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Mass corrections in J/Q: BB decay and the role of distribution amplitudes
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We consider constituent quark mass corrections to the polar angular distribution of a baryon-
antibaryon pair created in the chain decay process e e+ —+ J/@ m BB, generalizing a previous
analysis of Carimalo. We show the relevance of the features of the baryon distribution amplitudes
and estimate the electromagnetic corrections to the +CD results.
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I. INTRODUCTION

In the last few years our understanding of exclusive
hadronic processes at high momentum transfer, in the
framework of perturbative QCD (PQCD), has improved
(for a comprehensive review and further references see,
e.g. , [1]). Theoretical models, based essentially on fac-
torization ideas, have been elaborated and refined. The
main ingredients of these models (which from now on we
shall indicate as PQCD models) can be summarized as
follows. The amplitude for a given exclusive process is
obtained by convoluting two well distinct contributions:
the first coming &om the hard scattering among the par-
tonic constituents of the involved hadrons and the sec-
ond &om the subsequent, soft processes which lead to
hadronization. The hard scattering can be described
by means of perturbative QCD techniques, representing,
in first approximation, each participating hadron by its
valence constituents, assumed collinear with the parent
hadron and among themselves. As for the soft processes,
their treatment is outside the possibilities of perturbative
methods and alternative approaches (like QCD sum rule
methods or lattice calculations) are required; in prac-
tice, they appear in the so called hadronic distribution
amplitudes (DA's) which describe, for each hadron (and
independently of the particular process under consider-
ation), how its momentum is shared among the valence
constituents. Although a complete, formal proof of the
validity of these factorization procedures is still lacking,
at least for exclusive processes, there is enough theoreti-
cal work which supports these models [1—3].

As it should be clear, PQCD models acquire full va-
lidity only at very high momentum transfer; however, it
is not yet clear what that means in practice (that is, at
what Q scale we expect these models to become reli-
able). This is a controversial point [4], even if very re-
cently new developments seem to justify the applicability
of the models also for not so high momenta [5]. On the
other hand, we must not forget that all the cross sections
for exclusive processes behave, at high Q, as an inverse
power of Q . This power increases with the number of
valence constituents involved in the process and makes

it more difficult, &om an experimental point of view, to
distinguish and measure these increasingly rare events
from the bulk of the inclusive processes. We may then
summarize the situation as follows: on one hand, the-
oretical models are surely under better control at very
high Q2 but, on the other hand, almost all the exper-
imental information presently at our disposal falls in a
range of Q which, while not completely out of reach of
PQCD techniques, is not fully recognized as an ideal lab-
oratory for perturbative models. In particular, it is not
clear the role played by higher order corrections (which
are reflected in several possible modifications of the ba-
sic PQCD models). Unfortunately, the implementation
of these higher twist contributions is quite intricate. It
follows &om what we said that a complementary, theoret-
ical, and phenomenological analysis of all the presently
available experimental measurements would be of great
help in clarifying and improving PQCD models. Thus it
is very useful and important to undertake all the possible
efForts in order to shed light on controversial points and
improve our understanding of exclusive processes.

We should also bear in mind that presently only for
a few, relatively simple processes, calculations have been
performed. This is due to the increasing complexity of
calculations when more and more hadrons (and, as a
consequence, partonic constituents) are involved in the
process. When compared with the experimental results
(all of which, with the possible exception of the proton
form factor, are at intermediate values of Q ), these cal-
culations show several successes but also some failures.
Most of these failures can be attributed to violations
of the so-called helicity selection rules [1] (which are a
specific property of PQCD models, valid to all orders
in the strong coupling constant perturbative expansion)
and their overcoming requires the introduction of higher
twist efFects.

Several attempts have been made in order to imple-
ment the original PQCD models taking into account
higher order contributions, like higher valence Fock states
[6], transverse momentum effects [5], L g 0 angular mo-
mentum components in hadron wave functions [7], con-
stituent quark mass effects [8—10], and diquark correla-
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tions inside baryons [11].
For constituent quark mass effects, in particular, a

number of calculations [8—10] have been performed for
several experimentally observed processes, some of which
are allowed in PQCD models while others are forbid-
den by the helicity selection rules. In these calculations
the elementary hadron constituents are given a mass,
m,. = x;mH, where mH is the hadron mass and z; is the
(light-cone) fraction of the hadron momentum carried by
the ith constituent, opportunely weighted (in the convo-
lution integral) by the corresponding hadron distribution
amplitude. This effective mass could take into account
(in a global way) several higher order effects which have
been neglected in the ordinary PQCD models.

Although &om a formal point of view this approach
requires further justifications, it offers a relatively simple,
parameter free, means for practical calculations. The
results obtained in this way can be compared with the
lowest order PQCD results, and, as we shall also see in
the following, lead to predictions for several efFects that
can be experimentally tested at the present time or in
the near future (see also Ref. [10]).

A few years ago Carimalo [12] considered mass correc-
tion effects on the polar angular distribution of baryon-
antibaryon pairs produced in the exclusive decay of the
J/g. As it can easily be seen, PQCD models predict,
due to the helicity selection rules, a distribution of the
type 1+ cos20 [1], where e~ is the polar angle which
specifies the direction of motion of the produced baryon
in the J/@ rest frame. Although experimental results
are available only for a few baryons [13,14] and are in
some cases affected by large statistical errors, there are
clear indications that the angular distributions behave
rather as 1 + a cos 0, with, e.g. , az ——0.62 + 0.11,
a~ = 0.62 + 0.22 [14]. Here a (( 1) is a factor which
can be expressed &om the helicity amplitudes for the de-
cay process, as we shall see in detail in the next section.

As shown in Ref. [12], mass corrections can in princi-
ple explain why a ( 1 and lead to a better agreement
between theoretical predictions and experimental results.
Furthermore, since the parameter a is given as a ratio
of squared helicity amplitudes, it is independent of the
exact value of the baryon decay constant, and of several
"fine tuning" details of the models (for example, how to
treat the strong coupling constant in the convolution in-
tegrals); as such, their effects may be neglected almost
completely, as will be clarified by our explicit calcula-
tions.

The results of Ref. [12] are obtained using a nonrel-
ativistic bound-state model both for the decaying J/g
and the produced baryons. However, while this approx-
imation is well grounded for heavy quark bound states,
like the J/g, it can be questionable for light hadrons.
In Ref. [12] the proton decay constant was consistently
fixed in order to reproduce the J/g ~ pp decay width.
A difFerent, widely used approach (see, e.g. , Ref. [1,15]
and references therein) is to tentatively fix once and for
all the baryon decay constant Rom @CD sum rules and
consider different models for the baryon distribution am-
plitudes, including the nonrelativistic, @CD-sum-rule-
inspired and asymptotic ones. A lattice calculation of

the baryon decay constant in the nucleon case is consis-
tent, within the inherent systematic uncertainties of the
models, with that of @CD sum rules [16]. In this context,
the nonrelativistic DA seems to systematically underes-
timate absolute quantities (i.e. , not obtained as ratios of
amplitudes) like the decay widths for charmonium exclu-
sive decays, or the hadron form factors, by two or even
three orders of magnitude, when compared to available
experimental results (see, e.g. , Ref. [15]). It is then quite
reasonable to expect that the use of more refined distri-
bution amplitudes could lead to significant modifications
in the predicted values for a

There is also a more specific reason to believe that the
dependence of a~ on the DA's may not be negligible: the
expression of a~ is given as a function of squared helicity
amplitudes with different values of the constituent helic-
ities. Then, the use of distribution amplitudes, which,
like those derived from @CD sum rules, seem to indicate
an unusual sharing of the hadron momentum among its
constituents, can substantially modify different helicity
amplitudes.

