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The non-Abelian analogue of the Landau-Pomeranchuk-Migdal eKect is investigated in pertur-
bative +CD. Extending our previous studies, the suppression of induced soft bremsstrahlung due
to multiple scatterings of quarks in the spinor representation is considered. The effective formation
time of gluon radiation due to the color interference is shown to depend on the color representa-
tion of the emitting parton, and an improved formula for the radiative energy loss is derived that
interpolates between the factorization and Bethe-Heitler limits.
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I. INTRODUCTION

Ultrarelativistic heavy ion collisions at future collider
energies of the BNL Relativistic Heavy Ion Collider
(RHIC) and CERN Large Hadron Collider (LHC) are
expected to reveal novel QCD dynamics not accessible
at present fixed target energies. When the transverse
momentum transfer involved in each nucleon-nucleon
collision is small, pT + AQcD, efFective models based
on meson exchange and resonance formation are suK-
cient to describe multiple interactions between hadrons.
Those interactions lead to collective behavior in low-
energy heavy ion collisions as first observed in experi-
ments [1] at the LBL collider Bevalac and recently at
energies reached at the BNL Alternating Gradient Syn-
chrotron (AGS) [2]. When pT becomes large enough to
resolve individual partons inside a nucleon, the dynam-
ics is best described on the parton level via perturbative
QCD. Though hard parton interactions occur at energies
reached at the CERN Super Proton Synchrotron (SPS)
(Ei b ( 200A GeV), they play a negligible role in the
global features of heavy ion collisions. However, at col-
lider energies (E, ) 100A GeV) the importance of
hard or semihard parton scatterings is clearly seen in
high-energy pp and pp collisions [3]. They are therefore
also expected to be dominant in heavy ion collisions at
RHIC and LHC energies [4,5).

Since hard parton scatterings occur very early ( 0.01
fm/c) and their rates are calculable via perturbative

*Permanent address.

QCD (PQCD), we proposed in [6,7] that high pT par-
ton jets could serve as a unique probe of the quark-gluon
plasma formed due to copious minijet production over
longer time scales () 0.1 fm/c). The systematics of jet
quenching provides information on the stopping power,
dE/dz, of high-energy partons in dense matter [8]. The
stopping power is in turn controlled by the color screen-
ing scale p in the medium. Thus, jets provide information
on that interesting dynamical scale in deconfined matter.
At very high energy densities, that scale is expected to be
large compared to the confinement scale [9]. At temper-
atures T &) T, for example, we expect p gT )& AQQD.
In that case, most partonic interactions have high mo-
mentum transfers and perturbative QCD methods may
apply to the calculation of multiple collision amplitudes.

In Ref. [10] a systematic study of QCD multiple col-
lision theory was initiated with the aim of deriving
the non-Abelian analogue of the Landau-Pomeranchuk-
Migdal (LPM) effect. That effect, first derived in the case
of QED [11,12], involves destructive interference between
bremsstrahlung radiation amplitudes. It suppresses radi-
ation relative to the Bethe-Heitler formula in kinematic
regions where the radiation formation time is long com-
pared to the mean free path. In QCD a similar effect is
also expected because it mainly follows &om general rel-
ativistic uncertainty principle arguments. However, we
showed in [10] that specific non-Abelian effects influence
the detailed interference pattern in the case of QCD.

The LPM effect in QCD is especially important for
estimating the energy loss dE/dz of an energetic parton
traversing a dense QCD medium. We note that there
exists considerable controversy in the literature on the
magnitude and energy dependence of the energy loss in
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QCD [13—17]. In this paper we extend our derivation in

[10] to clarify further this efFect and improve our previous
estimates of dE/dz

In the next section, we consider in detail the problem
of induced gluon radiation from a spin-1/2 quark suf-
fering two elastic scatterings. This provides insight into
the applicability of the efFective potential model used in
Ref. [10] to calculate multiple collision amplitudes. We
show why radiation &om the target partons is negligi-
ble although such amplitudes are absolutely necessary to
ensure gauge i nvari ance . On the other hand, gauge in-
variance constrains all gluon propagators to be regulated
by the same screening mass in the potential model. In
Sec. III, the QCD radiation interference pattern is shown
to be expressible as a function of an effective formation
time that depends on the color representation of the jet
parton. In Sec. IV, that formation tixne is used to calcu-
late the average radiative energy loss dE/dz and derive
a simple formula that interpolates between the factoriza-
tion and Bethe-Heitler limits as a function of a dimen-
sionless ratio depending on the incident parton energy
E, the screening scale, and the mean free path. Finally,
Sec. V contains a summary and closing remarks.

cross sections of multiple scattering and induced radia-
tion. However, to obtain a gauge-invariant amplitude of
gluon radiation in QCD, every diagram with a fixed num-
ber of Anal gluon lines has to be taken into account, in-
cluding gluon radiation from the target parton line. Ra-
diation &om target partons cannot be described by the
above static model potential. The relative importance of
difFerent diagrams to the net energy loss depends on the
choice of the gauge. In the light-cone gauge one expects
radiation &om target legs to be negligible as compared
to that &om the high-energy beam parton.

