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Asymmetric flux tube
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We consider a relativistic Bux tube with arbitrary mass spinless quarks at the ends. In the
unequal-mass case the additional constraint that the center of momentum is 6xed must be included.
An analytic classical circular solution is found and is used as a correspondence limit. The quantized
equations for mesons at rest are constructed and solved. A comparison is made with all available
spin-averaged heavy-light and heavy-heavy states. We find evidence for running of the heavy quark
masses as well as the short range coupling constant.

PACS number(s): 12.39.—x

I. INTRODUCTION

The relativistic flux tube (RFT) model shows promise
to provide a realistic description of all meson states. The
RFT model is in essence a description of dynamical con-
finement [1—4]. For slowly moving quarks rigorous QCD
relativistic corrections [5—7] clearly demonstrate that the
scalar confinement potential picture is incorrect [2, 7].
On the other hand, the RFT dynamics are consistent
with both spin-dependent [3, 8, 9] and spin-independent
[2, 3] QCD expectations. The basic assumption of the
RFT model is that the QCD dynamical ground state for
large quark separation consists of a rigid straight tubelike
color Aux configuration connecting the quarks. In this
idealized limit the quarks and tube are shown in Fig. 1.
Although based on a simple physical picture this model
follows directly from the QCD Lagrangian with natural
approximations to the Wilson action [10].

The heavy-light mesons are important for many rea-
sons. For our present purposes, these mesons exhibit
relativistic dynamics while still maintaining some sim-
plifying aspects. The heavy quark mass suppresses most
spin dependence so that a spinless quark analysis has con-
siderable validity. The one heavy quark also means the
reduced Salpeter equation [11] will be appropriate and
that a relative time degree of freedom is unimportant.

In the present work we have focused on the following
points.

(1) The extension to unequal quark masses requires the
solution of several technical problems. These problems
have their origin in locating the center of momentum and
ensuring that the total momentum of the meson vanishes.

(2) The classical solution for rotational motion with
unequal quark masses provides a useful check on our
quantum solution. We have obtained an analytic solu-
tion which satisfies the requirement that the total meson
momentum is zero.

(3) Both spinless and fermionic quark analyses share a
common orbital angular momentum analysis. The tech-
niques developed here will therefore be of direct utility
in the more realistic calculation.

(4) Because of the suppressed spin dependence due to
the small color magnetic moment of the heavy quark, a
spin-averaged analysis is realistic.

(5) We reconsider the question of the symmetrization
of operators in the quantized RFT equations. Algorithms
are developed for finding the symmetrical perpendicular
velocity operators.

(6) We have considered all the spin-averaged heavy-
heavy and heavy-light states and found the expected
runnning of the heavy quark masses, as well as the short-
range interaction, follows in a natural way.

As established previously [1—4] the classical angular
momentum of two quarks plus two tube segments joined
at the c.m. is

QJ &i ri + 2ar,'f(vi, ) + (1 i 2)

where

arcsin v~
4vJ vJ )

Vg
—2 2

Vg

(2)

(4)

C.111.

FIG. 1. Portion of a meson consisting of a segment of Aux
tube from the center of momentum to the ith quark.

The classical Hamiltonian for this system is

arcsin v~,H = W„,p~, + ar, ' + (1 ~ 2) .
VZ1

For unequal-mass quarks additional conditions [3] must
be imposed so that the meson c.m. is at rest. These
conditions are
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PTI PF2 —PT (6)

T]
P~ = 0 = W~, p~, v~, + a (1 —p~') —(1 + 2) .

(7)

Finally, the straight Hux tube condition is

VgI

T$

Vg2
(8)

For equal-mass quarks the Pg condition (7) is satisfied
since v~, ——v~, . For heavy-light mesons where m2 && mz
and also m2 &) GTq, the P~ condition can be satisfied
with v~, 0 (i.e. , the c.m. point is coincident with
the heavy quark). For all other (asymmetrical) mesons
all of the above relations (1)—(8) must be used in the
construction of the solution. This aspect is the central
problem addressed here.

