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Baryon current matrix elements in a light-front framework
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Current matrix elements and observables for electro- and photo-excitation of baryons from the
nucleon are studied in a light-front framework. Relativistic effects are estimated by comparison to
a nonrelativistic model, where we use simple basis states to represent the baryon wave functions.
Sizeable relativistic effects are found for certain transitions, for example, to radial excitations such
as that conventionally used to describe the Roper resonance. A systematic study shows that the
violation of rotational covariance of the baryon transition matrix elements stemming from the use
of one-body currents is generally small.
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I. INTR, ODUCTION

Much of what we know about excited baryon states
has grown out of simple nonrelativistic quark models of
their structure. These models were originally proposed
to explain the systematics in the photocouplings of these
states, which are extracted by partial-wave analysis of
single-pion photoproduction experiments. This method
can only give us information about baryon states which
have already been produced in w% elastic scattering,
since a knowledge of the coupling constant for the out-
going ¹rchannel is necessary for the photocoupling ex-
traction. Photoproduction experiments have also tended
to have limited statistics relative to the m'N elastic scat-
tering experiments.

The traditional theoretical approach is to describe the
nucleon and its excitations using wave functions from
nonrelativistic potential models, which describe baryons
as being made up of "constituent" quarks moving in a
confining potential. This potential is provided by the
interquark "glue, " which is taken to be in its adiabatic
ground state. The quarks interact at short distance via
one-gluon exchange. The electromagnetic current is also
calculated using a simple nonrelativistic expansion of the
single-quark transition operator, i.e. , in the nonrelativis-
tic impulse approximation. Not suprisingly, the resulting
photocouplings and electroexcitation helicity amplitudes
are kame dependent, with the problem becoming more
severe when the photon transfers more momentum; cur-
rent continuity is also violated. This is partly due to the
nonrelativistic treatment, and partly due to the lack of
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two- and three-body currents which must be present in
this strongly-bound system.

Much more can be learned about these states from
exclusive electroproduction experiments. The photocou-
plings are the values of transition form factors at the
real-photon point Q = 0 (here Q2 = —q2, where q~ is
the four-momentum transferred from the electron); elec-
troproduction experiments measure the Q dependence
of these form factors, and so simultaneously probe the
spatial structure of the excited states and the initial nu-
cleons. Both photoproduction and electroproduction ex-
periments can be extended to examine final states other
than ¹r,in order to find "missing" states which are ex-
pected in symmetric quark models of baryons but which
do not couple strongly to the ¹rchannel [1,2]. Such
experiments are currently being carried out at lower en-
ergies at MIT/Bates and Mainz. Many experiments to
examine these processes up to higher energies and Q
values will take place at CEBAF.

The success of nonrelativistic quark models in describ-
ing the systematics of baryon photocouplings does not ex-
tend to the electroproduction amplitudes. The best mea-
sured of these amplitudes are those for elastic electron-
nucleon scattering, i.e. , the nucleon form factors. In a
simple nonrelativistic model, the charge radius of the
proton is too small by a factor of almost 2, and the form
factors fall off too rapidly at larger Q2 values. Similar
problems exist in the description of the Q dependence
of the transition form factors for the A2 (1232) reso-
nance, which are also quite well measured. Although
the experimental information about the transition form
factors for higher mass resonances is limited [3], there
are serious discrepancies between the predictions of the
nonrelativistic model and the extracted amplitudes here
also [4—6].

It is clear that, once the momentum transfer becomes
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greater than the mass of the constituent quarks, a rel-
ativistic treatment of the electromagnetic excitation is
necessary. It has also been suggested that the prob-
lem with the charge radius (i.e. , electromagnetic response
even at low momentum transfer) is due to the neglect of
relativistic effects [7]. There is the additional issue of en-
larging the limited (Gaussian) basis in which the wave
functions are expanded [8].

A popular approach to the problem of relativistic
quark dynamics in hadron is that of light-front dynamics.
Many authors have contributed to this subject. Early
work by Terent'ev and collaborators [9—ll] laid the foun-
dation with studies of the nucleon and its elastic elec-
tromagnetic form factors. Nucleon form factors have
been the subject of more recent light-&ont studies by
Weber [12], Dziembowski [13], Chung and Coester [14],
Schlumpf [15], and Aznaurian [16]. Bienkowska, Dziem-
bowksi, and Weber [17] have also applied a light-&ont
model to the study of the small electric quadrupole E2
multipole in A 2 (1232) electroproduction. The tran-
sition form factors for electroexcitation of A(1232) &om
the nucleon have been further studied in light-front mod-
els by Weber [18] and Aznaurian [16]; Aznaurian exam-
ines the effects of mixing spherically symmetric config-
urations into the nucleon and A(1232) wave functions.
Weber has also applied his model, which is based on light-
cone field theory, to the electroexcitation of the Sii(1535)
and Roper resonances [19].

The basis for the approach taken in this paper is that
of light-&ont Hamiltonian dynamics [20], in which the
constituents are treated as particles rather than fields. It
shares with light-&ont approaches based upon field the-
ories the property that certain combinations of boosts
and rotations are independent of interactions which gov-
ern the quark dynamics, thus making it possible to per-
form relatively simple calculations of matrix elements in
which composite baryons recoil with large momenta. In
addition, we make use of a complete orthonormal set of
basis states, composed of three constituent quarks, which
satisfy rotational covariance. Such a basis is the natural
starting point for dynamical models using the scheme
of Bakamjian and Thomas [21]. With basis coefficients
determined &om models like this [22], full current ma-
trix elements can be determined. In the meantime, it is
possible to examine individual matrix elements between
any two basis states, in a first approximation to any two
baryon states, as a preliminary test of relativistic effects.
For example, in addition to those transitions treated ear-
lier by other authors, we describe here a calculation of
the transition form factors for N2 (1710), A2 (1600),
N2 (1520), and N2 (1650). As with other light-&ont
approaches, the interaction dependence of certain rota-
tion generators imposes constraints upon current matri~
elements. Current continuity can be enforced, though, as
we shall see, not uniquely, and one can explicitly evalu-
ate the degree to which the currents have the required
rotational covariance properties [23].

A consistent relativistic dynamical treatment of con-
stituent quarks in baryons involves two main parts. First,
the three-body relativistic bound-state problem is solved

II. CONVENTIONS

Much of the light-front Hamiltonian notation is pre-
sented in Ref. [20]. We present here the salient features
needed to describe the calculation of current matrix ele-
ments.