Based on these motivations, in the rest of this paper we

shall present a derivation of the parameter a, generaliz-
ing the results of Ref. [12] to the case of a generic hadron
distribution amplitude. The only restriction on the DA
is that it must satisfy general symmetry properties. This
allows us to compare the results obtained using different
DA's and possibly to get useful information on them, in-
dependently of the way the baryon decay constant has
been fixed.

We wish also to recall that an alternative approach for
the calculation of a has been proposed by Kada and
Parisi. In Ref. [17] these authors evaluated the strong
contribution to a for the octet baryons, in the frame-
work of a quark-(scalar)diquark model for the baryon
structure. Diquarks are another possible way of taking
into account higher order corrections (in particular corre-
lations between two valence quarks in the baryon). They
have been applied, with good success, to several exclusive
processes at intermediate values of Q2 [11].

It was stressed by Carimalo and by Claudson et at.
[18] and will also be argued in the following, that elec-
tromagnetic (em) corrections to a might be by no means
negligible.

The main problem with the em corrections is that they
involve the em form factors of the octet baryons, for
which calculations including mass corrections have not
yet been done. Only for the nucleon, in the nonrelativis-
tic approximation, there is a theoretical evaluation [19].
In the other cases we are forced to give for these cor-
rections estimates based on the available experimental
information.

This paper is organized as follows. In Sec. II we de-
rive a general expression for the angular distribution of
the baryons produced in J/@ ~ BB decays. In Sec. III
we concentrate on the strong contribution to a, which
controls the BBangular distribution, giving a derivation
of the helicity amplitudes required for its calculation. In
Sec. IV we discuss in detail the results obtained and
their dependence from some subtleties of the models that
in general, while not modifying qualitatively the conclu-
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sions, can substantially affect the numerical results, in
particular for absolute quantities like decay widths. In
Sec. V we give a detailed analysis of electromagnetic cor-
rections, trying to estimate, when possible, upper bounds
on the consequent overall modi6cation of a~ both from
experimental and theoretical information. Finally, our
conclusions and future perspectives are discussed in Sec.
VI.

II. DERIVATION OF THE BARYON ANGULAR
DISTRIBUTION FOR J/Q -+ BB DECAYS

Let us consider a J/@ particle, produced in e e+ col-
liders with unpolarized beams, which subsequently de-
cays into a baryon-antibaryon pair:

e e+ + J/@ -+ BB

The spin density matrix of the J/Q, in its rest f'rame

[which is also the center of mass (cm) frame of colliding
beams, with the electron moving along the positive z di-
rection], has the following expression (see, e.g. , Ref. [20]):

. (Jl@) = — ) . A;i,i,A"„~,i, (2)
A, ,A, +

where the A 's are the helicity amplitudes for the process
e e+ ~ J/g, M is the z component of the J/@ total
angular momentum in its rest kame, and A, —,A + are the
helicities of the electron and the positron, respectively;
N is a normalization factor, such that Tr[ p ] = 1.

It is not difFicult to show that

p, =0 if M/M'

Z/2
dl'(J/@ m BB) 1

d(cos0 ) 8(2vr)4 ( M@~)

): p
M, A~, A~

where the "reduced" amplitude Ap p is independentB
of M and the angular variables and the d (0 ) are the
usual rotation matrices. Using the parity properties [20]
for the Ap p .M (which imply that A + ——A+, A

A++) and for the spin density matrix p(J/@) (p
pi i), Eq. (7) may be rewritten as follows:

dl'(J/@ -+ BB)
d(cos 0~)

(
1 —4

8(2~)4 ( M~z)

pox+ poo + 2 A++ pli

x (1+a cos 0 ) (9)

where

A+ 2 —2 A++ 2
ps~ —poo

a
IA+-I'(p»+ p-) + 2IA++I'p»

(1o)

Apart from overall factors, independent of 0, this is
the quantity Ineasured by the MARKII and DM2 collab-
orations [13,14].

We know from first principles [20] that the amplitudes
Ap~g~. M have the following general structure:

A), p, (0, (p ) =Ay p d q q (0 ) exp(iM(p ),
(8)

p11=py1= — 1+2

~ t'

ppp =2
2 1+2

M~2 ( M@2 )
=0

2
(4)

(5)

If, with good approximation [see Eqs. (4) and (5)], we

take pii ——1/2 and poo = 0, we finally get the simplified
expression

l/2
dl'(J/@ -+ BB) 1 t m

d(cos 0 ) 16(2~)4
~

M&~)

where m, and My are the masses of the electron and the
J/@, respectively. As for the second step in our process,
the decay J/@ ~ BB, we have the general relation [21]

m2 )"
dl'(J/g w BB) =

~
1 —4

8 2vr s
I M~~)

) prvr~ IA&~&~;MI d~a
M, A~, A~

where

x A+ + 2 A++

x (1+a cos 0 )

/A+ /' —2)A++ f'

IA+- I'+ 2IA++ I'
(12)

where the A's are the helicity amplitudes for the decay
of a J/@, with third component M of the total angular
momentum J = 1, into a baryon-antibaryon pair with
helicities A and A, respectively; I, is the mass of the
produced baryons.

Due to the symmetry around the z axis, we can put
p~ = 0 in our calculations and integrating over p~ we
obta1n

A+ ——A+, i(0 = y = 0) (13)

and

We stress again that the results of Eqs. (11) and (12)
only require the assumptions that the one-virtual-photon
interaction dominates the J/@ production process and
that m2/M~2 —= O.

Two further remarks are appropriate. (i) As it is clear
from Eq. (8) and &om the properties of the d
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+++ +++;o (~a pa 0) (14)

Then it is suKcient to calculate the amplitudes A+
A++-p in the particular, convenient kinematic configu-
ration OB = pB = 0, in order to know, with the help
of Eq. (8) and of the parity symmetry properties, all the
amplitudes. (ii) As it will be explicitly shown in the next
section, if m = 0 then A++ ——0 also; in this case we
recover the old P @CD result of Brodsky and Lepage [22],
that is, a = 1.

Prom Eq. (6) we easily get the expression of the total
decay width for the process

PC) ~Cy ~

q,
/"

q', l'

p,—,A,—,j

Pql Q2 ~ Aq2 Q3 i Aq3

m] mQ m3

kg, a

kp, b

k3, c

qj, Aq, qg, Aq, q3, Aq,

I (J/g ~ BB)=, I —4
( m')"

62~4 ( M~~)

x (~I++ I* y I&++I')

III. THE STRONG CONTKIHUTIDN TD THE
PARAMETER aB: EVALUATION

FIG. 1. The Feynman diagram which, to lowest order in
n„describes the elementary process QQ —+ qiq2q3qiq2qs,
for a quarkonium state with charge conjugation C = —1.
In the QQ center-of-mass frame, c" = (E', k/2) and
c" = (E, —k/2), where k is the relative momentum be-
tween the c and c quarks; q; = z;pz and q, = y,p&
(i = 1, 2, 3), with p~n = (E,p~), p" = (E, —p~),
and pn = (p sin Hid cos ps, psin Hid sin pn, pcose~). a, b, c,
i, j, E, l', mg 2 3 Ag 2 3 are color indices and the A's label he-
licities.