In Sec. II we consider the purely rotational classical so-
lutions to the RFT equations. These results will provide
a useful correspondence check on the quantum solution.
Section III formulates the quantized RFT equations and
their solutions are discussed in Sec. IV. In Sec. V we test
the model by comparing it to all observed spin-averaged
masses of mesons containing one or two heavy quarks.
We observe that better global agreement with the data is
obtained if the heavy quark masses run with @CD scale.
Our conclusions are summarized in Sec. VI.

since p„= 0. Another way to obtain the same result is
to consider the force on the ith quark in two reference
systems. In its rest frame the quark experiences a force
—ari due to the tube. In the c.m. rest frame, where
the quark is moving with the velocity v~ perpendicular
to the tube, the transverse force is a/p~, and for cir-
cular orbits this must equal the mass mip~, . times the
centripetal acceleration or

2
Vg

(m, pg, )
Ti

(12)

GTi
QJ 1 +

mi

The total interquark distance is evidently

(14)

T =Ty+T2

and using (8) and (13), we obtain

This, along with the straight string condition (8), assures
that the meson is at rest [i.e. , the total linear momentum
(ll) vanishes]. From (12) we also have

GTi
V~.

mi + aTi

II. CLASSICAL (VRAST) SOLUTION

m2+ GT
T]

mg + m2 + 2aT
(16)

J= mip~, v~, ri + 2ari f{v~,) + {1~ 2),
'+(1~2) .0 = mph'~, + GTg

The classical solution of the RFT equations having
minimum energy for a given angular momentum (the
yrast solution) corresponds to circular motion, i.e. , p, =
0. In this case the RFT equations {1)and (5) become

m~+ aTT2-
my + m2 + 2GT

When the above expressions are substituted back into
(13) and (14), we find

The condition (7) that the c.m. momentum vanishes be-
comes

Pg = 0 = mip~, v~, + a (1 —p~ ) —(1 m 2) .
V~1

2 ar(m2 + ar)
Vg (mi+ ar)(mi+ m2+ ar)

2 ar(mi + ar)
vg

(m2 + ar) (mi + m2 + ar)

(18)

Along with the straight tube condition (8), the above
three relations can be used to find the yrast solution M =
H(J).

A shortcut to the yrast solution directly uses the circu-
lar dynamical condition. In the Lagrangian approach [1,
12] the radial derivative of the Lagrangian must vanish

I

(m, + ar) (mi + m2 + ar)
YJ, m, (m, + m, + 2ar) (20)

The quantities Ti, v~, , and p~, have now been ex-
pressed in terms of the interquark distance T. The cir-
cular RFT equations can similarly be expressed in terms
of r Equation (9.) for the meson angular momentum
becomes

ar 3 3
hami(m2+ ar) & + gm2(mi + ar) &

(mi + m2 + 2ar) ~

(mi + m2 + ar) (mi + ar) (m2 + ar)+ arcsin v~, + arcsin v~,
mi + m2 + 2ar (21)

and the state mass M from (10) is
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hami(mi + ar) + gm2(m2 + ar)
mg + m2+ 2ar

Jar(m, + m, + ar) (m, + ar)(m, + ar)
+ arcsin v~, + arcsin v~, ]

mg + m2+ 2ar
(22)

In (21) and (22), v&, and v~, are functions of r given by
(18) and (19). The above circular solutions reduce to the
equal-mass case considered earlier [12].

Now we can easily establish three limiting cases.

A. Heavy-heavy case (mq, mq » ar)

vrarM=m2+
2

Eliminating r the shifted Regge slope is

(M —m2) 2 era
(28)

Equations (21) and (22) can be expanded in the small
quantities —"and —"with the resultsm1 m2

C. Light-light case (mr ——ms ——0)

( m, m, a )J r
(m, +m, )

3M=m, +m, + -ar .
2

Prom the above the shifted Regge slope is

2

dJ ( mim2 l' J
d(M ml m2) hami + m2 ) 3a3

(23)

(24) ~ar 2

8
vl ar

2

giving a Regge slope (Nambu) of

(29)

For zero-mass quarks the tube carries all the rotational
momentum and energy of the meson. In this limit we
obtain

B. Heavy-light case (mi = 0, ms » ar )

Again, from (21) and (22) in this limit we find

vrar 2

4 (26)