To estimate the importance of target radiation to the
energy loss of a fast parton and to see how the gauge in-
variance constrains the potential model, consider the sim-
plest case of induced radiation from quark-quark scatter-
ings. The Born amplitude for (p, , k;) ~ (pf kf) through
one-gluon exchange is

'u(pX) y~~(p') 11(kX)~"11(k*)
AA' BB'

(k

where A, A', B, and B' are the initial and Anal color
indices of the beam and target partons, respectively. The
corresponding elastic cross section is

II. POTENTIAL MODEL AND GAUGE
INVARIANCE

dO.e~ (1) 2' A 8 + CL

dg

To analyze multiple parton scatterings and the induced
gluon radiation, certain simplifications have to be made
for the interaction. Consider the scattering of a high-
energy jet parton in a color-neutral quark-gluon plasma.
If the average distance Lz = A between two successive
scatterings is large compared to the color screening length

)) p, the eBective average random color field pro-
duced by the target partons can be modeled by a static
Debye screened potential:

rad p (4)

then gauge invariance implies that

where C,)
——CF/2N = 2/9 is the color factor for a

single elastic quark-quark scattering and s, u, and t are
the Mandelstam variables.

For induced radiation, there are all together three
groups of diagrams as shown in Fig. 1. If we rewrite
the three amplitudes as

e—xq.x
I AA'(q) = &AA'(q)e ~TAA q2 + p2

3

) m~'lk" = 0,

where p is the color screening mass and T are the gener-
ators of SU(3) corresponding to the representation of the
target parton at x. The initial and Anal color indices A,
A' of the target parton are averaged and summed over
when calculating the ensemble-averaged cross sections.
This model potential was used in Ref. [10] to calculate

I

where e and k are, respectively, the polarization and mo-
mentum of the radiated gluon. In the soft radiation limit,
we can neglect all the terms proportional to A ~ in

~ (~)

which does not contribute to M„' k)'(k = 0). The com-
plete and gauge-invariant amplitude for induced gluon
radiation is

*
( ')BB

- p;

(T T )AA, — * (T T )AA' TBBy
Q~ Pf) ' f

+. . . , I'. (&y —&;) —~ by —n;)I~-»), ,

where b is the color index of the radiated gluon and

b
CAAy BBy ——[T,T ]BB'TAAy —— TBBy[T,T ]AA'—
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P1

(b)

xP+ )) M )) q~. By requiring both of the final quarks
to emerge on mass shell, one finds that

g
2

+
M'

(qg —kg) 2
k~~

(1 —x)P+ xP+

The final momenta of the beam and target partons are,
respectively,

» =,, +, k= -(1 *)P+,-(qg —kg) 2

FIG. 1. Diagrams for induced gluon radiation from a single

qq scattering.

are the color matrices associated with gluon radiation
&om the internal gluon line [Fig. 1(c)]. The three terms
in Eq. (6) correspond to the radiation from the projectile
[Fig. 1(a)], target parton [Fig. 1(b)], and the internal
gluon line [Fig. 1(c)]. As one can see, no term alone is
separately invariant under a gauge transformation ~" +
e" + c k". Only the total amplitude is gauge invariant.

In the potential model, one simply neglects the ra-
diation from the target lines and replaces the gluon-
exchange amplitude associated with the target parton,
gTAA, u(ky)p u(k;)/(k; —ky), by an efFective potential
g~oAAA, . The potential given by Eq. (1) is regularized by
the color screening mass squared p2. However, in Eq. (6),
if any of the gluon propagators is regulated, gauge invari-
ance is preserved only if all propagators are regulated
with the same mass squared p . In particular, the two
propagators in the internal radiation diagram must both
be regulated by the same scale.