In this section and in the next one we shall neglect the
electromagnetic corrections to aB, which will be consid-
ered in Sec. V, and concentrate on the strong contribu-
tion, which from now on will be called a' . As we briefly
sketched in Sec. I, the calculation of the helicity am-
plitudes for the physical process J/g -+ BB, Az B
(the suffix s is a reininder that we are considering only
the strong interaction in what follows), consists of several
steps. First of all we need to calculate the amplitude for
the hard interaction among the elementary (valence) con-
stituents of the involved hadrons. To lowest order in the
strong coupling constant, the only (topologically distinct)
Feynman graph is shown in Fig. 1 (where the notation
is also defined). All other possible graphs of the same

order can be obtained from this one by a permutation
of the final fermionic lines. We do not take into account
explicitly aB these graphs because their contribution is
accounted for by opportunely choosing the final hadron
wave functions. Without giving nonessential details of
the intermediate steps of the calculation, we present di-
rectly the expression of this amplitude in the particular
kinematic configuration 9~ = pii = 0 (the relative mo-
mentum between the c and c quarks, A', , has also been set
equal to zero. This procedure is proper when considering
L = 0 bound states; for L g 0 the limit k ~ 0 should
be taken in a subsequent step, i.e., after the integration
over the angular part of the charmonium wave function).

Tw„w„~„,~„x„~,-„~.w.-(+ = 0~0& = W& = 0)

1
X

2 2 2 22xiyi —xi —yi + 2(xi —yi) e 2xsys —x3 ys + 2(xs y3)

x ( x,y + x y + 2(x —y, )(x —y )e h, h„g S„b„8„&„„h„
B 4 Aq1 )A/1 Aqg i Aq2 Aq3 i A03 Aqg sAc Aq3 i Ac Ac &Ac Aq1 &

A j1 Aq2 &
A j2 Aq3 iA j3 Aq1 &Ac Aq2 & Ac Ac iAc~(b b b b b b + b b b b b b

+ e' 4„,~„4„,—~„4...~,—,4„,~.4.,-~.-I —[*ixs + yiys —2(» —yi)(» —ys)&' I

[x e b b b b b b +e b b b b bAq1 i A j1 Aq~ iAg~ Aq3 i A/3 Aq] iAc Aq3 & Ac Ac iAp + B Aq1 pA j1 Aq2 iA j~ Aq3 & Aq3 Aq3 )Ac Ac i A

Aq] i Aq1 AqI2 iAq2 Aq3 )Agy3 Aq1 )Ac Ac ) Ac ) B Aq1 iA$1 Aq2 iA$2 Aq3 iAq3 Ac )Ap+ b b b b b )~+a b b b b (16)

where c is the color factor which, once the convolution with the final hadron wave functions is made, takes the value

c~ = 5/(18v 3) and, as usual, g, = /4mo. „x;(y;) represents the (light-cone) fraction of the baryon (antibaryon)
four-momentum carried by the ith quark (antiquark); e = m~/M@. It is clear from this equation the role played
by mass corrections in allowing spin Hips along the final fermionic lines. We see that higher e~ powers correspond to
terms where more spin Hips are present. On the contrary, if we neglect quark masses Eq. (16) reduces, apart &om a
nonessential constant factor due to a different notation, to the result of Brodsky and Lepage [22]:
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(o) 1 I 1
~gs 5e3& Cg f2 C3& ' M ~. z' . 2xzy~ —xi —yi 2x3y3 —x3 —y3~ '7 l ~

x(xiJJ3 + xsgl)'4 —A '4 —A 8A —A 8A —A 4 —A 4 A '4 —A~ (17)

We would like to stress that, in principle, the g, factors
coming &om different virtual gluons should be evaluated
at the corresponding values of transferred Q [1]. For
the moment we do not discuss explicitly this problem,
which will be analyzed in detail in the next section, where
numerical results are presented.

Next we convolute the elementary helicity amplitude
T&'&I (for brevity we indicate by (A) the collection of all
the helicities from which an amplitude depends) with the
final hadron wave functions:

M& & .& &
—— dx dy ~p x T&&& xy p y

(18)

1where f [dz] stands for f dzidz2dzsb(1 —zi —z2 —zs) and
we used z as a shorthand for (zi, z2, zs). The amplitude

M&&) refers to the decay of a free c, c quark pair into the
final baryon-antibaryon pair.

Once the amplitudes M' have been evaluated (we will
do this below), the final step consists in integrating these
amplitudes over the proper cc bound state wave function,
taken as usual in the nonrelativistic approximation, such
that the physical amplitude A& & .M, to which we are

7 g t

interested in, is given by the following general expression:

/ 2L+ )Ii~ i 8xi2

As, As, M ) I( 4 )I P„—%~A OAA
A, A~

x d ™
»Mi(P n o) &c(k)

A+ .i ——v 2 vriR, (0)~M+ (20)

where the t 's are the Clebsch-Gordan coefFicients, A =
A, —A;, k = (k, n, P) is the relative momentum between
the c and c quarks and finally g, (k) is the (momentum-
space) charmonium wave function. In particular, for the
J/@ L = 0, so we can take f'rom the beginning (in the
full nonrelativistic approximation) k -+ 0 without loss of
generality [this property has been used in the derivation
of Eq. (16)]. Then we can see that

A++.0 ——2m iR, (0) i M++.++ (21)

where R, (0) is the value of the L = 0 charmonium
wave function at the origin. By comparing the theo-
retical prediction for the decay width I'(J/Q ~ e e+),
I „=(16/9)n iR, (0)i /M@, with the available experi-
mental data [23] we can estimate ~R, (0) i

0.737 GeVsiz.
Here we have considered only the two amplitudes that, as
it was discussed in the previous section, are sufhcient to
recover the expressions of all the others, when use is made
of Eq. (8). In Eq. (21) the relation M++. ——M++.++
has also been used [the validity of this relation can be
proved &om Eqs. (16) and (18)].

As it is clear &om Eq. (18), while the T' amplitude
is the same for all the baryon pairs considered, the M'
amplitudes are different for the different baryons, essen-
tially because in general the spin-flavor component of
their wave function changes. So, we cannot give a gen-
eral, explicit expression for the amplitude M', but we
must consider separately all the different cases. The to-
tal hadron wave function consists of a color part (which is
the same for all the baryons and has been included in the
definition of the color factor of the amplitude T'), a spin-
flavor component and a dynamical part which describes,
in momentum space, how the baryon four-momentum
is shared among its valence constituents: the distribu-
tion amplitude. In general the DA, which as we said
previously is a nonperturbative quantity, allows for non-
SUy(3)-symmetric configurations, as has been shown by
several studies performed with the help of @CD sum-rule
techniques [15,24—28]. However, in the particular case of
an SUy(3)-symmetric DA, as we shall see, we obtain the
same result for all the baryons and the only differences
are the (experimental) values of the baryon masses [12].