2&a

The various limiting situations are illustrated in Figs. 2
and 3. We choose m2 ——1.5 GeV, a = (2n) GeV
and plot the shifted Regge slope as a function of J. In
Fig. 2 we take m~ ——0. The solid curve shows a shifted
slope of two units at small J as expected from the heavy-
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1.8
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solution
quantum
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FIG. 2. Yrast solution (solid curve) compared to the
quantum solution (dashed curve) for the displaced Regge
slope with mq ——0 and mq ——1.5 GeV. We compare our solu-
tion for the same value of J (yrast) and I (quantum). In both
cases the transition from heavy-light to light-light dynamics
is clearly seen by the slope dropping from 2 to 1.

FIG. 3. Yrast solution (solid curve) compared to the
quantum solution (dashed curve) for the displaced Regge
slope with m~ ——0.5 GeV and m2 ——1.5 GeV. In this case
we observe the transition from heavy-heavy dynamics at low
l to light-light dynamics at large I,.
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light limit of (28). At large j where m2 ( ar the slope
approaches the Nambu limit (31). For mq ——0.5 GeV the
solid curve of Fig. 3 illustrates the yrast-shifted Regge
slope. At small J the heavy-heavy limit (25) is obtained,
and for large J again the Nambu limit of unit slope is
obtained. In both Figs. 2 and 3 the dashed curve is the
quantum solution which will be discussed in Sec. IV. It
should be noted that in each case the Regge behavior is
most simply expressed in terms of the excitation energy
M —ml —m2.

after quantization become

Ql(l + 1) 1

r 2
=-(W. , ~ )+ (,f(. )f, (43)

1 a arcsln vi0 =my+ —(W„,p~} + — r,
2 2 Vi

(44)

B. General case

III. QUANTIZATION
OF THE CLASSICAL EQUATIONS

A. Equal-mass and the heavy-light case

The classical equations (1)—(8) for the equal-mass case
reduce to

In the general case with mq g m2 things get more
complicated, but proceed along similar lines. In addi-
tion to the equation defining the angular momentum, we
also require that total momentum of the systeIn must be
zero, which is trivially satisfied in the two special cases
considered above.

We begin by using the straight tube condition (8) and
the quark separation variable (15) which give

J—= W„p~v~ + ar f (v~),
al cslIl ViH = 2W„pi+ ar

Vi

with

(32)

(33)

Vi,
P j

Vi1 + Viz
i =1,2- (45)

The classical RFT equations (1)—(7) can then be ex-
pressed in terms of vi's and r:

W, = gp„'+ m'

and

1 f arcsin v~
vg

4vg ( vg

Since, in the limit of large quark masses [1,3],

(34)

(35)

7 VJI + Vi2 VJI + Vi

+ ~ .If(. , )+f(,)],
VZ) + VZ2

Pi ——0 = W„,pi, vi, —F„,pi, vi,
(1—ar

v~, +v~

(46)

Vii + )mir
(36)

we have a good reason to believe that vi, and vi, should
be Hermitian operators. Also, if we could invert the clas-
sical angular momentum equation for the equal-mass case
(32), we would have

H = W„,pi, + lV„,pi,
1+or (arcsinv~, + arcsinv~, ) .

ViI + Vi2

Here we have

(48)

v~ ——vg (r, p„,J), (37)
2+ m', (49)

which means that [v~, r] g 0 when v~ and r are consid-
ered as quantum-mechanical operators. Therefore, the
classical equations should be symmetrized and quantized
as [1]

J -+ Ql (l + 1), 2 1 0
P" 0 "' (38)

= (W„p~v~) + a(r, f(v~)),Ql(l + 1)
(39)

J—= W„p~ v~ + 2ar f (v~),
arcsin viH = m2 + TV„Pi + ar

Vi

(41)

(42)

H = {W,p~{+ — r, ), {40)
2 vi

where (A, B) = AB+BA Similarly, the he.avy-light case
classical equations with m2 as the heavy quark mass,

because of radial momentum conservation, and the func-
tion f (v~) is defined as

1 ( . v~1 f(v~)f (v~) = —
!

arcsin v~—
2v~2

{50)