A. Kinematics

A homogeneous Lorentz transformation A describes
the relation between four-vectors, viz. ,

~ +~a pu +~

We also make use of the corresponding SL(2, C) repre-
sentation, denoted by A. A rotationless boost is given
by

1,(A):—exp[&(A. cr) sinh ~A]]. (2)

Light-front kinematic variables are expressed in
terms of four-vectors which are decomposed as a~

(a, a~, a+), where a+:—a + n a and n a~ = 0.
We adopt here the usual convention of setting n parallel
to the z axis. It is also convenient to define a light-front
vector

for the wave functions of baryons with the assumption
of three interacting constituent quarks. Then these wave
functions are used to calculate the matrix elements of
one-, two- and three-body electromagnetic current oper-
ators. Results of model studies of the relativistic three-
nucleon problem are available [24], and the problem of
three constituent quarks in baryons is presently under
investigation [22] (see also the comments in the final sec-
tion). A useful first step is to consider transitions be-
tween substates in a general basis in which such wave
functions may be expanded, such as a harmonic-oscillator
basis. One can then examine successive approximations
to the baryon wave functions with these unmixed oscil-
lator basis states as a starting point.

Our goal is to examine the sensitivity of these pho-
toproduction and electroproduction amplitudes to rela-
tivistic effects. By studying transition matrix elements
between zeroeth-order basis states, we can identify the
magnitude of relativistic effects which may be expected
to persist in calculations in which the basis state coeK-
cients are determined by a dynamical model. Within this
framework, we will examine the nucleon form factors,
and the photoproduction and electroproduction ampli-

tudes for the positive-parity states E2 (1232), the Roper

resonance N (1440—), N 2 (1710),E— (1600), and sev-

eral negative-parity resonances including N 2 (1535) and

(1520). We will show that relativistic effects are in
general appreciable; the most striking relativistic effects
we have seen are in the electroproduction amplitudes for

radial excitations such as N2 (1440) and Az (1600).
We also provide a systematic study of rotational covari-
ance of the baryon transition matrix elements.
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a:—(a~, a+).

The SL(2, C) representation of a light-front boost is

Lf(A) = exp(2o lnA+) expl&(A + iA )(o —io )].
(4)

arbitrary frame by pl, p2, and p3. The total light-front
momentum is

Pl+P2+P3. (io)

Let kl, k2, and k3 be the ordinary three-momenta in a
frame where the total momentum is zero:

B. State vectors

Free-particle state vectors lpp) are labeled by the light-
&ont vector p and satisfy the mass-shell condition

) k, = o.
i=1

The two sets of momenta are related as follows:

= (m'+ p~)/p+.

They are normalized as follows:

(p'~'lpv) = (2~)'4,~(p' —p)
(2 ) ~ ' ~(pl p&)~(& & ).

(5) k,g = p, ~ —z,Pg, z; = p+/P+,
1 m, +k~

k,3 = — ~,M0
&i 0

where M0 is the invariant mass of the three-particle sys-
tern:

The state vectors introduced above employ light-front
spin. Under a light-front boost, p'" = A" p", the state
vectors undergo the unitary transformation

3

Mp ——) ~, (k;) = . P+P —P2~—

&(~)lp) ) = pi+
+ lp'v)p+

where

mi + ki~
3 2 2

i

- 1/2

with no accompanying Wigner rotation. These state vec-
tors are related to this with ordinary (or canonical) spin
via the relation

cu (k) = Qm2+ k2. (i4)

lp~) = ) . I ps ).Dp","(Kf(p)l,p+

where the Melosh rotation [25] is

(s)

The Jacobian of the transformation (pq, p2, p3) +

(P, k~, k2) is

o)(plip2&P3) p] p2P3 o
)15

o)(P k, k~) (u, (k, )ur, (k2)cu, (ks)P+

R f(p) = L '(p/m)L~(p/m).
III. CURRENT MATRIX ELEMENTS

C. Three-body kinematics

Consider three free particles with masses ml, m2, and
m3. We label their respective light-front momenta in an

I

To calculate the current matrix element between initial
and final baryon states, we first expand in sets of &ee-
particle states:

(M'1'; P'0'~1+(0) ~M1'; PP)= (233) f dP', dP', dP3 dP3 f dP3 dP3 ) (M 1'; P'P'~PP. ,P3VP3V3)

x (p&)((&p2)((2psPs II (o) lpiu~p2P2ps)((3) (P&p&P2p2ps)(('&1M' i pp).

Here and henceforth, an empty summation sign denotes
an implied sum over all repeated indices. We compute
only the contributions from one-body matrix elements:

(P1P]P2P'2P3) 3li (o) lpivip2P2psPS)

I

ten in terms of the Pauli and Dirac form factors for the
constituent quarks

(p'p'll+(O) lpga) = I"~9(Q') ~p p ~(ow) p M 2

= ) (p,'. ~,'ll+(o) lp;v, ;) ~„.„(2~)'~(p,' —p, )

The matrix elements for the struck quark are then writ-

Note that this implies that these current matrix elements
depend only on Q (g is taken to lie along the x axis)
and. not on the initial and Anal momentum of the struck
quark, as in the nonrelativistic model.

The baryon state vectors are in turn related to wave
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functions as follows:

(pi 0 1p2 p2p3 V 3 I Mj; Pp) = (2~)'~(pl+ P2+ P3 P)(2P12P2~312P12)(s12P122P3~sPs)
~(f i, f 2, P3)
0(P, ki, k2)

x (l~p~l& px lLpL) (LpL spa lg p) Yj,v, (~n)+j~vi (K1)@(kn~ ~&)

xDP~~p~ [R~f (ki)] DP~p~ [B~f(k2)]D„-,„,[B~f(k3)].

The quantum numbers of the state vectors correspond
to irreducible representations of the permutation group.
The spins (s12, s) can have the values (0, 2), (1, 2), and

(1, 2), corresponding to quark-spin wave functioiis with
mixed symmetry (y~ and y") and total symmetry (y ),
respectively [26]. The momenta

1
kp —— (ki —k2),

2
1

K),= (ki + k2 —2k3)
6

(20)

preserve the appropriate symmetries under various ex-
changes of ki, k2, and k3. Note that k~ and Kp as de-
fined above also correspond to the nonrelativistic three-
body Jacobi momenta. This is a definition of conve-
nience, rather than a nonrelativistic approximation. The
three momenta k, are defined with relativistic kinemat-
ics, and the use of k~ and Kp accounts for the fact that
only two of the k; are independent. It is also convenient
for keeping track of the exchange symmetry of the three
quarks. This definition allows use of the usual three-
quark harmonic-oscillator wave functions as a basis, but
there is nothing nonrelativistic about this choice.

