~+~(k)A~+~(k)r++(P', P k, k'),
A~+i(k) r(P, P. k, k )A~ ~(—k) = A~+i(k)A~ i(—k)I'+ (P, P. k, k ),

A~ i(—k)I (P, P k, k )A~+~(k) = A~ i(—k)A~+~(k)r +(P, P k, k ),
A i(—k)I'(P, P. k, k )A i(—k) = A~ (—k)A~ i(—k)I' (P, P k, k ).

(5.i)
(5.2)

(5.3)

(5.4)

If we extend the procedures used in Sec. II, we may
write coupled equations for the functions that appear in
on the right-hand sides of Eqs. (5.2) and (5.3). We put
P = 0 and again use the approximation of evaluating the
ko integrals by closing the contour in the lower-half plane
and picking up only the residues of the Green's function
poles. We find that I'+ is only coupled to I' + and that
I'++ and I' may be determined from the knowledge of
I'+ and I +. We also And that the interaction terms
do not contain P, which now only appears in the energy
denominators.

The equations obtained in the projection operator
scheme, in the absence of retardation, are

B(k, k') = k"+, (E(k)E(k') —m,')

ap(lkl, lk'I) = dpi, K(E ) (5.9)

(5.S)

The transparent aspect of these equations clearly
demonstrates the advantage of the projection operator
approach.

We now consider scalar confinement and make use of
the interaction of Eqs. (3.1) and (3.2). We define

(5.5)

where the matrix t(k, k') is

r+-(P', Ikl)r- (Po'Ikl) =, +
( ), ( — ') ( ')

I'+ (P, lk'I)
r +(P' lk'I)

where

and

—32'7t K2 1

X —y

x=k +k' +p

4p x
~p) '

(5.11)

t(k, 1 ') =

Here,

A(k, k')
PP —2E(k') + ie

B(k, k')
P'+ 2E(k')

B(k, k') A(k, k')
P —2E(k') +is P + 2E(k')

(5 6)

We also need

y = 2lkllk'I .

ai(lkl Ik'I) =

= —[map —bi],
y

dpi, K(A ) (k k')

(5.12)

(5.i3)

(5.i4)

k k'
A(k, k') = —k' + (E(k)E(k') + m )

(5.7)

where

1 x —y 8p
bg ——16' K —ln

y X+y X2 —y2
{5.i5)

Thus, Eq (5.5) may be written

r +(P, Ikl)
—

1 +
I I (, ) r +(P. Ik, l)

where the matrix h(k, k') is

(5.16)
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with

A(k, k') =

n(k, k')
Po —2E(k') + ie

]9(k, k')
P'+ 2E(k')

P(k, k') n(k, k')
P —2E(k') + ie P + 2E(k')

(5.17)

n(k, k') =
k" „ ll 'I 2

(2~) s 2E2(ki)
—k"aa+ [k[k)S(k ) +ma]ai), (5.18)

]i(k, k') = k' aa+ [E[k)E[k) —m ]a,)
.2

(2~)s 2E2(k')

We note that our equations take on a relatively sim-
ple form, in part, due to the neglect of retardation of
the interaction. Results obtained for I'+ (Po, lkl) and
I' +(P, lkl) are shown in Figs. 7 and 8. In Fig. 7, we
see that r+-(Po, k „)= 0, as expected.

At this point, we can return to our calculation of
Js(P ). Previously, we had used I'(P, lkl), obtained in
Sec. II, to calculate J&(P2). (See Fig. 5.) An improved
calculation is obtained by using the following form of the
fermion propagator:

We define

S(.)(„)=-
E(p) p —E(p) +

S(—) p
m, A(-)( —p)

E(p) p'+ E(p) —te '

so that S(p) = S(+)(p) + S( ) (p). Note that

(5.21)

(5.22)

m A(+)(p) A( )(—p)
S(p) =

&[p) p" —&(p)+'a p'+&[9) —'a)
(5.20) aild

A(+&(p) = ) u(p, s)u(p, s) (5.23)