If we could invert Eqs. (46) and (47) for v&, and v~, ,
they would be in general difFerent functions of r, p„, and
J, so that corresponding quantum-mechanical operators
will not commute. Therefore, our quantized equations
will contain products of three noncommuting factors, and
we have to find the way to symmetrize them. In doing
that, we have to keep in mind that our procedure must
reduce to Eqs. (39) and {40) and (43) and (44) in the
equal-mass and the heavy-light limits, respectively. The
easiest way to ensure this is to symmetrize first between
noncommuting factors containing vi, and vi, to obtain
the symmetric operators O(v~, , v~, ), and then to sym-
metrize between these operators and radial operators. If
we do that, our quantized equations (46)—(48) become
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Ql(l+1) 1 1 2 1 1 1
p~, v~2, W„, , —„p~,v~, ,

1 1 1
+ —v» v, — f(vv, ) + f(v»), , v)2

)
2 V~, +Vg,

(51)

1 1 Q 1 1 1
Pg = 0 = —(W„, , pg, vg, }——(W„„pg,vg, }—— (52)

1 1 Q 1 1II = —(W». » 'y~ }+ —(W». » f~ }+ — T»—,al'csiil v~ + alcsin v~
2 ' ' 2 ' ' 2 2 v~, +v~, ' '

J

(53)

IV. NUMERICAL SOLUTION OF THE QUANTIZED EQUATIONS

The RFT Hamiltonian (53) contains two unknown operators v~, and v~, , which are in turn defined by Eqs. (51)
and (52). If we introduce a complete set of basis states feL(r)} and then truncate at a finite number % [13],

~(r) = ) . (r)
k=1

(54)

these equations become two coupled transcendental N x N matrix equations involving unknown matrices of v~, and
v~, , and known r, —,and W„, matrices [4]. Our numerical solution for v~, and v~, is based on a simple z = F(z)
iteration algorithm applied to transcendental matrix equations.

Equation (51) can be written in the form

W„,
1

V~I + V~2

gl(l + 1)
g, v~ ——4 2 1 2 1—W„,p~, v~, — p~, v~,

P VjI + VJ-2 VJ 1 + V&2

2 1 1
f(vi, ) + f(vi, ),v~ + v~ V~» + V~2

(55)

If we multiply this equation by v& p& (v~, + v~, )W, from the left, we get

vg, = v~ pq (vg, + vg, )W„4 —F„,pg, vq
p v~ + v~

2 1
p~, v~, TV„,

v~ + v~

'YZ, VZ, » ot "» f(v& ) + f(v-L )»
VL» + VL2 V~~ +V~ )

(56)

We can do the same thing with Eq. (52) and obtain

—pz, v~, W~, + (W~, » pg, vz, }

1 1 1+a r)—
2 V L, + V L, 'Y L,

(57)

For a successful iterative solution we must start with a
good initial guess for matrices of v~, and v~, . %e then
have initial guesses for matrices of all functions of these
two operators and we can evaluate the right-hand sides
of (56) and (57) as the new guesses for the v~, matrix
[let us call them v~, (J) and v~, (P~)]. Since we want
to have both (51) and (52) satisfied simultaneously, we
mix these two guesses with weights depending on the

extent to which Eqs. (51) and (52) are satisfied, with
the initial guesses for v~, and v~, . For example, if Eq.
(51) is satisfied twice as well as Eq. (52), then for the
new guess for v~, we take zv~, (J) + sv~, (P~). This
ensures that both equations de6ning v~, and v~, will
be simultaneously satisfied. Finally, since we are solving
for matrices here, it is clear that our iteration scheme
will be only marginally stable, and so we employ a relax-
ation procedure. For the Anal new guess for v~, we take
(1—il) v~, (old)+@V~, (new), where rl is the small number
(usually rI & O.l, and it becomes smaller if we increase
number K of the basis states that we are working with).
After we have found the new guess for v~, , we do the
same thing for v~, , and keep iterating until we achieve
the required precision.