The set of state vectors formed using Eq. (19) and
Gaussian functions of the momentum variables defined
in Eq. (20) is complete and orthonormal. Since they are
eigenfunctions of the overall spin, they satisfy the rele-
vant rotational covariance properties. Any solution to a
relativistic model with three constituent quarks can be
written as a linear combination of these states. Thus,
current matrix elements in any such model can be ex-
pressed in terms of the basis state coefBcients and the
matrix elements between basis state vectors. The use of
this orthonormal basis allows us to examine the transi-
tion form factors for many different baryons simultane-
ously. The wave functions for each state are expanded to
a consistent level of approximation, and so can be sys-

I

I

tematically improved.
Earlier papers often employed a three-quark spatial

wave function of the form

O(kp, Kp) = e

The use of Mo maintains manifest exchange symmetry of
the quark momenta, but it is more dificult to generalize
such a form to excited states. In ad&'ition, many earlier
papers used an interaction-dependent intrinsic baryon
spin. This is a natural outcome of approaches based
upon field theory, but it is not necessary in a model with
a fixed number of particles. It has been shown that it
is possible to construct a unitary transformation to ren-
der the intrinsic spin noninteracting for such models [27].
The Bakamjian-Thomas construction [20,21] is an exam-
ple of an approach employing a noninteracting intrinsic
spin. The combination of harmonic-oscillator basis vec-
tors and a noninteracting intrinsic spin permits us to cal-
culate matrix elements in an orthonormal basis.

IV. MULTIPOLE INVARIANTS

From the current operator I"(x), we define an auxiliary

operator I' (x), which has explicit components

41(x)= + II'(x) + ~I'(x)]
2

Ip(x)= I (x),

I,'(x) = I'(x). (22)

With these definitions, it was shown in Ref. [20] that
the current matrix element between states with canonical
spins and instant-form three-momenta could be written
as follows:

,(M'j '; P'p'~I„' (0) ~Mj; Pp),

M'
'(P') ).(2~2&l». )(-24nlsI .)(1~~31'l&V~)(i S &f ~il'V')

x Y *(Pp)[L (P'/M')]q [L (P'/M')]. -D&&[~R(L (P'/M'), Pp)](M'j'
~~

I~,~(q ) ~~ Mj),

where

Pp ——L. '(P'/M') P. (24)

The Wigner rotation is
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R,(L,(P'/M'), Pp)—:L, (P/M)L (P'/M')L (Pp/M).

(25)

II'II( —1)'+' = +1, (26)
I

All dynamical information is contained in the reduced
matrix element (M'g'

~~ I~;~(q ) ~~ Mj). The number of
independent matrix elements is limited by the number of
combinations of /, s, and t' which can couple together.
Parity considerations provide the additional restriction:

q„(M'P'p,'~ I"(0) 1 MPp) = 0 (27)

further restricts the number of independent matrix ele-
ments.

The matrix element of I+(0) between light-front state
vectors is

where II' and II are the intrinsic parities of the Anal and
initial states, respectively. Time reversal provides an-
other constraint for the case of elastic scattering. Finally,
the continuity equation:

(M'j'; P'y, '(I+(0)(Mj; Pp)

M'
p, + ™p+,). -(2~-'~l o) + (-,'~-', ~100) (-.'&.'~l~~ )(~V sr. I&V~)(j~&V~I~'V')

X&' *(Pp) [Lf '( '/M')]~-[Lf(P'/M')]„' D', [R.f(Pp)l(M'j' ll A.z(q-') ll M1 ). (28)

A knowledge of the reduced matrix elements (M'j'
~~ I~;~(q ) ~~

Mj) is sufffcient for computing any observable for
baryon electroexcitation. Furthermore, it is sufficient to compute the matrix elements of I+(0) in order to obtain
the reduced matrix elements. To see this, we show that the matrix elements of the remaining components of I~(0)
can be obtained by suitable transformations of I+ (0) matrix elements. For spacelike momentum transfer, it is always
possible to And a kame in which q+ = 0 and the spatial momentum transfer q~ lies along the x axis. Given matrix
elements (M'j'; P'p'~I+(0) ~Mj; Pp) in this frame, the matrix elements of I (0) can be obtained by a rotation of x
about the x axis:

(M'j';P'p, '~I (0)~Mj;Pp) = (M'j'; P'p, 'Ut[R (7r)]~I+(0)[U[R (~)]Mj; Pp),

and the matrix elements of I (0) can be obtained by a rotation of the matrix element Is = —(I+ —I ) by 2 .'

(M'j'; P'p'~I (0)~Mj; Pp) = (M'j'; P'p, 'Ut[R (vr/2)]~I (0)~U[R (x/2)]Mj; Pp),

The matrix element of I (0) is constrained by the continuity equation:

(M'j '; P'p' ~I (0)~Mj; Pp) = (M'j '; P'p'~I+(0) ~Mj; Pp),

where Q = QQ2. ments of I+ (0) and q~ are tending to zero, we can rewrite
Eq. (32)

A. The Q~ —+ 0 limit (M'j'; P'p'~I'(0) ~Mj; Pp)

Our calculation should go smoothly over to the real-
photon case when we calculate in the limit Q -+ 0. Note
that since q+ = 0, we have Q = —q&. This means that
the spatial momentum transfer q~ vanishes as Q -+ 0,
and as a consequence all of the light-front matrix ele-
ments (M'j', P'p'~I+(0)~Mj; Pp) vanish due to orthog-
onality between the initial and Anal states. In this limit,
the continuity equation, Eq. (31), becomes

(M'j', P'p, '~I (0)~Mj; Pp, )

{M'j';P'p, '/I+(0)/Mj; Pp), (32)
2qg

and q" = (q, 0, 0, —qP) = (q, q~ = O, q+ = 0), so
the spatial component of q" lies along the z axis. This
means that the matrix elements of I~(0) give the desired
transverse-photon amplitudes. Since both the matrix ele-

lim (M'j', P'p'~I+(0)~Mj; Pp). (33)
Q~ —+0 2 |9q~

In practice, rather than calculating a derivative, we use
the multipole amplitudes to compute helicity amplitudes,
and the latter have smooth behavior as Q2 ~ 0.