1.5

1.0—

CL, 0.5
I

+ CL

+

-0.5
0

I I I

Oa2 0.4 Oa6 Oa8

Ikl (Gev)

FIG. 7. Lorentz-scalar confinement. Values of I'+ (P, lkl)
obtained from the solution of the coupled equations for I'+
and I" + are shown. Here mq ——0.33 GeV, p = 0.050 GeV,
and ii, = 0.3 GeV . (A cutofF on the magnitude of the mo-
menta of 1.0 GeV was used. ) Note that I'+ (P, lkl) k 1 for
large lkl and that I'+ (P, k ) = 0. Values of P and k „
are given starting with the uppermost curve: (a) P = 0.69
GeV; k „=0.101 GeV; (b) P = 0.76 GeV, k „=0.188 GeV;
(c) P = 0.80 GeV, k „=0.226 GeV; (d) P = 0.90 GeV,
k „=0.306 GeV.

0
0

I I I

0.2 0.4 Oa6 Oa8

Ikl («V)

FIG. 8. Lorentz-scalar confinement. Values of I' + (P, lkl)
obtained from the solution of the coupled equations for I'+
and I' + are shown. (See caption to Fig. 7.) Note that
the I' +(P, lkl) decrease for large ~kl, and are close to unity
for lkl = 1 GeV. Starting with the lowest curve and moving
upward we have P = 0.69 GeV, P = 0.76 GeV, P = Oa80

GeV, and P = 0.90 GeV. (Corresponding values of k „are
given in the caption to Fig. 7.)
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A' '(—p) = —) v( —p ) (—» ) (524)
8

[See Eqs. (2.1) and (2.2).] With iv(p, s)—:v( —p, —s), we

also may write

mq ). u(p, s)u(p, s) tv(p, s)u)(p, s)
E(p) po —E(p) + ie po + E(p) —ie

(5.25)

Using Eqs. (5.18)—(5.20) in the calculation of the
quark loop integral, we 6nd that
the terms S(+)(P/2+ k)r+ (P, ]k])s& ) ( P/—2+ k) and
S& &(—P/2+ k)I" +(P, )k()S(+)(P/2+ k) give nonzero
contributions, if we again assume that the only relevant
poles are those of the Green's functions in the lower-half
ko plane. In this case, we see that Eq. (4.2) is to be
replaced by

a4I
Js(P ) =in, nfTr [S+ (P/2+ k)F+ (P', ~k~)s (—P/2+ k)(2~)4

+S& )(P/2+ k)I' +(P, )k()S(+)(-P/2+ k)] (5.26)

for P = 0. The result obtained when using the values of I'+ and F + shown in Figs. 7 and 8 in the calculation of
J,'(P ) is shown in Fig. 9 as a solid line. For Fig. 9, we have K = 0.2 GeV . We see that, here the modified vertex
corresponds to a weaker repulsive effect than that obtained in the calculation exhibited in Fig. 6, where we had put
K = 0.3 Ge&~.

In other applications, we will need the values of I'++(P, ~k~) and I' (P, ]k~). Using the definitions in Eqs. (5.1)
and (5.4), we find

~4I'I++(P', ~k~) = 1+ i— [A(+&(k)S(+)(P/2+ k')S(-&(-P/2+ k')A(+)(k)r+-(Po, ~k~)2 (2vr)4

+A(+)(k)s( )(P/2+ k) S(+()P/2+ k)A—(+)(k)r +(P, ~k~)]V(k, k') (5.27)

.Tr d4k'r--(P', ~k~) = 1+ — [A&-&(—k)s(+)(P/2+ k')s&-)( —P/2+ k')A(-&( —k)F+ (P, ~k~)2 (2vr) 4

+A( )(—k)s( &(P/2 ~ k')S(+)(—P/2+ k')A( )(—k)I' +(P, ~k~)]V(k, k') . (5.28)

Thus, once we have obtained F+ and 1 +, we can construct I'++ and I' using the last two equations. The latter
vertex functions appear when evaluating the diagram on the right in Fig. 4(b), for example.