In order to explicitly calculate the M amplitudes and
their dependence from the DA's we need to take from the
literature the available proposed models. @CD sum-rule
results for octet baryon DA's exist at present only for the
nucleon [15,24—28] and for the Z+, :-,and A [15]. Then,
below we give explicitly the expression for the distribu-
tion amplitudes and for the required M' amplitudes in
these cases.

The most general wave functions for the baryons con-
sidered here are the following.

For p, n, Z+, :- baryons:

@gyps(x) = 2A~ (p~(123)fi p (l)fs2 gs(2) fs,ps(3) + pgy(213) fi, p (l) fez ps(2) fs,ps(3)
p~

2RgyT~(123) fi ps —(1)f2 ps (2)fs ps(3) + (1;;3) + (2::3)j;
for the A baryon:

(22)

(x) = 2A~ (y~(123)up (1)d p (2)sp (3) —yA(213)u g (1)dp (2)sp (3)4 6
—2R~T~(123)up (j)di (2)s i~(3) + all permutations of (1, 2, 3)) . (23)
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We have introduced the notation

p
B =

where I"g and F& are constants related to the value of the baryon wave function at the origin. In Eq. (22) fi Q s are
the Aavors appropriate to the particular baryon considered (fi 2 s ——uud for the proton, udd for the neutron, uus for
the Z, and sad for the = ). Isospin symmetry properties impose several relations between (p (x) and T (x); in the
case of the nucleon the relations Rrv = 1, 2')r(1, 2, 3) = {piv(1, 3, 2) + {piv(2, 3, 1) also hold (see Ref. [15] for further
details). By insertion of these expressions and Eq. (16) in Eq. (18), we can, after some algebra, derive the following
M' amplitudes.

For N, Z+, :- baryons:

/2
M4444 —— r. [dz][d1r]Drr

[
2Drr (prr (123)rprr (213) —2Rrr rprr (321)Tpr(321)

l++;++ 96

+ rprr(312)Trr(132) ) + E44 prr (132)pr4{312) —4R4rTrr(123)4rrr(213)

+ 2EJpc~ p& 123 + p& 213 + p& 312 + 2B& 2T& 123 + T& 132

/2
M+ .+

——— [dx][dy]C~
~

DIi p~(123) + 2R~T~(132)+—;+— 48

+ D Ertrprr(132)rprr(312) —4RrrTrr(123)4rrr(213) + 2Er4e (rprr(123)rprr(213)

RB 2rprr(123)Trr(123) + rprr(312)Trr(132) + rprr(132)Trr(132) )

(25)

(26)

For the A baryon:

z2 (
M44 44 —— e [dd][d1)]C4

~

— D2(4rp(14)23p( 41 2)34- 2R4 T4 (321)T4(321)
l++;++

+ ( rp142)3( T142)3) —E4 rp4(132)4r4(312) + 4R44r4(213)T4(213)

+ 2E~e p~ 123 + p~ 213 + y~ 312 + 2BA 2T~ 123 + TA 312 (27)

/2
24

[dx][dy]Cp
~

DA {p~(123)+ 2R~T~(132)

—D~e {pdi (312){p~(132) —4R)i{pdi (213)TA (123)

—2E~e p~ 123 p~ 213 + 2B~ y~ 321 Tg 321 + p~ 312 T~ 312

Dii = »ys+»»+2(» —»)(» —»)e 1 (29)

Egg = —(xixs + yiys) + 2(xi —yi) (xs —ys) e, (30)

In Eqs. (25)—(28) the following concise notation has
been used: in each {p(i,j, k){p(l, m, n), (p(i, j,k)T(l, m, n),
and {p (i, j, k)={p(i,j, k){p(i,j, k) product the first term is
a function of x, the second of y. Furthermore we have
defined

I

the M++.++ amplitudes vanish if we take m + 0 (this
means that a' = 1), as it must be, because in this case
there is not in the model any mechanism which allows
for spin Hips in the quark-gluon vertices, thus forcing the
final baryons to have opposite helicities.

IV. THE STRONG CONTRIBUTION TO THE
PARAMETER a: NUMERICAL RESULTS

2560vr a, 1

9v 3M~s Q, i[x;y;+ (x, —y, )2&2]

1
X

[2xlV1 xl Vl + 2(xl Vl) e ]

1
X

[2xsys —xs —ys + 2(xs —ys)'e' ]

I et us finally stress that, as it was anticipated, all

In the expressions presented in the previous section
for the M' amplitudes, from which a' can be evaluated
[see Eqs. (12), (16), (18), (20), and (21)] we are left with
the unknown form of the distribution amplitudes, which
contain all the hadronization dynamics of the partons of
the dominant, valence light-cone Fock state. As we said
previously, these DA's are highly nonperturbative in na-
ture, so perturbative @CD cannot say about them much
more than their general, formal solution (expressed as an
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infinite sum of Appell polynomials with unknown, non-
perturbative, coefficients) and their evolution in Q [1].
This is by no means a trivial result, but it is not enough
to give us reliable expressions for the DA at values of Q
presently accessible. For Q2 ~ oo, only the first term
in the formal expansion of the wave function survives,
so we obtain a simple expression, the so called asymp-
totic distribution amplitude. The asymptotic DA again
contains an unknown coefIicient, which, however, may be
extracted from the best experimental data at hand. The
present status of nonperturbative methods (namely QCD
sum rule and lattice calculations, in our specific case) al-
lows us to calculate only a few low moments of the DA's.
From these, a model expression for the DA is proposed by
opportunely truncating the infinite, formal expansion of
perturbative QCD and finding approximate values of the
unknown expansion coeKcients by fitting the calculated
moments. There are, of course, several difIiculties in this
procedure. These are mainly reHected in an apparently
strong dependence of the model DA &om the number
of available moments; in sizable difr'erences among the
DA's proposed by diferent groups; in discrepancies be-
tween the QCD sum rule and the lattice results. In our
calculation, we will take a phenomenological approach,
considering all the DA expressions available and analyz-
ing how the results for a' depend on each of them.

Let us first consider the case of the nucleon. There are
several versions of QCD sum rule model DA's in the lit-
erature. For completeness we give these below, together
with the nonrelativistic and the asymptotic DA's.

( I)
3)

rp '(z) = 120ziz2z3

(32)

(33)

The DA proposed by Chernyak and Zhitnitsky [24] is

(piv (x) = (p '(x)[18.06xi + 4.62x2

+8.82zs —1.68zs —2.94] (34)

The DA of Chernyak, Ogloblin, and Zhitnitsky [15] is

(x) = p '(x) [23.814xi + 12.978x2
+6.174zs + 5.88zs —7.098] (35)

The DA of King and Sachrajda [26] is

yiv (x) = Ip '(x) [20.16xi + 15.12z2 + 22.68zs
—6.72zs + 1.68(xi —x2) —5.04] (36)

That of Gari and Stefanis [27] is

p~ (z) = p '(x) [
—1.027xi + 12.307zs + 25.88x2

+111.32x izs + 9.105(x i —xs) —19.84] . (37)

The improved (heterotic) version of the Gari-Stefanis
DA, proposed by Stefanis and Bergmann [28], is

In all these cases the nucleon decay constant F~ has
roughly the same value:

~I'~~ = 5.0 x 10 GeV (39)

(Q') =
(lln, —2ny) ln (Q2/A )

(40)

where n = 3 is the number of colors and ny is the num-
ber of active fiavors (in this context, nf = 4). From
this point of view Q must be set to an overall effective
value, pertinent to the process considered, and we take
the square of the J/@ mass as this effective scale; we also
use A = 0.2 GeV.