Note that if current continuity is imposed on our cal-
culation at the level of the light-&ont matrix elements,
i.e. , adherence to Eq. (31) is ensured by writing the I~(0)
matrix elements in terms of those of I+ (0) using Eq. (32),
then we will have a singularity at Q = —q& = 0. Imple-
menting Eq. (33) is technically difBcult when the I+(0)
matrix elements are evaluated approximately. We have
therefore chosen (e.g. , for the 1V to E transition, which
has three independent multipole amplitudes) to calculate
three of the four multipole invariants &om three of the
four I+(0) matrix elements, and. we impose continuity at
this level by writing the fourth invariant in terms of the
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other three.
In practice we have chosen to eliminate the light-

front matrix element corresponding to the largest change
~

p' —
p~ in magnetic quantum number for the light-front

state vectors in Eq. (28). The choice of which multi-
pole to constrain is then usually obvious; for example,
in the case of a transition between a nucleon and an ex-
cited state with J = 2, there are three multipoles:
the Coulomb multipole with (t, s, J')=(0,0,0), magnetic
(1,1,1), and electric multipoles (1,1,0). Clearly we cannot
eliminate the magnetic multipole, since continuity relates
the Coulomb and longitudinal matrix elements. Elimi-
nation of the Coulomb multipole in favor of the electric
multipole leads to unphysical results for Cz/2 at inter-
mediate values of Q2 (where q = 0). Therefore, in this
case we constrain the electric multipole by imposition of
current continuity.

Similarly, in the case of J =
2 states, we have

the magnetic (t, s, j)=(l,l, l), Coulomb (2,0,2), electric
(1,1,2), and second electric (3,1,2) multipoles. Once
again a physical solution cannot involve elimination of
the magnetic or Coulomb multipoles; we have chosen to
eliminate the electric multipole with highest l by imposi-
tion of continuity. Making the other choice changes our
results for the helicity amplitudes by an amount compa-
rable to or smaller than the rotational covariance condi-
tion described and evaluated in what follows. Similarly,
for J =

2 and 2 states we also eliminate the electric
multipole with highest l.

B. Further conditions on the matrix elements

While the matrix elements of I+(0) are sufficient to
determine the reduced matrix elements introduced in
Eq. (23), they are in fact not independent of each other.
Parity considerations imply that

(M'q'; P' —~'~I+(0) ~Mj; P —~)

) D~t„,(R'q)(M'g'; P'A'~I+(0)~Mj; PA)D~q„(R„)= 0,

IV' —
C I

& 2 (36)

The rotations above are

R,„=R ~(P, M)R„(7r/2), R',„=R ~(P', M)R„(~/2),
(37)

where R
&

is the Melosh rotation of Eq. (9) which, to-
gether with the rotation R„(n/2), transforms the state
vectors from light-front spin to helicity. For elastic scat-
tering, Eq. (36) is applicable only to targets with j & 1.
For elastic and inelastic scattering involving higher spins,
there is a separate, unique rotational covariance condi-
tion for each pair of helicities whose difference is two or
more. Thus, for a transition 2 ~ 2, there is a single con-
dition, while for 2 ~ 2, &here are three. Helicity pairs
which differ by an overall sign change do not generate
additional conditions.

The requirement of rotational covariance provides a
dynamical constraint which cannot be satisfied without
the introduction of interaction-dependent currents, i.e.,
two- and three-body current operators. Thus, while the
parity constraints in Eq. (34) can be satisfied in a calcu-
lation employing one-body current matrix elements, the
rotational covariance condition in Eq. (36) cannot. A
measure of the violation of the condition (and hence the
need for many-body current matrix elements) is then the
value of the left-hand side of Eq. (36) for each indepen-
dent pair of helicities for which the condition is nontriv-
ial. In an earlier work [23], it was shown that rotational
covariance tends to break down for constituent models of
mesons when Q/2M —1. For mesons with mass of a few
hundred MeV, this limits the applicability of such a cal-
culation to Q less than 1 or 2 GeV2. Since baryons are
hundreds of MeV heavier than light mesons, we would
expect the violation in this range of Q2 not to be so se-
vere, but it can be checked directly from the calculated
matrix elements, and is discussed further below.

= II'II( —1)~ ~( 1)" ~(M'j'—;P'y, '~I+(0)~Mj;Pp, ).
V. RESULTS

This cuts the number of independent matrix elements in
half. In addition, there can be constraints which come
from the requirement of rotational covariance of the cur-
rent operator. To derive the constraint conditions, we
note that, for matrix elements between states with canon-
ical spins, in a frame where the three-momenta P' and
P lie along the quantization (z) axis,

,(M'j';P' —p'~I" (0)~Mj;P —p), = 0, ~p' —p,
~

& l.
(35)

That is, helicity must be conserved. Since Eq. (35) must
be satisfied for all components of the current, it must also
be satisfied for matrix elements of I+(0). Transforming
to light-front momenta and spins, with momentum trans-
fer along the x axis, we obtain

The result of combining Eqs. (16)—(19) is a six-
dimensional integral over two relative three momenta.
These integrations are performed numerically, as the
angular integrations cannot be performed analytically.
The integration algorithm is the adaptive Monte Carlo
method vEGAs [28]. Typical statistical uncertainties are
on the order of a few percent for the largest matrix el-
ements. In what follows we have taken pointlike con-
stituent quarks, i.e. , with Fi~(Q ) = F2~(Q ) = 1, in
our evaluation of Eq. (18). The light-quark mass is
taken [7,29] to be m„=mg = 220 MeV.

A. Nucleon elastic form factors

Using the techniques outlined above we can form the
light-front current matrix elements for nucleon elastic
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scattering (M~ 2, P'p'~I+ (0) ~M~ 2, Pp), from Eq. (16).
We have evaluated Eq. (19) using a simple ground-state
harmonic oscillator basis state,

4O o(kp Kg): ] s exp ( [k + K„]/2nH~])
O,'Ho

(38)

where the oscillator size parameter aHo is taken [26,1] to
be 0.41 GeV. Equation (18) applies equally well to quark
spinor and nucleon spinor current matrix elements, so we
can extract Ei(Q ) and E2(Q2) for the nucleons directly
from the above light-&ont matrix elements.