0.2—
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VI. DISCUSSION AND CONCLUSIONS

In this work, we have constructed equations for quark
vertex functions for the case of a scalar-isoscalar source.
We have made use of an approximate expression, Eq.
(3.1), that represents a linear confining potential over the
relevant kinematic range [12]. It would appear that, since
in the development of the last section we only had to solve
for two functions, I'+ and I' +, the four equations in the
covariant representation are redundant in the absence of
retardation. Note that, in the absence of retardation, we
have

FIG. 9. The dashed line shows the value of Js(P ), while
the dotted line is Imjs(P ). [See Fig. 6.] The solid line
represents the values of js(P ), calculated using values of
F+ and F + shown in Figs. 7 and 8. Here e = 0.20 GeV,
m~ = 0.302 GeV, and Aq ——0.702 GeV. [See the caption to
Fig. 6.]

I'+ (P, (k)) = Fi(P, (k)) + m I' (P, (k()
+p E(k)r (p', ~k~),

I' +(P, ~k~) = I'i(P, ~k~) + moors(P, ~k[)
—P E(k)I' (P, /k/), (6.2)
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I'++(P' Ikl) = I' (P' Ikl) + P'I' (P' Ikl)
mq

k2 I' (P' Ikl)
mq

(6.3)

and

(P' Ikl) = I' (P' lkl) — P'I' (P' lkl)
mq

k2 I' (P' lkl)
mq

(6.4)

J~(P )Cs(P') = —, ~ J, (P.)
(6.5)

rather than

In Sec. II, we based our presentation upon the use of a
reduction scheme that allowed us to obtain a single three-
dimensional equation from a four-dimensional equation.
There are many such reduction schemes [13]; however,
the particular reduction used in Sec. II is in complete
correspondence with the projection operator scheme of
Sec. V, if we continue to neglect energy transfer (i.e., re-
tardation) in the interaction. For example, if we drop
I' +, and use the same interaction, we could identify
I'(P, lkl) of Sec. II with I'+ (P, lkl) of Sec. V. (The ne-
glect of I' + is a particularly good approximation when
one considers the case of heavy quarks. )

Of particular interest is the fact that the vertex func-
tions considered here eliminate spurious unitarity cuts
in various qq amplitudes. Thus, the description of the
analytic structure of these amplitudes includes only cuts
due to (color-singlet) hadrons going on-mass-shell. [See
Figs. 4(b) and 4(c), for example. ] That feature allows us
to construct dispersion relations in terms of discontinu-
ities across physical cuts, as was done in Refs. [2,3,10].
We also note that, if one includes a long-range confin-
ing potential, the notion of a qq T matrix is no longer a
particularly useful concept. However, in the presence of
a con6ning interaction, we may continue to study quark
correlators of the form (OIT(q(x)q(x)q(0)q(0)) IO), as was
done in Ref. [10]. The study of the correlator is partic-
ularly simple, since the qq pair is created at a point and
annihilated at another point. (In contrast, the usual cal-
culation of a T matrix requires the presence of free quarks
which converge, starting &om large separations, scatter,
and then separate. ) In the calculation of the correlator,
the qq pair created is virtual. These quarks then inter-
act via a T matrix, which describes the interaction of a
virtual (off-mass-shell) qq pair, and are then annihilated.
The study of correlators, constructed with a variety of
quark "currents, " provides information concerning qq res-
onances and bound states [1]. If we consider the Fourier
transform of the scalar-isoscalar correlator, i'(P2), we
And, in the absence of coupling to the two-pion contin-
uum,
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APPENDIX A: ANALYSIS OF AN EQUATION
FOR THE VERTEX FUNCTION