This is by no means the only possible way to treat
n„as we shall see in the following. Of course, these
ambiguities reQect some uncompletness of the theoretical
models.

In order to evaluate the helicity amplitudes Ap
we finally need to compute quadruple integrals, which is
done numerically. We have tested both our analytical
results (the expressions of the amplitudes shown in the
previous section) aiid our numerical calculations. For ex-
ample, it is not difIicult to see that if we consider a non-
relativistic DA we recover, through the difFerent steps
of our calculation, the analytical form of a' proposed
by Carimalo [12]. As for the numerical integrations, we
have explicitly checked that if one of the usual represen-
tations of the Dirac function is inserted in the integrals,
and a limit procedure is made for the parameter which
enters the representation, the results smoothly tend to
the analytical ones in the nonrelativistic case.

In Table I we give our results for a' and for the total
decay width I"(J/vP ~ NN) = I ~& for the nucleon.

TABLE I. The strong contribution to a~ and to the decay
width I'(J/vP —+ BB) for the nucleon. Results obtained using
the di8'erent nucleon DA's considered in the text are compared
to experimental data.

DA

nr
as
CZ

COZ
KS
GS
het

S

0.688
0.667
0.561
0.565
0.591
0.963
0.689

10 I"~~ (GeV)
0.002
0.026
0.587
0.826
1.255
0.168
1.671

Furthermore, as we said previously, BN —— 1 and
2T~(1, 2, 3) = p~(1, 3, 2) + yiv(2, 3, 1) [see Eq. (22)].

The only parameter that must be fixed is the value of
the strong coupling constant 0;, . For the moment we will
limit ourselves to take a fixed value of o., for all three
virtual gluons, using the perturbative expression for the
running coupling constant:

y~" (x) = rp '(x) [
—19.773+ 32.756(x, —zs)

+26.569x2 + 16.625xi x3
—2.916xi + 75.25zs] (38)

MK2
DM2b

0.61 + 0.23
0.62 + 0.11

MARKII Collaboration, Ref. [13].
DM2 Collaboration, Ref. [14].

1.85 + 0.27
1.63 + 0.38
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Proton and neutron results di8'er in this case only for
the small mass difference, so we do not present separate
results (the situation will of course be different when we
shall consider, in the next section, the electromagnetic
corrections) .

A comparison of our numerical results for the total de-
cay widths with those of Refs. [12,15] needs some care.
Reference [15] presents results only in the massless case
and using n, 0.3 and IB,(0) I

0.690 GeV /2. When
opportunely rescaled to these parametrizations our mass-
less results are in good agreement with those of Ref. [15].
Note, however, that &om an analytical point of view our
expression for I'(J/g ~ BB) in the massless case differs
from that of Ref. [15] by an overall factor of 80/81.

In the case of the nonrelativistic DA our analytical
expression of I (J/@ ~ BB) agrees with that of Ref. [12].
Let us stress, however, that our F~ = 2 / F~ (Ref. [12]);
that is, F~ (Ref. [12]) 5 x 10 s GeV2 corresponds to
our F~ 28 x 10 GeV .

As can be seen from Table I, QCD sum rule DA's give
results which are sizably difFerent from those of the non-
relativistic case, even for an observable like a' which is
given as a ratio among squared helicity amplitudes. All
the results (with the possible exception of the GS DA)
are in agreement with the experimental measurements,
but we must not forget that the experimental errors are
large at present, and that electromagnetic contributions
can in principle modify the theoretical values. We see
also that there are non-negligible di8erences among the
various QCD sum rule DA's. Of course the discrepancies
are dramatically larger in the case of decay widths, so
one can ask, why study the (relatively) little dependence
of a' on the DA? The point is that, as we shall see better
in the following, the same reason which makes variations
in a' so small also tends to make a' freer from several
ambiguities of the model, giving, in our opinion, a more
sensible test for the distribution amplitudes. However,
in order to discriminate among diferent DA's we need
better experimental results than those presently at our
disposal. We hope they will be available in the near fu-
ture. Note also that, with F~ given by Eq. (39), QCD
sum rule DA's give results for the decay widths which
are in rough agreement with the experiment, unlike the
asymptotic and nonrelativistic ones (here, as in the fol-
lowing, no particular attempt in modifying parameters in

order to better reproduce experimental results has been
made).

Apart from the nucleon, little is known about the form
of the distribution amplitudes of the other octet baryons.
To our knowledge, the only available models are those
proposed by Chernyak et aL [15] for the Z+, :-,and A.
From Ref. [15] we have for the K+,

(x) = 42' '(x)[0.36x + 0.24x

+0.14x3 —0.54x g x2
—0.16zs(xl + z2) + 0.05(zg —zg)], (41)

T (x) = 42' '(x) [0.32(x', + x', ) + 0.16x
—0.47ziz2 —0.24zs(zg + x2)] (42)

The decay constants are IFgI 5.1 x 10 GeV,
IF~~I = 4.9 x 10 GeV2.

For the =

y= (x) = 42ip '(x) [0.38x', + 0.20x,'
+0.16x3 —0.26xi x2
—0.30zs(zg + x2) + 0.02(zg —x2)], (43)

T- (x) = 42' '(z) [0.28(zg + x2) + 0.18zs
—0.16zgz2 —0.35zs(zg + z2)] (44)

with IF~I 5.3 x 10 GeV and IF I5.4-x 10
GeV2.

Finally for the A,

y~ (x) = 42(p '(x) [0.44zi + 0.08x2

+0.34x3 —0.56xi x2
—0.24zs(zg + x2) —0.10(zi —x2)], (45)

T~c+z(x) = 42' '(x) [1 2(x2 —zq) + 1 4(zx —x2)] (46)

and IF~I 6.3 x 10 GeV, IFX I
6.3 x Io GeV .

In Table II, we compare the values of a' obtained from
these QCD sum rule DA's with those obtained in the
nonrelativistic and the asymptotic case and with experi-
mental results (note that, in the case of the Z+, experi-
mental data are available for Z only; em corrections can
in principle be di8'erent for Z+ and Z, so a strict com-
parison of our results with the experimental data could
be at this stage misleading). We see from Table II that

TABLE II. The strong contribution to as and to the decay width I'(J/vP ~ BB) for the Z+,
, and A. Only the nonrelativistic, the asymptotic, and the COZ DA s are available for these

particles.

DA

nr
as

COZ

SGg

0.431
0.417
0.687

10I"-
(GeV)

0.002
0.032

58.151

SGg

0.274
0.265
0.537

10 I"'—
(GeV)

0.002
0.016

45.519

Sa&

0.513
0.497
0.770

10'I"—
(GeV)

0.003
0.017
7.252

MK2b
DM2'

0.7 + 1.1 1.35 + 0.35
0.22 + 0.31 0.91 + 0.27

—0.13 + 0.55 0.97 + 0.25
0.60 + 0.15

0.72 + 0.36
0.62 + 0.22

1.35 + 0.27
1.18 + 0.26

Experimental results are available only for the J/vP ~ Z Z case.
MARKII Collaboration, Ref. [13].