Figure 1 compares the proton and neutron G~ and
GM calculated in this way, and by using the same wave
function and the usual nonrelativistic approach. Also
plotted in Fig. 1 is the modified-dipole fit to the data.
Our (Breit-frame) nonrelativistic calculations use a quark
mass of m„g——336 MeV (from a nonrelativistic fit to the
nucleon magnetic moments) and the same oscillator size
parameter as above, with the first order nonrelativistic
reduction of the electromagnetic interaction operator

EI"'= —) (
*

jp; A+A; p)+yo;. B), (39)

where m = m„=mg is the constituent quark mass,
e, , cr;/2, and p,; = ge;/2m are the charge, spin, and
magnetic moment of the quark i, and A; = A(r;).

Our choice of quark mass for the relativistic calcula-
tion, while motivated by previous work [7,29], gives a
reasonable fit to the nucleon magnetic moments. The
relativistic calculation yields a proton charge radius close
to that found from the slope near Qz=0 of the dipole fit
to the data. The nonrelativistic calculation falls ofF too
rapidly at larger Q [like exp( —q /6nH&)], which is not
the case for the relativistic calculation. These observa-
tions confirm the results of previous work [7,12—16].

B. Helieity amplitudes

For spins other than j' =
2 it is convenient to com-

pare the results of our calculation to helicity amplitudes.

These are defined in terms of the matrix elements found
in Eq. (23) from our multipole invariants as follows:

A, (, ——(N

As]z ——(N

N

4mo.2'
4mo,

w
47ro.

Kw

,(M~.j ', P'2 ~I+, (0)~M~-', P —z)„
,(M~.j', P's2 ~I+i, (0)~M~-,', P-', )„(40)

,(M~.j ', P'
2 ~

Io (0)
~
M~ 2, P 2 ) „

where ( is the sign of the ¹rdecay amplitude of the
resonance ¹,n = e /4rr 1/137, Kiv is the equivalent
real-photon c.m. frame three momentum Kiv = (W2
—M~)/2W, and k, is the virtual-photon c.m. frame
three momentum

(W2 —M~~ —Q2) z

c.m. 4R'2

In the above Q = g—q2 is the magnitude of the four-
momentum transfer, and W is the square root of the
invariant mass evaluated at resonance, where TV = MN-.
Note that the square root factors are introduced in order
that the Q ~ 0 limit of the electroproduction ampli-
tudes corresponds to the photocoupling amplitude; the
only restriction on these factors is that their limit when

Q = 0 is the same as the normalization factor for an
external real photon. The above choices, therefore, rep-
resent a convention. Other authors calculate the quantity
Si~2 ——~k, ~ ~Ciy2/Q. Note we use an operator I (0) for
the 0 component of the electromagnetic current which is
defined so that, (M~ 2, P'

2 ~
I& (0) ~

M~ 2
', P z ), = +1 at

Q2 = 0, where K is a proton.

Helicity amplitudes for D(1282) electroezcitation

Figure 2 shows our results for the Ai/2, A~g2, and
Cqg2 helicity amplitudes for electroexcitation of the

(1232) from nucleon targets, compared to the non-3+

relativistic results. In this case we have used the simple
single oscillator-basis state from Eq. (38) for both the ini-
tial and final momentum-space wave functions. The pa-
rameters o.Ho and m,„gare the same as above. Although
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FIG. 1. Proton and neutron elastic form
factors G~ and G~. The solid curves are
the relativistic calculation, the dotted lines
give the corresponding nonrelativistic result,
and the dashed lines are the modified-dipole
fit to the data.
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h, (1232) 2. Helicity amplitudes for electroezcitation of radially
excited states
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Given the controversy surrounding the nature of the
baryon states assigned to radial excitations of the nu-
cleon and 6(1232) in the nonrelativistic model [31], we
compare nonrelativistic and. relativistic calculations for
simple basis states which can be used to represent the
two Ptt resonances, N(1440) 2 and N(1710)2, as well

as the A(1600) z, which is assigned as a radial excita-
tion of A(1232) in the nonrelativistic model.

Figure 3 shows our results for the Roper resonance,
(1440), for both proton and neutron targets. Here

we have used the single oscillator-basis state Eq. (38)
for the initial momentum-space wave functions, and a
radially excited basis state

FIG. 2. &(1232) electroexcitation helicity amplitudes As/2
(solid curve), A~~/2 (dashed curve), and C~/~ (long dashes).
The dotted curves give the corresponding nonrelativistic
results for the Breit-frame transverse helicity amplitudes
(C~/ ——0 in the nonrelativistic model). Also plotted is

the value of the rotational covariance condition (dot-dashed
curve), which happens to nearly coincide with C"/

the relativistic calculation does not solve the problem of
the long-standing discrepancy between the measured and
predicted photocouplings, the behavior of the relativis-
tic calculation is closer to the faster-than-dipole fall ofF
found in the data. The data show no evidence for the
initial rapid rise with Q2 shown by the nonrelativistic
calculation, as pointed out by Foster and Hughes [30].

We have also plotted the numerical value of the ro-
tational covariance condition (multiplied by the normal-
ization factor (/4rrn/2K~ for ease of comparison to
the physical amplitudes), given by the left-hand side of
Eq. (36), for

~
p,

' —/r,
~

= 2. At lower values of Q the rota-
tional covariance condition expectation value is a small
fraction of the transverse helicity amplitudes, but ap-
proximately the same size as C&y2 and larger than the
value of E2/Ml implied by our At/2 and A3/2 Cal-
culations which attempt to predict the ratio using this
approach [17] will in general be limited by rotational co-
variance uncertainties of similar magnitude.

c,', (k„K.) = .. . (3 —[k,'+ K']/ H )
HO

p (—[k,'+ K']/2~Ho]) (42)

is used to represent the excited final state. The sign g of
the ¹rdecays amplitude used here is calculated in the

Po model of Ref. [2], using exactly the same wave func-
tions. As a consequence, the sign of our nonrelativistic
Roper resonance photocouplings calculation [6] disagrees
with the sign which appears in Ref. [1], where a reduced
matrix element was fit to the sign of the Roper resonance
photocouplings.