While gauge invariance is manifest only if all diagrams
are added, we now show that, in the A+ = 0 gauge,
only the projectile diagrams contribute significantly to
the radiation of soft gluons in the dominant kinematic
range for the net energy loss. We consider the case that
a gluon with light-cone momentum and polarization,

k = [xP+, ki/xP+, k~],
~ = [0, 2e~. kg/xP+, e~], (8)

p, = [P+, O, O~].

During the interaction, the beam quark exchanges a mo-
mentum

g = [g+, g, qi]
with a target quark which has a typical thermal momen-
tum

is radiated ofI' a high-energy quark with initial momen-
tum

kf = k; —q [M + qz/M, M, —q~].

With the above kinematics, one can obtain the momen-
tum elements of the radiation amplitudes:

pf & pi cJ k~
k py k p; k~

(14)

e. k, (g kg (- ky (p qp' =2 2
k k, (xP+)2 k ky xP+M

In the large xP+ )) k~ limit, we see that the magnitudes
of the matrix elements involving target parton radiation
in Eq. (15) are much smaller than those involving projec-
tile radiation in Eq. (14). As we will see below, the LPM
eff'ect limits the radiation to x ( Ap /P+ and k~ ( p.
Therefore, as long as Ap )) l, the contribution to the
energy loss in the main kinematic range is dominated by
the projectile radiation in this gauge. However, as we
have demonstrated, the small target contributions to the
radiation amplitude are amplified if e" is replaced by k".
As a result of this amplification, those amplitudes can-
not be neglected when considering gauge invariance even
though they can be neglected for calculating the energy
loss.

Taking into account only the dominant contributions
to the radiation amplitude, we have the factorized am-
plitude

a a
AA' BB'

kg qg —kg
Rx 2igE L

'
2 + 2 TAA'[T, T ]BB'y

k~2 qg —kg 2

(16)

where M, ~ is the elastic amplitude as given in Eq. (2)
and 'Rz is defined as the radiation amplitude induced by
a single scattering. For later convenience, all the color
matrix elements are included in the definition of the ra-
diation amplitude Xq. With the above approximations,
we recover the difFerential cross section for induced gluon
bremsstrahlung by a single collision as originally derived
by Gunion and Bertsch [18],

k, = [MMO~],

with M T in the plasma rest frame. We focus on
the limit defined by x (( 1, however, with the condition

dCT

(Adgd k~

do-. i dn(')

dt dyd2k&'

where the spectrum for the radiated gluon is

(17)
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dn('~

dyd2k~

1 2 C~n, q~

2(2vr) C,
&

'7r kg(qJ kJ )

(18)

' "' (T'T.)k. py

' (T T )@~I T~~i. (19)
k p,.

The corresponding gluon spectrum is [in addition to a
factor 1/2(2') s]

(,)
/'R[' = C~

el

- 2
E py C~ E p& 6 py+ 2
k pg 2 k p; k. py'

(20)

where C~ = (K —I)/2K and C~ = N are the second-
order Casimir invariants for quarks in the fundamental
and for gluons in the adjoint representation, respectively.
Note that the first term is identical to gluon radiation in-
duced by an Abelian gauge interaction like a photon ex-
change and does not contribute to the gluon spectrum in
the central rapidity region due to the destructive interfer-
ence of the initial and final state radiations. The second
term arises &om the non-Abelian interactions with the
target partons and is the main contribution to the cen-
tral region.

Another non-Abelian feature in the induced gluon radi-
ation amplitude, Eq. (16), is the singularity at k~ = q~
due to induced radiation along the direction of the ex-
changed gluon. For k~ (( q~, we note that the induced
radiation &om a three-gluon vertex can be neglected as
compared to the leading contribution I/k&. However, at
large k~ &) q~, this three-gluon amplitude is important
to change the gluon spectrum to a I/k4& behavior, leading
to a finite average transverse momentum. Therefore, q~
may serve as a cutoff for k~ when one neglects the am-
plitude with the three-gluon vertices as we will do when
we consider induced radiation by multiple scatterings in
the next section. If one wishes to include the three-gluon
amplitude, then the singularity at k~ ——q~ has to be
regularized. As we have discussed above, the regulariza-
tion scheme has to be the same as for the model potential
or the gluon propagator in der, ~/dt as required by gauge
invariance. In our case, a color screening mass p, will be
used.