'DM2 Collaboration, Ref. [14].
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for the Z+, :-,and A differences between nonrelativistic
and @CD sum rule DA's results are also more marked.
This is not unexpected, in that the presence of one or
more valence s quarks breaks more severely the SUf(3)
symmetry implicit in the nonrelativistic DA. Again, more
precise measurements of a could be very useful in im-
proving our understanding of (at least) the main features
of the DA's. By the way, we stress that the decay widths
for Z+, :-,A seem to be poorly reproduced, also when
@CD sum rule DA's are used. Even if em corrections are
not accounted for, it is unlikely that they can improve
very much the results in this sense.

We want now to analyze better how our results de-
pend on some ingredients of the models that, due to their
(to some degree) efFective nature, are not unambiguously
Axed.

We basically concentrate on the behavior of the re-
sults when different ways of treating the strong coupling
constant are considered. We stress that this is probably
(together with the value of the baryon decay constant
F~) the main source of indeterminacy of the quantita-
tive results of the model, once the DA has been fixed.

As we anticipated previously, when the calculations of
the results quoted in Table I and Table II were discussed,
the definition of o., is in some sense ambiguous. We can
inake the following (reasonable but not derived from first
principles) choices.

(i) Consider an overall, effective value of Q, Q„which
sets the scale to which o., must be evaluated, using
Eq. (40), neglecting that in the model the momenta car-
ried by the three virtual gluons in the hard scattering de-
pend on x, y and are different among them [1]. In partic-
ular, we choose Q2 M&. Slightly difFerent choices have
been used in the literature (see, e.g. , Refs. [15,24]); this
is equivalent to an overall rescaling of the decay widths,
while a is unchanged.

(ii) Take a running coupling constant depending on
the squared momenta carried by the hard gluons, Q2

Q; (x, y) (where i runs over the three gluons) [1]. How-
ever, if this choice is made, we face a serious problem:
over the full field of variation of x, y, the Q; approach
zero. There, then, it does not make sense to speak of per-
turbative calculations, since o,, increases more and more,
invalidating any perturbative power expansion. Often

f Q' & Q'
(1ln —2nf) ln (Q2/A2)

o ifQ (Q )

(47)

where usually one takes o;o ——0.3 or 0.5. In some sense,
this is a naive way of accounting for nonperturbative ef-
fects which prevent o., from taking higher and higher
values [like Eq. (40) should imply], even if probably the
exact behavior of n, is only poorly mimed. Even if the
Q2 -+ 0 region is suppressed by the behavior of the distri-
bution amplitudes, this procedure is far from being sat-
isfactory. Furthermore it introduces a dependence from
the new parameter o,o.

(iii) Take into account in a more serious way nonper-
turbative effects, which may give rise to an effective mass
for the gluons (see, e.g. , Ref. [29]). This in turn modifies
the gluon propagators and the perturbative expression
for n„Eq. (40). To be rigorous, there are probably other
minor modifications to be introduced into the fermion
propagators and the quark-gluon vertices as well, if one
consistently applies these methods. However, since we
are only trying to estimate the dependence of our results
from different ways of treating o.„we limit ourselves to
considering only the effective gluon mass effects on it. In
this context, the expression of o;, to be used is of the type

127r~.(Q') =
(lln, —2nf) ln (Q + 4m )/A2

(4S)

where ms 0.5 GeV [29].
In Table III we show, for the nucleon case only (results

for the other cases are very similar), how the three pre-
vious different choices of o., influence our results for a'
and the decay widths. It is easy to see that a' is very
stable against these changes (as opposed to the total de-
cay widths), giving us more confidence on the reliability
of our estimates for a' and on their usefulness.

Note that the nonrelativistic DA has not been taken
into account, because in this case there is no ambiguity,

people prevent these problems by introducing an ad hoc
cutofF, Qo2, such that

TABLE III. Dependence of the strong contribution to as and to I'(J/Q ~ BB) on different
behaviors of the strong coupling constant o., inside the convolution integral of Eq. (18), in the
proton case. First column is the same as Table I, with o;, from Eq. (40) at Q = M+, in the
2nd and 3rd column use is made of Eq. (47), with as ——0.3 and 0.5, respectively; the 4th column
presents the results when Eq. (48) is used.

DA

as
CZ

COZ
KS
GS
het

o., = 0.275

GQ 10 F~g
(GeV)

0.026
0.587
0.826
1.255
0.168
1.671

0.667
0.561
0.565
0.591
0.963
0.686

n, &0.3
10 I"
(GeV)

0.044
1.144
1.369
2.076
0.275
2.763

0.666
0.564
0.567
0.592
0.954
0.682

n, (- 0.5
10 I"
(GeV)

0.466
10.013
12.078
18.343
1.917

24.245

0.667
0.561
0.564
0.591
0.963
0.691

n. (mg)
10 I"
(GeV)

0.210
5.716
6.894

10.549
1.160

14.020
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in that the strong coupling constant is consistently fixed
to the efFective value n, (M@).

Let us conclude by stressing that we also must take
into account the evolution of the DA with Q2. It is usu-
ally said that this evolution has little e8'ect on the re-
sults, in that its logarithmic behavior is masked by the
stronger, powerlike behavior (in Q ) of the elementary
scattering amplitudes. Even if this may seem quite rea-
sonable, we have explicitly checked for this assumption,
particularly when modified running expressions for o.,
have been adopted. As a matter of fact, while a is al-
most independent of the DA evolution, the modifications
of the decay widths due to the evolution are not numeri-
cally negligible; however, they are not important from a
qualitative point of view and do not change the results
by more than a factor 2, which is within the overall
uncertainty we can expect, also in the more optimistic
hypothesis, for absolute quantities.

V. ELECTROMAGNETIC CONTRIBUTIONS
TO a

Up to now we have neglected the electromagnetic con-
tributions to a . However, it has been shown that the
corrections due to em processes can be sizable [12,18],
and a careful analysis of a cannot avoid considering
them. Unfortunately, as it was discussed by Carimalo
[12], we are not able, at present, to give a full treat-
ment of these efFects. The reason is that the timelike em
form factors of the baryons are involved, and there is no
calculation of them including the mass corrections, as it
has been done in this paper for the strong contribution.
Only in the nucleon case, with a nonrelativistic DA, this
calculation has been performed by Ji and Sill [19].

In our treatment we will follow, expand, and update
the analysis made by Carimalo in Ref. [12]. After a
general discussion of these corrections, we shall con-
sider, from two diferent points of view, their estimation
(strongly dependent on the baryon em form factors) and
their contribution to a, limiting ourselves to the case of
the nucleon. In fact, for the other octet baryons both ex-
perimental and theoretical knowledge of the form factors
is too poor to allow a sensible phenomenological study.

We first try to give a full theoretical prediction for a
in the framework of our model. As we said before, at
present this is possible only for the nucleon and with a
nonrelativistic distribution amplitude. However, we must
not forget that nonrelativistic DA's give results far &om
the experimental ones for the em hadron form factors
(which are generally underestimated and given, in some
cases, with the wrong sign [1]). So, we must take the
nonrelativistic case as the only one for which at present
our model can give a full estimate of a, together with
indications on the weight of em contributions, waiting
for more reliable calculations of mass correction eKects
to baryon em form factors in the near future.