In this appendix we wish to understand how the inte-
gral equation for the vertex function yields a solution for
I'(P, lkl) that has 1 (P, k „) = 0. To understand this
feature, we use the model of Sec. II. There a(k) was de-
fined by Eq. (2.12) and b(k, k') was given by Eqs. (2.13)
and (2.14). Using the Green's function of Eq. (2.8) and
K(42) of Eq. (3.2), we write

I (P, Ikl) = 1+ dk'K(b, )g(P, Ik'I)

I'(P' Ik'I) .
a(k)

(Al)

Now we note that K(A2) is largest for b, 2 = 0 and falls
oK rapidly as 4 is increased &om zero. Therefore, the
integral over k' only has important contributions for k
k'. It is then useful to expand I'(Po, lk'I) about the value
of lk'I = lkl:

Coupling to the two-pion continuum may be intro-
duced using the methods of Ref. [10] and the result of
the evaluation of the third diagram in Fig. 4(b). (We
note again, that if Cg(P ) is obtained in this fashion,
the only singularities are those due to the two pions going
on-mass-shell. ) We also remark that, in Ref. [10],we saw
that Cs(P ) could be well represented by a 0-dominance
model for spacelike P2, even if there was no physical low-
mass o in the model. To the extent that J&(P2) is close
in value to Js(P ), for spacelike P2, our observation [10]
concerning the validity of a 0-dominance representation
(for P2 ( 0) would still be appropriate. That observa-
tion will still be true, when we consider coupling to the
two-vr continuum, if the third diagram in Figs. 4(a) and
4(b) have similar values for spacelike P2.

As a final point, we remark that several authors [6,14]
have studied flavor-SU(3) versions of the NJL model, sup-
plemented with instanton efkcts. Studies of meson spec-
tra have been extended to masses of the order of 1 GeV,
even though the model has a continuum starting at 2mq.
We believe that the vertex function studied in this work
will be of use in justifying, in part, such calculations made
using the standard NJI model, which does not describe
confinement.

J&(P )
1 —G,J,(P2)

(6.6)
I'(P, Ik'I) = I'(P, Ikl) + (lk'I —Ik'I) I"(P, Ikl) + "

(A2)
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Results that are accurate to about 80%%up may be obtained
if only the first term of Eq. (A2) is kept. Then, in that
very simple approximation, we have

I'(P, Ikl) = 1+a (P, Ikl)I'(P, Ikl), (A3)
200—

with

a (P, lkl) = dk'g(P, Ik'I)
' K(A ) . (A4)

a(k)

Thus, to a erst approximation, we have

T~
O
CL

'100-

/ ~ ~

/
/ ~ ~

I ~ ~
~ ~

~ ~

where

(o) p
p p (A5)

-1 00—

R'(~' &I) = f~ik i.-"-,s(„,) )I p. 2s(„,)
x

&
(aAp2 + bAps + cAi2 + dN4is) . (A6)

-200 I

0.2
I )

0.4 0.6
(Ge&)

0.8

See Eqs. (3.3)—(3.9).
We now write

and

g'(P' lk'I) =
k2„—k'2 (AS)

x faAo2 + bAos + cAi2 + dAis) (A9)

with k = Pp/4 —m .
We find that ao(Po, lkl) is large and positive for lkl

somewhat less than k „.Further, a (Po, lkl) is large and
negative for lkl somewhat greater than k „. (See Fig. 10.)
This behavior leads to values for I'(P, lkl) similar to
those shown in Fig. 5 for P ) 2m~. [Still more accurate
results are obtained, if we keep the second term on the
right-hand side of Eq. (A2).]