In the square modulus of the radiation amplitude, an av-
erage and a sum over initial and final color indices and po-
larization are understood. We see that the spectrum has
a uniform distribution in central rapidity region (small x)
which is a well-known feature of @CD soft radiation [19].
This feature is consistent with the hadron distributions
predicted. by Lund string models and the "string effects"
in e+e three jets events [20,21], all being the results of
interference effects of PQCD radiation. To demonstrate
this a little in detail, let us consider only the radiation
amplitude from the beam quark in Eq. (6):

special case of double scatterings to gain further insight
into the problem. Consider two static potentials sepa-
rated by a distance I, which is assumed to be much larger
than the interaction length I/p, . In the Abelian case, the
radiation amplitude associated with double scatterings is
(see the Appendix)

~@ED ~ i(
e p'= Zg gk. p;

(e p+I
gk p

' px &~,~.,
k. py j

1 24)
~(k) =

cu (1/v —cos 0) k&~
(22)

The Bethe-Heitler limit is reached when L )) 7 (k). In
this limit, the intensity of induced radiation is additive in
the number of scatterings. However, when L « w(k), the
final state radiation amplitude &om the first scattering is
mostly canceled by the initial state radiation amplitude
from the second scattering. The radiation pattern then
looks as if the parton has only suffered a single scatter-
ing &om p,. to py. This destructive interference is often
referred to as the Landau-Pomeranchuk-Migdal (LPM)
effect. The corresponding limit is usually called the fac-
torization limit.

The radiation amplitude in @CD is similar to Eq. (21),
except that one has to include different color factors for
each diagram in Fig. 2. In the high-energy limit, e p;/k .
p, e p/k. p = e.py/k py 2m~. k~/kz. The momentum
dependence of each contribution can be factored out and

where p = (p~&, p„p~) is the four-momentum of the in-
termediate parton line which is put on mass shell by the
pole in one of the parton propagators, xq ——(0, xj ), and
x2 ——(t2, xq) are the four-coordinates of the two poten-
tials with t2 ——(z2 —zq)/v, = Lp /p . This formula
has been recently used to discuss interference effects on
photon and dilepton production in a quark-gluon plasma
[22,23]. We notice that the amplitude has two distinct
contributions &om each scattering. Especially, the dia-
gram [Fig. 2(b)] with a gluon radiated from the interme-
diate line between the two scatterings contributes both
as the final state radiation for the first scattering and
the initial state radiation for the second scattering. The
relative phase factor

k . (x2 —xz) = w(1/v, —cos0)L—:L/v(k)'
determines the interference between radiations from the
two scatterings and is simply the ratio of the path length
to the formation time defined as

III. EFFECTIVE FORMATION TIME (b)

The radiation amplitude induced by multiple scatter-
ings has been discussed in Ref. [10]. We discuss here the

FIG. 2. Diagrams for gluon radiation from the quark line
induced by double scatterings.
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the radiation amplitude for diagrams in Fig. 2 is

'R2 ——i2g 2 T ' T ', T e'"

+ ([T ' T ]T~~), e'"'~~ T ', T '
BB' A1A~ AzA2 ~ (23)

where we have included two color matrices from the po-
tentials and b again represents the color index of the radi-
ated gluon. The radiation amplitude Rom diagrams with
three-gluon vertices has the same phase and color struc-
tures as in Eq. (23), but the momentum dependence can-
not be factorized, since each term depends on the trans-
verse momentum transfer which differs from one scatter-
ing to another. However, since we are interested in the
soft radiation limit k~ & q~ p, the contributions from
internal gluon line emissions can be neglected as shown in
[10]. As we discussed above, however, those amplitudes
serve to provide an effective cutoff (q~) p for k~.

The extrapolation of Eq. (23) to the general case of m
number of scatterings is straightforward with the result

e. kgRm: t2g k2 TA1AI ' ' ' TA

dn~ ~

d d2k ( )
l~-l' = C (k)

d d2k2(2~)'C,

where C,
&

——(CF/2N) is the color factor for the elas-
tic scattering cross section without radiation. C (k),
def1ned as the "radiation formation factor" to character-
ize the interference pattern due to multiple scatterings,
can be expressed as

(") = C-C N):
x —1

C;, + 2 Re ) C;,.'" &* -* l

(26)

where the color coefRcients, as computed in Ref. [10],are

The above amplitude contains m terms, each having a
common momentum dependence in the high-energy limit,
but with different color and phase factors. The above
expression is also valid for a gluon beam jet, with the
corresponding color matrices replaced by those of an ad-
joint representation. In Eq. (24), we also assumed that
all potentials have a color structure of a fundmental rep-
resentation. One can generalize to the case in which
each individual potential could have any arbitrary color
representation. However, our following results on the
gluon spectrum and interference pattern will remain the
same. With this in mind, we have the spectrum of soft
bremsstrahlung associated. with multiple scatterings in a
color-neutral ensemble, similar to Eq. (18),