Next we shall consider these efFects from a more phe-
nomenological point of view, trying to estimate their or-
der of magnitude from the available experimental results
on the decay widths of the J/@ into BR and e e+ pairs,

respectively.
The reduced amplitudes defined in Eq. (8), including

em contributions, may be written as follows:

(49)

where both em contributions are of order (n/n, ) with
respect to the strong one, and all other higher order con-
tributions in (n/n, ) are neglected. The term emi corre-
sponds, for the hard scattering among the valence quarks,
to Feynman graphs like those of Fig. 1, where a gluon is
replaced by a photon; there are three topologically dis-
tinct graphs in this case, because we can replace each
gluon by a photon. The contribution em2 represents the
decay of the J/g into a single virtual photon which in
turn is directly (through the timelike em baryon form
factors) coupled to the final baryon pair. Figure 2 shows
the Feynrnan graphs pertinent to these terms.

Let us consider, first of all, the em' contribution. It is
not difFicult to see that, for the elementary, hard scatter-
ing amplitude, we have

T' '= —— QT'=—b T'
5 o., (51)

~q& Q2) ~q2 Q3) ~q3

m2 m3

kg, a
"

k2, 6

nl n2

B)

B)

FIG. 2. The two Feynman graphs which describe the lead-
ing (in n/n, ) electromagnetic corrections to the QCD lowest
order term (see Fig. 1). (a) The contribution em', obtained
by substituting one of the virtual gluons in Fig. 1 with a pho-
ton. There are two other contributions, obtained by replacing
each of the other two gluons with a photon (see Fig. 1 for the
notation). (b) The contribution em2, coming from the direct
coupling of a virtual photon produced in the QQ decay with
the final baryons.

T- = ———eT4 o.

5 o.,
where e, is the electric charge, in units of the proton
charge, of the ith quark, to which the virtual photon is
coupled, and T' is given by Eq. (16). As we said, there
are three contributions like this, which sum up to give



MASS CORRECTIONS IN J/f~BB DECAY AND THE ROLE. . . 3497

Here Qs = ei + e2 + es is the baryon electric charge
(in units of the proton charge); we have also defined the
constant bs (h~ = 0 for neutral baryons and h~ +10
for Q = +1 baryons). The subsequent steps which lead to
the physical amplitudes A are the same as for the strong
contribution, so the same relation of Eq. (51) applies also
to them:

A~~ ——b~ A+~ (52)

M~ ~ i i, (es = ps ——0)

(F, +k F, )3 Wp

x 2bx x bx. w, bx w + 2e bg w, b

+ Il, (1 —4e')4. , &.8z & )H

(53)

The case of the em2 contribution is more subtle. First
of all, given that the virtual photon couples directly to
the Gnal baryons, there is not an equivalent of the hard
elementary amplitudes T, as in the preceding cases (or
better, this step of the calculation is hidden in the baryon
forin factors). Then we must start from the decay of
two &ee c, c quarks into the final baryon pair, which is
described by means of the M amplitudes we de6ned, for
the strong contribution, in Sec. III.

It can be seen that

a
1 —p+ a' (1+p)
1+p+ a' (1 —p)

(60)

where we have defined

It is easy to check that these results reproduce the
corresponding massless results, when s„„-+0 (see, e.g. ,
Ref. [25] and references therein). However, we point out
that mass corrections seem to be greater than expected,
in that in some cases the higher order terms in e„areI i

larger than the leading ones. We never encountered such
a situation in our own calculations of mass correction
effects.

By insertion of these results (at s = M&2) and Eq. (52)
into Eq. (49) we can estimate the value of as and its
variations with respect to the calculation made only with
the strong contribution. The results are reported in Ta-
ble IV, together with the values of the decay widths
I'(J/vP -+ BB), both for the proton and the neutron.
We see that percentual variations of a~ with respect to
the pure strong contribution case are almost negligible:
the effects of em contributions seem to be much smaller
than those due to the choice of different DA's, see Table I.

Let us consider now what can be said on the em con-
tributions from a phenomenological analysis, based upon
the experimental information on some ingredients of the
model.

From Eqs. (12), (49), (52), (54), and (55) we can see
that

where k is the baryon anomalous magnetic moment and
Ez 2 are the well known Dirac and Pauli baryon form
factors, respectively, at q = M+.

Then, from Eqs. (13), (14), (20), and (21) we obtain

(I + zx+P=
& 1+*+—) (61)

29/2
A+ ' = vr n~B, (0)~ GM+ 3

'
My

(54)
(I +a ) / GBz= 2 (I —a') G

(62)

25
++

— ~'n~a. (0)~ s Gg
My

where G~ —— Fx + A:gy F2 and G@ = Ei +
(q /4m )k~F~+ are the Sachs baryon magnetic and elec-
tric form factors, respectively, again at q2 = M&2.

We are now equipped with a formalism for calculat-
ing a including the leading electromagnetic corrections.
Unfortunately a model consistent evaluation requires the
analytical expressions for the baryon form factors includ-
ing mass--corrections, which at present are available only
in the particular case of the nonrelativistic DA.

From the paper of Ji and Sill [19] we find

and

gem2
+

&+~. x (63)

We see then that in order to estimate a~ we need to
know a' and the ratios Gg/GM and x+ . a' has been
evaluated in Secs. III and IV, while for the two ratios we

must resort to experimental information.
Experimental estimates of x+ can be obtained as fol-

lows: from Eqs. (15), (49), (54), and (55) we can write

G~M(s) = 54F~vr n, —(—3 —78'„+ 136'„)

Ga(s) = 54FNm n, —(—11 —24' + 48s4)

GM(s) = 18F~vr n, —(9+ 140s„—272s„)
S

G@(s) = 108F'~m n, —(7 —10s )

(56)

(57)

(59)
0.696
0.677

b.am(%)
1.2

—1.4

10 I'~~(GeV)
0.002
0.002

TABLE IV. Theoretical predictions for a~ and the decay
width I's~(J/Q ~ BB), including em corrections, for the
proton and the neutron. The 2nd column gives the percentual
variation of a~ with respect to the pure strong contribution.
Only the nonrelativistic DA is considered, and the results of
Ji and Sill [19] for the nucleon em form factors are used.
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a ~I' = I'..(1 —4 '
)
'i'

i
G

G~ '
11+
EM

(64)

= I'(J/g m BB), I'„= I (J/Q m e e+,

we can evaluate x+, once GM anFrom Eq. (64) we
. We take the experimentalG ~G have been given. e a e

oton case. Very recently theLet us first consider the proton case.
ma netic form factor at q

~

= 0.026 + 0.002 (L

perimental resu ts on

d h t to leading order in o.„GM q
0.012. This does not seemGP~(q = —M~)

case [30j).
e onl uantity we require which

th t th's relation can beg
he kinematical regime o in eresverified in the

l take this ratio as a freethis reason, wee will subsequent y a e
tions of its valuefor reasona e varia io

od to d haround the expected, empirical one, in or er o
e of a from this uncertain y.