There are large relativistic eBects, with differences be-
tween the relativistic and nonrelativistic calculations of
factors of three or four. Interestingly, the transverse am-
plitudes also change sign at low Q values approaching
the photon point. The large amplitudes at moderate Q
predicted by the nonrelativistic model (which are disfa-
vored by analyses of the available single-pion electropro-
duction data [32]) appear to be an artifact of the nonrel-
ativistic approximation. This disagreement, and that of
the nonrelativistic photocouplings with those extracted
from the data for this state [6], have been taken as evi-
dence that the Roper resonance may not be a simple ra-
dial excitation of the quark degrees of freedom but may
contain excited glue [33,34]. The strong sensitivity to
relativistic eKects demonstrated here suggests that this
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FIG. 3. N(1440) electroexcitation helicity
amplitudes A~/ and A~/2 (dashed curves),
and C"/ and C~&2 (long-dashed curves). The
dotted curves give the corresponding non-
relativistic result for the Breit-frame trans-
verse helicity amplitudes, and the dot-dashed
curve gives the nonrelativistic C~/z (C~/z is
zero in the nonrelativistic model).
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discrepancy for the Roper resonance amphtudes has a
number of possible sources, including relativistic efFects.

We also And in the case of proton targets that there is a
sizea e 1)2 )izeable |" reaching a value of about 40 x j.o Ge—3 yl j2

at Q values between 0.25 and 0.50 GeV . Correspond-
ingly, there will be a sizeable longitudinal excitation am-
plitude. The nonrelativistic Cz&2 amplitudes shown here
and in all other figures are listed (up to the Nm sign () in
A pendix C; formulas for the nonrelativistic transverseppen ix
amplitudes (up to the sign g) are tabulated in Re . [ ].f 1

In the case of the N(1710)—,which is assigned a sec-
ond radially excited wave function in the nonrelativistic
model, our results using a simple wave function made up
of a linear combination of basis functions (see Refs. [26]
and [1])are shown in Fig. 4. Here we see an even greater
reduction in the size of the transverse amplitudes in the
relativistic calculation. The Ciy2 amplitudes at the p o-
ton point also are greatly reduced in size, although at
larger Q values they become comparable to the nonrel-
ativistic charge helicity amplitudes, with a similar modi-
fi ation of the Q dependence to that shown above in theca ion o

1Vcase of the Roper resonance and G&.
It is interesting to see whether this pattern is main-

tained in the case of the Z(1600) 2, which has a siinilar
relationship to A(1232) as the Roper resonance has to
the nucleon. This is a quark-spin — state [with spatial
wave function given by Eq. (42)] in the nonrelativistic
model, and so fundamentally divers from the P11 states
described above. However, examination of the nonrel-
ativistic calculation of the electroexcitation amplitudes
shows that in both cases it is the spin-IIIip part of the
O(p/m) electromagnetic Hamiltonian which is responsi-
ble for the transverse transition amplitudes.

This similarity persists in our relativistic calcul-
tion (Fig. 5), where we see photocouplings which have
changed sign in comparison to the nonrelativistic results,
along with substantially reduced transverse ampu. tudes
at intermediate Q2 values. The falloB' with Q at higher
Q values is quite gradual. As in the case of the A(1232),
the relativistic Ci/2 amplitudes (zero in the nonrelativis-
tic model) are small and comparable in size to the ro-
tational covariance condition, which is generally a small
fraction of the transverse amplitudes.

8. IIelicity a'mplitudes fox electvoexcitation of I urave-

bar yona

We have also calculated helicity amplitudes for the
final states N2 (1520) and N2 (1535), for both pro-
ton and neutron targets. Here we use the same initial-
state wave function as above and final-state wave func-
tions which are made up from the orbitally-excited
momentum-space wave functions

@Mp1+1

C,Mp
1,+1

'+ exp i —[k,'+ lt5/2~Ho])vr'/'o. HO o.HO

+ exp ( [k + 1~~1/2~Ho]) (43)
WHO c1HQ
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FIG. 5. A(1600) electroexcitation helicity amplitudes. Key
P jas in Fig. 2 (here also the nonrelativistic amplitudes Ci/2 are

zero .

(where k+ = k + ik„)and their counterparts reached
by angular momentum lowering. In this case configura-
tion mixing due to the hyperGne interaction is included
in the final-state wave functions. Since these states are

0

degenerate in mass before the application of spin-spin in-
teractions, they are substantially mixed by them; details
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FIG. 6. N(1535) electroexcitation helicity
amplitudes A~&/2 and A~&2 (dashed curves),
and C~/ and t P/2 (long-dashed curves).
The dotted and dot-dashed curves give the
corresponding nonrelativistic result for the
Breit-frame transverse and Cz/z helicity am-
plitudes, respectively.

0.0 0.5 1.0 1.5 2.0 2.5
Q (GeV )

0.0 0.5 1.0 1.5 2.0 2.5
Q (GeV )

are given in Appendix B.
The results for the helicity amplitudes for N2 (1535)

excitation &om both proton and neutron targets are
compared to the corresponding nonrelativistic results in
Fig. 6.

In contrast to the results shown above, in this case
there appears to be little sensitivity to relativistic effects
in the results for the transverse amplitudes A.z/2, this is
not the case for the Cqy2 amplitudes. For both targets
there are substantial Ct/2 amplitudes at small Q, and
the Q dependence is very difFerent in the relativistic
calculation (resembling the dipole behavior of the nucleon
form factors in Fig. 1).

Our results for the Aqy2 and Cqy2 helicity amplitudes

for N2 (1520) excitation &om both proton and neu-
tron targets are compared to the nonrelativistic results
in Fig. 7, and this comparison for A3y2 and the value of
the rotational covariance condition are shown in Fig. 8.

Here we see large relativistic effects in the Azj2 am-
plitudes. Prom Ref. [1] one can see that the At/2 ampli-
tudes for this state are proportional to 1 —k /nHo for a
proton target, and 1 —k2/(3n~Ho) for a neutron target,
where k = ~k~ is the virtual-photon three-momentum.
Here the constant term arises from the convection part
of II, , and the k~/nHzz term arises &om the quark-spin-
Bip part. Our relativistic treatment can be expected to
change the relationship between these two terms (as well
as adding other effects), and we see here that this has
caused a substantial cancellation. In this case the charge

amplitudes Czy2 are greater in magnitude than the trans-
verse amplitudes of both proton and neutron targets, and
they are the largest at small Q2.