Using the same procedure, we were able to solve for v~
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the equal-mass and the heavy-light case equations (39)
and (43) even for as many as 50 basis states without too
much effort and to achieve the very high accuracy of eight
decimal places. The initial guess in these two cases is ob-
tained by finding the v~ from the nonsymmetrized angu-
lar momentum equations [4], and then symmetrizing it by
taking the average of the nonsymmetric v~ matrix and
its transpose. The eigenvalues obtained from the sym-
metrized Hamiltonians (40) and (44) are usually lower by
at most a few MeV's than the eigenvalues obtained from
the nonsymmetrized equations. In Fig. 4 we compare
the nonsymmetrized solution [4] for mq ——m2 ——0 (solid.
curve) with the symmetrized solution shown at integral
angular momentum quantum number t. The difference
between symmetrized and unsymmetrized solutions is at
most a couple of MeV's over a wide range of rotational
and radial excited states. With larger quark masses this
difference decreases.

In the general case we have two unknown matrices and
the equations are much more complicated. In addition,
a good initial guess for v~, and v~, is not easy to find.
Usually, for the initial guess for v~, in the case of l ) 0
(the 1 = 0 solution is trivial since v~, ——u~, ——0) we use a
symmetrized equal-mass guess for m = m; and the same
angular momentum quantum number l. Despite these
complications, for N & 15 basis states we have found that
our procedure converges very quickly no matter how large
the difference between m2 and mq is (i.e. , no matter how
bad the initial guess is). In comparing with experimental
data, we require only the lowest one or two eigenvalues,
and these are determined within 10 MeV if we use five
and within 1 MeV if we use ten basis states. Fits with
N = 10 are reliable and completely adequate for our

20

purposes.
In Figs. 2 and 3 we compare the ground-state quantum

solution (for continuous values of t [4]) with the classical
yrast solution. We show in these figures the predicted
shifted Regge slope. The correspondence limit at large
angular momentum is well satisfied.

V. COMPARISON WITH EXPERIMENT

As mentioned earlier, mesons containing at least one
heavy quark will have relatively small dependences on
quark spins. It seems realistic then to compare our pre-
dictions, which do not include quark spin, directly to
spin-averaged energy levels. There is, however, an addi-
tional feature which must be incorporated in the model
to have a phenomenologically successful result.

A. Short-range interaction

The flux tube configuration has been assumed to dom-
inate when the quarks are widely separated. At short
distance there must be an attractive singular interaction
due to single-gluon exchange. We parametrize the short
and intermediate distance interactions by the usual po-
tential

(58)

where at short distances e = 3o, In the static limit
the total potential then reduces to the well-known "Cor-
nell potential" [14],a superposition of linear con6nement
V, „r = ar and the Coulombic term (58). From general
considerations we expect K to "run" such that it will in-
crease slowly as the quarks are separated (and hence the
@CD scale decreases). In our comparison with the data
we will allow different z's for cc, bb, and the heavy-light
mesons.

B. Constant term

15

10

5

A constant term is also added, yielding our model
Hamiltonian

K
H = HRFT+C ——

r
with HRFT given by (53). The presence of the constant
term does not change the model predictions but it does
determine how the heavy quark masses change with the
@CD scale.

0
0 5 10 15 20 25 30

M

27ta

C. Data and comparison with theory

FIG. 4. Comparison of the symmetrized and nonsym-
metrized equations for quark masses m& ——m2 ——0 with
X = 50 basis states. The nonsymmetrized equations (32)
and (33) discussed in [4] are found to agree with the fully
symmetrized solutions of (39) and (40) to better than 5 MeV.

We have used the quark model spectroscopic assign-
ments and level masses of the Particle Data Group [15] to
extract spin-averaged states for heavy-light mesons (Ta-
ble I) and heavy-heavy mesons below the flavor threshold
(Table II).
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TABLE I. Heavy-light spin-averaged states. Spin-averaged masses are calculated in the usual
way, by taking — of the triplet and — of the singlet mass.