d th l of G+ dur results depen on e

h statistics in order to derive separa eenoug s a is
G . So in our p enomenh enological analysis we

G" G h b fi dows: once the ratioP
alue we can estimate M om e e

ta see E . (4) and Table Io e .
R f. [30j t get the form factorso ge

f T bl'V8 = M . The first two columns o a e
a and percentual variation with respectrected values of a„and p

to the pure strong contri uution w en use is m

G" G 1/pp. We can see that emx/ M = &p.
e relevant, and we pro a y ccorrections can be re e
corn lete evaluation o aglect them in a comp
ese estimates depend on ethe theoretical

stron contribution see qs.
fL o thom the sprea o az o

owever, since we cover a a
t e trong contribution, we ipo g

de of em corrections can e saorder of magnitu e o
. These estimatesmated to e ob f 5—10 % for the proton. e

ust aken as upp er limits.
g e variation o a„as a un

and for some indicative s.ratio G~/GM an
s to the possi e exp bl xpected behavior,tral value correspon s

Fi . 3 that our previ
odified; only for big varia ion

l oG" G" ratio from e e
nt differences. Our conc us

of a with respec 0 pfull range of variation o „h
order of 0—15 %%uo.

ental informatione neutron the experimenIn the case of the ne
e limit ourselves toan for the proton. e imiis also poorer t an

olo ical behavior of theate well known phenomeno ogica eextrapolate we
rm factors to t e inema

'atic region q

= M2 T}1 land GM/p — M pp,
able V show the correspon inding results for
centual variation wi res

. We see that this time em correc-
ecrease of a, because

variation, this is s ig yA fo
case and in the range o

lt h l d lwe o no rept port here the resu ts, we ave

1.0

0.8

0.4

a obtained by adding to theTABLE V. Results for a„, o ann'"""'"'-'""'""' '.".
d DA „,...;d„,'d Th,em correc ions.

l es are 6xed by using,
when available, experime

d ~ text for details).n under study see exto the kinematical region

0.2

0.0
0

. . . I, ,

0.8
I. . . , I

0.4 0.6
I I I I I I

0.8
P

DA
nr
as
CZ

COZ
KS
GS
het

a„
0.725
0.708
0.620
0.623
0.645
0.956
0.726

Gap(%%uo)

5.3
5.9

10.1
9.9
8.8

—0.7
5.3

0.628
0.605
0.483
0.487
0.517
0.954
0.629

Ea„(%)
—8.9
—9.7

—14.7
—14.6
—13.2
—0.8
—8.9

de endence of the full (QCD+QED) angu-
E . (12)j from the poorlylar distribution paramar ' eter a see q.

The vertical,ratio, in the proton case.known G@/GM ratio, in e
s to the well nown emempirical behaviorsolid line corresponds to 1

ond to the variousDifferent lines correspon o
i u e '

d for the strong contribu-
h cl COZ (d tt d), KS

litudes considere or
nr solid); as (das e

ti diti ih bl fo th COZand het DA results are almost indistinguzs a e
l.and nr ones, respective y.



MASS CORRECTIONS IN J/Q~BB DECAY AND THE ROLE. . . 3499

for the neutron how em corrections change when GM and
G~&/GM are allowed to vary around the empirical values
given above. We And again a situation similar to that of
the proton, possibly with a greater spread of variation.

VI. CON CLU SION S

The study of exclusive processes involving hadrons
at high energy scales, in the &amework of perturbative
QCD models, has made big improvements in recent years.
However, several problems remain open and question-
able, given that almost all the experimental information
concerning exclusive processes is at intermediate energy
scales. In such a situation, several higher order correc-
tions may not be negligible and can contribute signif-
icantly, at least for those processes that are forbidden
to lowest order in the PQCD models, but are experimen-
tally well established. Unfortunately the implementation
of these higher twist efFects is very intricate, and only
very recently significant progress has been made. Among
these contributions, mass correction effects for the va-
lence constituent quarks of the light hadrons involved are
very promising. In fact, if &om one hand a more rigorous
theoretical explanation of their exact origin is required
and auspicable, on the other hand their implementation
is relatively easy and &ee of ambiguities: once their con-
tribution is taken into account there are no &ee param-
eters to be Axed, and everything goes on without any
further assumptions. A number of exclusive processes
(in particular charmonium decays) have been analyzed
in this &amework in recent years, and several interest-
ing consequences, experimentally testable at present or
in the near future, have been proposed to check the va-
lidity of this model as compared to the PQCD ones or to
alternative models including higher order effects. In this
paper we have analyzed the effects of mass corrections on
the angular distribution of octet baryon pairs created in
J/Q decays. Even if experimental measurements of these
angular distributions have, for the moment, low statistics
(at least in some cases), we hope they can be improved
in the near future.

This was also the subject of an earlier paper by Cari-
malo. However, Carimalo used, as a 6rst approach, a sim-
plified, nonrelativistic model for the produced baryons.
Over time it has been shown that the behavior of light
hadrons, like the octet baryons, probably demands more
accurate models of the baryon distribution amplitudes,
like those we have considered here in a more general con-
text. Prom a theoretical point of view, there are several
reasons why the study of these angular distributions is
interesting. First of all they are governed by a parame-
ter which is given as a ratio of helicity amplitudes. As
such, this parameter turns out to be quite independent'
of some details of QCD models presently at our disposal,

details which are not fully understood and can modify
sizably the numerical results (albeit not the qualitative
ones). Secondly, as we have shown, this parameter is suf-
ficiently sensitive to the precise form of the distribution
amplitudes to allow a discrimination among their main
features, as soon as higher precision measurements will
be available. Considering all the available models for the
distribution amplitudes (mainly based on QCD sum rule
calculations) we have shown indeed that the spread on
the a~ values due to the change of the DA is of the order
of 10—20 % in the nucleon case. Little is known about
the DA's of the other octet baryons. Whenever possi-
ble, our calculations show an even larger dependence of
a &om the exact form of the DA, varying in the range
of 20—50%. Therefore a more accurate measurement of
a could allow us to discriminate among different model
DA's.

We have also considered in detail the role played by
electromagnetic corrections. In fact, we cannot evaluate
exactly these corrections at present. However, we give
reasonable upper limit estimates of these contributions in
the nucleon case, making use of all the possible available
information, both theoretical and experimental.

Theoretical estimates (using a nonrelativistic approxi-
mation for the final baryon distribution amplitudes) sug-
gest that em corrections could be negligible, both in the
proton and neutron case.

On the contrary, we estimate from a phenomenological
analysis that em corrections could be of the order of 5—
10 % for the proton and of 10—15% for the neutron. In
the proton case em corrections tend to increase the value
of a~, while for the neutron they produce the opposite
effect. In both cases, these corrections could be com-
parable to the modifications induced in the pure strong
contribution a' by different choices of the DA.

We can say very little about em corrections for the
other octet baryons, since little is known about them,
both experimentally and theoretically. So we limit our-
selves to report, when possible, the pure strong contribu-
tion.

Of course, only more precise experimental information
on the em baryon form factors could allow one to eval-
uate the exact contribution of em effects. Alternatively,
the form factors could be evaluated in the framework of
our model (including mass corrections), and a more con-
sistent, theoretical result could be obtained. We leave
this as a subject for future work.
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