In order to understand the behavior of a (P, lkl)
shown in Fig. 10, it is useful to graph g (P, lk'I) and
f(P, lkl, lk'I) versus lk'I, for fixed P and lkl. Let us
take P = 0.8 GeV and mq ——0.33 GeV. Then ko„= 0.23
GeV. Thus, g (P, lk'I) has the form shown in Figs. 11—
13 (solid curve). [The vertical line denotes the value of
k „.) In Fig. 11, we have lkl = 0.8 GeV, in Fig. 12 we
have lkl = 0.3 GeV, and in Fig. 13 we have lkl = O. l
GeV. In these figures, the dotted curve is f(P, lkl, lk'I).
As expected, f(P, Ikl, Ik'I) is large for Ik'I = Ik'I. (The
peaks have a width at half-maximum of about p, which is
here equal to 0.050 GeV. ) With the use of smaller values
of p, the peaks would appear more like delta functions,
so that lkl' would need to be very close to lkl to get a
sizable value for f

a'(P' Ikl) = dlk'Ig'(P' Ik'I)f(P' Ikl lk'I) (A7)
p

where

FIG. 10. Values of a (P, Ikl) are shown for P = 0.67 GeV
(solid line), P = 0.72 GeV (dashed line), and P = 0.80
GeV (dotted line). Note that a (P, Ikl) goes to plus (mi-
nus) infinity as Ikl approaches k „from below (above). (Here
m~ = 0.33 GeV, y, = 0.050 GeV, and ~ = 0.3 GeV .)

INR (, k) = I + f dk "dkTNR (,i")
x(k" IGo(s) Ik')(k'I&lk) . (A10)
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Ikl = 0.80Gev
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FIG. 11. Values of g (P, Ikl) are shown as a solid line and
values of f(P, Ikl, Ik'I) are given by the dotted line. Here
Ikl = 0.80 GeV, P =- 0.80 GeV, p = 0.050 GeV, and r = 0.30
GeV2.

Prom inspection of Figs. 10—13 one can see how the
behavior of the potential for k' k governs the behavior
of a (P, lkl), which, in turn, determines the behavior of
I'(Po, lkl). In this manner, we can trace the result that
I (Po, k „)=0to the infrared behavior of the (confining)
interaction.

We can demonstrate, in a more direct fashion, that
I'(Po, k „) = 0 if the interaction is confining. Let us
consider a nonrelativistic version of our problem, such
that V is the confining potential and
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FIG. 12. Same caption as Fig. 11, except that [k[ = 0.30
GeV.

FIG. 13. Same caption as Fig. 11, except that [kl = 0.10
GeV.

Here, the on-shell condition is k = k „=~s. Further,

(k"la. (s)[k') =
8 —k + xE'

(A11)

rNR(, k) = 1+ f dk"dk'(k")G( )~~k')(k'~~V~~k) . (A12)

is the &ee Green's function. It is useful to rewrite
Eq. (A10) in terms of a complete Green's function, G(s),
such that Eq. (A10) becomes

Here, we see that I'NR(s, k) has poles at s = Ke. Now,
use the equation satisfied by (k[2/de),

(r~ —k')(kfda) = f dk'(k[V[k')(k']@a}, (A15)

to rewrite Eq. (A14) as

K2 —k
I'NR( k) = I+ ) . dk" (k"lye) (qe lk)

B B

(A16)

(k [«s)[k ) ~- ( "l@~)(@
8 —KB B

(AI3)

Now, consider the limit of p ~ 0, so that our problem
has only bound-state solutions generated by the linearly
rising potential. Then

Now, whenk =k „=8,weland

1' (,k..) =1 —& f dk (k ~d )"(d ~k}
B

= 1 — dk"b k —k"

(A17)

(A18)

r (~, k) = 1d- & f dk "dk'
B

(k"[@ ) (vP lk') (k'[ Vlk)
X

8 —K
(A14)

where the (k[@e) are bound-state wave functions. Using
Eqs. (A12) and (A13), we have

(AIO)

The corresponding relation in the relativistic problem
is I'(Po, k „) = 0. For the potential, V(r) = Kre
used in this work we do not encounter any bound-state
poles of I'(Po, lkl) in the region of interest, Po ( 1 GeV.
That feature accounts for the rather smooth behavior of
I'(P, lkl) as Po is varied that is seen in Figs. 5, 7, and
8.
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