Cii = C~ CA¹
1

Ci- =— C~CAN for j & i.
2 2CF ( 2CF)

(27)

For a gluon beam jet, one can simply change the di-
mension to that of an SU(N) adjoint representation and
replace C2 ——C~ by the corresponding second-order
Casimir invariant C2 ——CA. We then obtain a general
form for the radiation formation factor for a high-energy
parton jet:

m i —1

C (k) = m —r2Re) ) (1 —r2)' ~ e'" ~ * 'l, (28)
i=1 j=1

where

C+ N /(N —1) for quarks with C2 ——CF,
1/2 for gluons with C2 ——CA.

(29)

Similar to the special case of double scatterings, there
are a few interesting limits for the above general form
of the radiation formation factor and the induced gluon
spectrum. When m = 1, Cq(k) = 1. We recover the
gluon spectrum induced by a single scattering in Eq. (18)
in the small k~ limit. For multiple scatterings in the
Bethe-Heitler limit when I;z ——lz, —z~.

l
)) r(k) for all

i ) j, the phase factors average to zero and. the intensity
of the radiation is additive in the number of scatterings,
i.e. , C (k) m. In the factorization limit, one has I;~ ((.
r(k) for all i ) j. In this case, the phase factors can be set
to unity and the summations in Eq. (28) can be carried
out to give

C-(k) = —l1 —(1 —") ]r2
—[1 —(—1/8) ™]for quarks,
2(1 —1/2 ) for gluons.

In contrast with the Bethe-Heitler limit, the factoriza-
tion limit is independent of the number of collisions as
m + oo, and the radiation formation factor approaches
1/r2 ——2C2/C~. It is interesting to note that the destruc-
tive interference for quarks in the fundamental represen-
tation is so effective that the radiation spectrum induced
by many scatterings is even slightly less, 1/r2 ——8/9, than
by a single scattering. For gluon jets, however, the in-
terference is not as complete as for quarks. The induced
radiation approaches 2 times that &om a single scatter-
ing. Using these values of C (k) = 1/r2 = 2C2/C~ in
Eqs. (25) and (18), the radiation intensity induced by
Inultiple scatterings is proportional to 2C2 as compared
to CA in the single scattering case. The gluon intensity
radiated by a gluon jet is therefore 9/4 higher than that
by a quark due to the interference in multiple scatter-
ings. This dependence of the LPM efFect in @CD on
the color representation of the beam parton is a unique
non-Abelian efI'ect. As we will discuss in the following,
the efFective formation time of the radiation in a @CD
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medium should also take this non-Abelian effect into ac-
count.

To see analytically how C (k) interpolates between
the Bethe-Heitler and factorization limits, let us average
over the interaction points x; according to a linear kinetic
theory. We take an eikonal approximation [10] for the
multiple scatterings so that the transverse phase factors
can be neglected in the soft radiation limit k~ (( q~ p.
In a linear kinetic theory, the longitudinal separation be-
tween successive scatterings, L; = z,+i —z, , has a distri-
bution

turn k~ p the additive Bethe-Heitler region is limited
to rapidities y ( 1n(r2Ay). In general, the radiation for-
mation factor is proportional to m in the limit of large m.
We can therefore regard the radiation as being additive to
the number of scatterings with the radiation from each
scattering simply suppressed by the factor y /(1 + y )
due to the non-Abelian LPM effect. Since this effective
formation time is a result of the unique color interference
efFect in QCD, we should use it in the following to esti-
mate the radiative energy loss by a high-energy parton
traversing a color-neutral quark-gluon plasma.

dP 1

dL, A
(31)

IV. RADIATIVE ENERGY LOSS
which is controlled by the mean &ee path A of the scat-
terings. The averaging of the phase factors,

(
ik (x;—x~)) 1

1 —tA/~(k)
(32)

enables us to complete the summation in Eq. (28). Ne-
glecting terms proportional to (1 —r2) for relatively
large m, we have

y (k) 1 —(1 —2r2)y2(k)
1 + y~(k) y'2[1 + y2(k)]2 (33)

The non-Abelian LPM efFect in QCD is therefore con-
trolled by the dimensionless ratio of the mean &ee path
to an effective formation time,

g(k) = A/LCD(k), (34)

where the efFective formation time in QCD depends on
the color representation of the jet parton and is related
to the usual Abelian formation time in Eq. (22) as