From Fig. 8 we can see that the relativistic effects in
As/2 are smaller (in the nonrelativistic model there are
not two partially cancelling terms), except near Q2 = 0.
In the case of a proton target, the rotational covariance
condition expectation value is a substantial &action of
the A~a/2 amplitude at larger values of Q2, and is compa-

rable to the small At/2 at all Q values; the absolute size
of the rotational covariance condition can be taken to be
a measure of the absolute uncertainty introduced in our
results from considerations of rotational covariance.

As an example of a predominantly quark-spin-2 P-
wave excitation, Fig. 9 shows relativistic and nonrela-
tivistic amplitudes for electroexcitation of N(1650) 2

the partner of the predominantly quark-spin- 2 state

N(1535) 2 [see Eqs. (81), (82), and (84) in Appendix
8].

Here, in contrast to those of N(1535) 2, the trans-
verse helicity amplitudes show considerable sensitivity to
relativistic efFects near Q = 0 for proton targets, and
at all Q values for neutron targets, and as above the
charge helicity amplitudes have remarkably different Q
behavior. Amplitudes for the predominantly quark-spin-

2 state N(1700) 2 tend to be quite small if calculated
in the nonrelativistic model [1,6], and this is still true
in our relativistic calculation, with the exception of the
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the value of the rotational covariance condi-
tion (dot-dashed curve). The dotted curves
give the corresponding nonrelativistic results
for the Breit-frame transverse helicity ampli-
tudes.
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amplitude A3/2.
We complete our survey of relativistic effects for basis

functions representative of P-wave states by examining
the amplitudes for electroexcitation of A(1620) 2, once
again using a simple linear single-oscillator basis wave-
function [Eq. (B3) in Appendix B]. Figure 10 contrasts
our results with the nonrelativistic results of Ref. [26] for

A~~2 and for t &y2 from Appendix C. In both cases the
amplitudes near Q = 0 are considerably larger in the
relativistic calculation, with the transverse amplitude de-
creasing to below the nonrelativistic result above approx-
imately Q = 0.7 GeV due to quite difFerent (dipolelike)
behavior as a function of Q2. Note in the case of negative-
parity 4 states, the charge helicity amplitudes are not
zero if calculated nonrelativistically (see Appendix C).
We have found similar relativistic sensitivity in a calcu-
lation using a simple basis function which can be used to
represent the state A(1700) 2

VI. DISCUSSION AND SUMMARY

The results outlined above establish that there will be
considerable relativistic efFects at all values of Q in the
electroexcitation amplitudes of baryon resonances, even
at Q = 0. In the real-photon case, this can be under-
stood in terms of the sizeable photon energy required to
photoproduce these resonances from the nucleon, which
implies a photon three-momentum comparable to the

quark Fermi momentum in the nucleon. In particular,
our results show that the Q dependence of the nonrela;
tivistic amplitudes is generally modified into one resem-
bling a dipole falloff behavior, as has been shown in the
case of the nucleon form factors. This behavior is likely
to be partially modified by the inclusion in the wave func-
tions of mixings to higher shells, which are required by
any model of baryon structure which takes into account
the anharmonic nature of the con6ning potential between
quarks. However, we consider it remarkable that rel-
ativistic effects account for a large part of discrepancy
between the nonrelativistic model's predictions and the
physical situation.

We wish to stress that the comparisons we have made
here, using simple basis functions representing the indi-
vidual states, are intended to be representative of the de-
gree of sensitivity to relativistic effects for states of their
quantum numbers. In order to make reliable predictions
for these amplitudes we should use solutions of the rel-
ativistic three-body problem; at the very least, con6gu-
ration mixing of the kind present in the nonrelativistic
model must be included in both the nucleon and all of
the Anal states, as it has been shown to have substantial
effects on the predicted amplitudes [1,4,6]. It is for this
reason that we have not compared our results directly to
the limited available data [3].

We also note that the Hamiltonian used in Ref. [29]
is in fact a three-body mass operator, and so its eigen-
functions can be used directly and consistently in a cal-
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culation of the kind described in this paper. We have
developed better techniques for performing the numeri-
cal integrals required to obtain the light-front matrix el-
ements between configuration-mixed states, whose more
complicated integrand structures make standard Monte
Carlo methods ineKcient.

Nevertheless, it is obvious from the results presented
above for radially excited basis states that electroexcita-
tion amplitudes of the Pii Roper resonance N(1440) 2

and N(1710) 2 states, as well as those of the A(1600) z
are substantially modified in a relativistic calculation.
Given the controversial nature of these states [33,34], we
consider this an important result. Our results show that
relativistic effects tend to reduce the predicted size of the
amplitudes for such states at intermediate and high Q
values, in keeping with the limited experimental obser-
vations for the best known of these states, N(1440) 2

Within the context of a model such as this one, full
gauge invariance cannot be achieved. Reasonable results
can be obtained by constraining one of the higher multi-
poles in terms of lower multipoles. This can be thought
of as a variant of the Siegert hypothesis [35], which has
been used successfully in the study of electromagnetic
properties of nuclei for many years.

We have also found that the rotational covariance vio-
lation is a small fraction of the larger amplitudes for the
Q values considered here. In cases where the dynamics
causes an amplitude to be intrinsically small, the uncer-
tainty in our results for these amplitudes becomes larger.
In particular, the calculated ratios E2/Ml and C2/Ml
for the electroexcitation of the E(1232) 2 in the absence
of configuration mixing of D-wave components into the
initial and final-state wave functions [17] are probably
100%%uq uncertain, and are thus consistent with zero at all
Q [36]. This may not be the case in the presence of
such configuration mixing, and we intend to investigate
this possibility, since A(1232) electroproduction is the
subject of current experiments at MIT/Bates and sev-
eral proposed experiments at CEBAF [37].

AP PENDIX A: CONVENTIONS FOR BARYON
ELECTROPRODUCTION AMPLITUDES

In the following we have collected the information
required to translate between standard conventions for
(pion) electroproduction amplitudes and our calculated
helicity amplitudes.