State Spectroscopic label
JP 2S+1L J

Spin-averaged
mass (MeV)

Theory
(MeV)

Error
(MeV)

cu, cd quarks
D (1867)
D" (2009)

Di (2424)
cs quarks
D, (1969)
D,* (2110)

D., (2537)
bu, bd quarks
B (5279)
B* (5325)
bs quarks
B, (5368)

0

0

S
Sl

1P

Sp
Sl

1P

'Sp

Sp

1S (1974)

1P (2424)

1S (2075)

1P (2537)

1S (5312)

1S (5409)

1972

2426

2077

2535

5313

5408

From @CD one expects that the strong coupling con-
stant and quark masses will become smaller as the @CD
scale increases [16]. Since the energy scale for mesons is
in the nonperturbative regime, one cannot expect that
perturbative expressions for the running of o., and quark
masses agree quantitatively with the model results. How-
ever, one can expect qualitative agreement.

In order to show this, we have performed series of fits
using the generalized RFT model equations, in which we

have fixed the constant t in the Hamiltonian, the string
tension a, and also the light quark mass m„d. The free
parameters of the fits were r(hl), m, (hl), m, (hl), and
mb(hl) for the heavy-light mesons, K(cc) and m, (cc) for
the cc mesons, and K(bb) and mb(bb) for the bb mesons.
As an illustration of the quality of our fits, in Tables I
and II we present fits for the heavy-heavy and heavy-light
mesons for C = —0.8 GeV, a = 0.2 GeV, and m„g ——0.3
GeV. The resulting values of the free fit parameters were

TABLE II. Heavy-heavy spin-averaged states. Since gb's have not been observed yet, in calcu-
lating the spin-averaged mass for all S states in the bb system we assume Y —g& ——40 + 20 MeV
on the grounds that this splitting should be approximately one-third of the corresponding splitting
in the cc systems. We estimate that the error introduced in this way is probably less than 5 MeV.
We also assume that p-wave hyperfine splitting in the bb mesons is negligible.

State Spectroscopic label
JP 2S+1L

Spin-averaged
mass (MeV)

Theory
(MeV)

Error
(MeV)

cc quarks

q. (2979)
Q (3097)
go, (3415)

(3511)
~,.(3556)
h (3525)
g,' (3594)
Q' (3686)
bb quarks
T (9460)
T' (10023)
T" (10355)
gob (9860)
gib (9892)
gab (9913)
gob (10232)
gib (10255)
y2b (10268)

0
1
p+
1+
2+
1+
0

1
p+
1+
2+
p+
1+
2+

'Sp
Sl
Pp

'Pl
3p
lp

2'Sp

's, ]
2'S, ]
3' s, ]

Pp

P2
2 Pp
2 Pl
2 P2

1S (3068)

1P (3525)

2s (3663)

1S (9450)
2S (10013)
3S (10345)

1P (9900)

2P (10261)

3066

3519

3672

9451

10004

10349

9905

10260
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m, = 0.487 GeV
m. =1.955GeV
mb ——5.391 GeV

~(hl) = 0.576

m~ = 1.816 GeV
r(cc) = 0.532

mb ——5.153 GeV
1((bb) = 0.440

hl mesons,

ec mesons,

bb mesons .

(60)

2.4

2.2

1.8
U

E

m (cc)

m, (hl), mu d
= 0.3 GeV

m (hl), rn„d = 0 / r
/ r

/

/
/

/

/
/

/
/

As onone can see from Tables I and II t e
bl All spin-averaged heavy-li ht stdd h2MV

errors within 10 MeV
e, while heav -hy-heavy states had

To observe running in the RFT m
he s rong coupling constant K =

make the reasonable e assumption that meson
governed rou hl b hg y y the reduced mass of its con

meson dynamics is

tth t lida K wi decrease as w
mass m„,g, m, ~ and t~m „, ,~. herefore the reduced

mesons, t e energy scale again increases
the coupling constant sho ld d

s, and

exactly what w
s ou ecrease. This

we see in ig. 5.
+e~avior is

As far as mm and mb are concerne
expect lar er h

cerned, first of all we
arger cavy quark masses for m„

the meson mass is
or m„g ——0, since

is roughly the sum of the
constituents d h

he masses of its
s, an this is shown in Fi s.

d hdli ). F thur ermore, the constan
renormalize the heav

ant C should just
ize e cavy quark masses in the heav-

l' F' . 6 d7)

1.4

1.2

0.2
I

0.4
-C [GeV]

0.6 0.8

as expected. For the heavy-light s stem,

asses xe . For m
((1 h (1 le ines in Figs. 6 and 7)

mc(C) = 1.078 GeV —1.094C,
rrib(C) = 4.571 GeV —1.025C

(63)
(64)

FIG. 6. Mass of the c quark as a fu

and cc mesons. For C l
eV, dashed lines)

s. or ess than about —0.5 GeV
with an increasing +CD l

e, m, falls
sca e reduced mass).

rii, (C) = 1.368 GeV —0.560C cc mesons), (61)
riib(C) = 4.739 GeV —0.520C (bb mesons), (62)

and for m„g ——0 we find

rri, (C) = 1.188 GeV —1.081C )

mb(C) = 4.660 GeV —1.024C .
(65)
(66)

0.55

0.5-
K(CG)

K(hl), mU (i = 0

K(hl), mU d = 0.3 GeV

5 ' 8

5.6

54

5.2
U

2

mb(b~)

----------- in'(hi), mu d
= 0.3 GeV

------------- m&(hl), m„d = 0

0/45

K(bb)

4,8

04 I

0.2 0.4 0.6
-C [GeV]

I

0.8

FIG. 5. trong coupling constant as a
h or m~, g ——0 and m„g ——0.3 GeV) cc and bb

but systematicall fall
va ues o r found are rou hl ig y independent of C,

mass .
ica y a with the runnin g @CD scale (reduced

4 6

4.4
0.20 0.4 0.6 0.8 1

-C [GeV]

FIG. 7. Mass of the b quark as a fq

and bb rnesons. For C
GeV, dashed lines)

ns. or less than about —0.3
with an increasin CD

eV, m falls

g ~ scale (reduced mass).
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0.5 m, (hl), m„d ——0.3 GeV

0.45

U

0.4-

0.35
m, (hl), m„d ——0

0.3 I

0.2 0.4 0.6
-C [GeV]

I

0.8

FIG. 8. Mass of thehe s quark as a function of C in the
heavy-light (for m q = 0 and m, = 0.3 G jI,„,& —— . eV j mesons.

VI. CONCLUSIONS

In this
t b 1

his paper we have discussed th 1

u e mo el with b
e re ativistic redux

1
'

arbitrary mass spinless quarks on its

Also, as stated before, one would expect that heav
masses sh

ec a cavy quark
hould decrease as we go from th h -1' he cavy- ight to

e cavy- cavy systems. As we can see from Fi s. 6
and 7 this is

om igs.

C. This gives us an estimate of the upper limit for its
possible values. In particular C t bmus e more negative
than about —0.5 GeV for both d0 m an m$ to runlna
generally accepted manner.

a e s range quarkFinal y, om Fig. 8 one can see that the st
mass (obtained from the heavy-light Bts) is ls~&is a most inde-

ends. WeWe have obtained the classical rotational solu-

an solved numerically. In both th 1e c assica and quan-
ize solutions an important ingredient is the condition

e quantum solutiono a Gxed center of momentum. Th

the e u
a so involve a careful treatment of sym t ' tme riza ion o

e equations of motion. We have confined our corn
son of the RFT with

con ne our compari-

pendence should be small enough that tha e spin-averaged
a a can be compared to our spinless quark calculation.

heav — i t
We ave done a simultaneous fit to ll f

cavy- ig t and heavy-heavy data, and we have obtained
an excellent fit to the spin-averaged levels. To achieve
this agreement we have allowed th h t-e s or -range coupling
constant K and the heavy quarkquar masses m, and mp to

creases with increasing scale (reduced mass), and that
y q masses decrease with increasin

the constant C
easing sca e i

s an C is more negative than roughly —0.5 GeV.
It will be im portant to include spin in our model. F

tunatel tha e y e orbital angular momentum d
'

hum iscussion in this
paper will form a key ingredient of tho e more complete
ca cu ation. The results will be somewhat d'ffa i erent even
or e spin-averaged case since a Darwin-t e tin- ype erm will

ue o e fermionic nature of the quarks at both
long and short ranges. The RFT d 1 fmo e ormulation with
ermionic quarks was discussed in some det '1 3

ousl
e e ai previ-
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