1. Pion electroproduction helicity elements

In the following we relate the helicity elements A~~,
B~~, and C~~ conventionally used to describe pion elec-
troproduction to the helicity amplitudes defined above in
Eq. (40). The A~~(B~~) elements are present when a res-
onance is excited by photons with their spin projections
antiparallel (parallel) to the target-nucleon spin projec-
tion; the momentum of the incoming photon is parallel
to the direction of the initial nucleon spin. The t ~~ ele-
ments are present when a longitudinal photon excites the
resonance (there is no change in the target nucleon spin
projection). These can be written in terms of the helicity
amplitudes as

A(g = gC ~fA, /2,
I N

(Al)

where C N is an isospin Clebsch-Gordan coeKcient for
N* —+ Nvr, J is the total angular momentum of the reso-
nance N', and ~k, ]

is the c.m. frame three-momentum
of the photon. The l in the subscripts above is the angu-
lar momentum of the relative wave function of the final-
state N and 7t . Note that the J of the resonance must
be J = l + 2, so for a given J there are two possible
l values. However only one of these values is consistent
with parity conservation. For example for the b, (1232)
with J =

2 we have l = 1 or l = 2, but a nucleon



SIMON CAPSTICK AND B. D. KEISTER

(positive intrinsic parity) and a pion (negative intrinsic
parity) in an 1 = 2 relative wave function have negative
overall parity, so this value is not allowed. The sign in
the subscripts above is positive if J = l + 2 and negative
if J = l —2. So for the A(1232) only Ai+, Bi+, and Ci+
are possible.

The Breit-Wigner factor f for the decay ¹ +N-m at
resonance is

3. Invariant multipoles for A(1232)
electroproduction

For the special case of electroproduction of a J
particle such as the 42 (1232), we can define invariant
multipoles GM, G&, and G&. The relation between these
and the helicity amplitudes de6ned above is

1 Kg MN I'N
(2J+ l)ir l(q ), l

W I't2, (A2)
GM —— Fv—3A~(2 + Ai12

where (q ), is the pion c.m. frame three-momentum

[W2 —(m + Miv)2][W —(zn —M~) ]
V~ c.m. =

4W2
(A3)

1 N NG~ ———E A3]2 —A~)2
3

Gc ——2 Fv 2S,]2,

(A8)

With these conventions the Np partial width for a reso-
nance to decay to nucleon N is

k~ m 2MN

( )
IAiy. l

+ IA3/21

where

1 M~ Q
4~cd W (M~ + W)2

W' + (A9)

2. Electric, magnetic, and scalar multipoles

S)+ ——

In the following we relate the magnetic, electric, and
scalar (longitudinal) multipoles Miy, Ety, and Si~ to
the helicity elements described above; these can then be
related to the helicity amplitudes calculated here by use
of Eq. (Al). A transition is defined to be magnetic with
multipoles M~g if the total angular momentum absorbed
from the photon is l, and electric with multipoles E~~ if
the total angular momentum absorbed from the photon is
l + 1. The corresponding scalar (longitudinal) multipole
is S~~. If J = l + 2 the scattering can be described
in terms of the magnetic, electric, and scalar multipole
amplitudes M~+, EI+, and S~+, which can be written in
terms of A~+, B~+, and C~+ as

1
M&+ — [2AE+ —(l + 2)Bi+],21+1

1
E(+ —— [2Ai+ + 1Bi+] )2 1+1 (A5)

1 lk.
/t+ I Q

Note that Eq. (A9) implies that at the photoproduction
point (Q = 0, where lk, l

= K~) we have

F(0) = 1 2MN3

4 W2 —M„' (Alo)

APPENDIX 8: %'AVE FUNCTIONS FOR THE
5'-VIVE BARVONS

We construct N and 4 states which have the correct
permutational symmetry (mixed-A type for N states, and
symmetric for 4 states) in their flavor-spin-space wave
functions. A common totally antisymmetric color wave
function is assumed, as is an implicit Clebsch-Gordan
sum coupling L and S. The spin-quartet N states
(notation is lF + I J ), with F the flavor N or 4,
and o the spatial permutational symmetry) lN PM — ),
lN PM& ), and lN PM 2 ) are made up of Clebsch-
Gordan linear combinations of

If J = l —
2 the scattering is described by M~, E~, and

Sl wth
' S A«"&3(2~@iM . (Bl)

1
Mi = —[2Ai + (l —1)Bi ],2l

1
E, = —

[
—2A, +(1+1)B, ],2l

S) ———— C)

The inverse transformation is

Ag+ ——
2 [LMi+ + (I + 2)Ei+],

B)+ = —Mz+ + E
Ai =

2 [(1+1)Mi —(I —1)Ei ],
B) ——M + E)

(A6)

(A7)

The spin-doublet N states lN PM 2 ) and lN PM 2 )
are made from

p p A A
Xl/2, 2 1,M Xl/2, 2 1,M) (B2)

and the spin-doublet 4 states lA P~2 ) and lA P~2 )
are made from

p p A
Xl/2, 1,M + Xl/2 I 1,M)

Where mixing is allowed, the physical states do not have
definite quark spin S. We have used [26]
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~N(1520) 2 ) m

[N(1700)-,' ) ~

[N(1535)2 ) w 0.85[N PM2 ) +0.53]N PM2 ),

~N(1650) 2 ) m —0.53]N PM z ) + 0.85]N PM z ),
(B4)

0.99]N PM z ) —0.11]N PM z ),
0.11]N PM 2 ) + 0.99]N PM 2 ).

(B5)

C(p'")(N PM- ) = Ao i (1, —1),
2km

M z
— 0 (C3)

formed (taken here to be the Breit frame). For the states
N(1535) 2 and N(1650) 2 we give the amplitudes for

their two components W PM 2 and N PM2

APPENDIX C: NONRELATIVISTIC Ci+j~
AMPI ITUDES FOR ELECTROEXCITATION OF

RESONANCES C"'" (N'P -'
) = 4 i '

(—l, l),M2 — 0 (C4)

and similarly for the states N(1520) 2 and N(1700) 2

In the figures above we have plotted predictions of the
Isgur-Karl-Koniuk (nonrelativistic) model for the charge
helicity amplitudes C»~ and C&y2 To the best of our

knowledge these are not published elsewhere, so we list
them below.

For N 2 (1440),

For b, z (1620) „.~2km,
(C5)

where

- ~31 'm(p~) ~ v3k mq

( ) (Cl) and for 4 2 (1700)

N .2kmq
(C6)

/(6n )

kp 2m~
(C2) For N2 (1?10),

and (ko, k), with k = [k], is the (virtual) photon four-
momentum in the frame in which the calculation is per-

(C7)
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