C~ 2coshy
'rqcD(k) = T2'r(k)

2C2 k~

This formula for the radiation formation factor is illus-
trated in Fig. 3 as a function of r(k)/A for the case of
five collisions (m = 5) and shows how C (k) interpo-
lates between the Bethe-Heitler limit for a small value
of 7 (k)/A and the factorization limit for a large value of
7 (k)/A. For radiation with average transverse momen-

AE,~d = d kiddy k~
d2kpdy

x cosh y 0 (A —wqcD (k) )
xo(E —k~ coshy), (36)

where ~q~D(k) is given by Eq. (35), the second 0 func-
tion is for energy conservation, and the regularized gluon
density distribution induced by a single scattering is

dng Ceo.s qg
2

kJ &y 7r k~[(qJ kJ ) + p ]
(37)

As discussed earlier, gauge invariance requires that the
singularity at k~ ——q~ in Eq. (18) must be regularized
by the same color screening mass p as in the elastic cross
section in the potential model. Since the transverse mo-
mentum transfer q~ is the result of elastic scatterings, we
have to average any function f (q~) of q~ by the elastic
cross section:

We now apply the effective formation time to derive
a simple approximate formula for the induced radiative
energy loss extending our previous result in [10]. As
shown in the previous section the radiation spectrum
is given by Eq. (18) multiplied by the radiation forma-
tion factor Eq. (33). That factor simply restricts the
additive kinematic region to ~clgD(k)/A ( 1 and the
the incremental change in that factor for each succes-
sive collision can be approximated by a pocket formula
dC (k)/dm = 8(A —~QcD(k)) (see Fig. 3). The additive
radiative energy loss for each collision beyond the first,
one is then

(f(«)) = — ~«; f(«)
0~ 2 dqg

where 8 —6ET is the average c.m. energy squared for the
scattering of a jet parton with energy E off the thermal
partons at temperature T. For the dominant small angle
scattering, the elastic cross sections are

0 1 2 3 4 5
w(k)/X

FIG. 3. The radiation formation factor C (k), m = 5, as
a function of T(k)/A = 2cosh(y)/k~4 for quarks (solid line)
and gluons (dashed line).

dO~ 2K&

dqg q~
(39)

where C; = 9/4, 1, and 4/9, respectively, for gg, gq,
and qq scatterings. This average can be approximated
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by replacing q& in the numerator of Eq. (37) with its
average value:

3ET
(~ )=»

2@2
(40)

(41)

In the denominator, we simply replace q& by p after
the angular integration. The remaining integration in
Eq. (36) over the restricted phase space approximately
leads to the simple analytic formula

was absent in our derivation in Ref. [10] since there only
the contribution &om the very soft k~ ( p region was
considered.

We see that the radiative energy loss dE, ~/dz thus ob-
tained interpolates between the factorization and Bethe-
Heitler limits as a function of the dimensionless ratio (.
In the factorization limit, we Gx pA &) 1 and let E —+ oo,
so that ( )& 1. In this case, we can neglect the second
term in Eq. (44) and have

dE, g C2o, 2 &2r2EI
dz vr i p2A)

'

r2E Kr, E)'
Ii ——ln + 1+

p2A

+ 1+41
r'r2 5

g pA) (pA j

I2=ln + 1+
~

p A /'p, 'A) '
r2E i r2E&

(42)

Thus, the radiative energy loss in the factorization limit
has only a logarithmic energy dependence (in addition
to the energy dependence of (q&)). Because of the non-
Abelian nature of the color interference, the resultant
energy loss for a gluon (C2 ——C~) is 9/4 times larger than
that for a quark (C2 ——C~). In the other extreme limit,
we fix E and let pA ~ oo, so that ( (( 1. In this case, the
mean &ee path exceeds the e6'ective formation time. The
radiation from each scattering adds up. We then recover
the linear dependence of the energy loss dE, g/dz on the
incident energy E (modulo logarithms):

2p, ' f 2p') ' dE, g C~a, (q~~) (2p2AI~ Eln (( 1,
dz 2vrA p2 ( r2E ) ' (47)

dE, g

dz
' '(q~)»(6+ v'~+(')

~1
+(lnI -+ 1+ —,

I
(44)

which depends on a dimensionless variable

r2E
p2A

(45)

Since we have used the gluon spectrum from a single scat-
tering in Eq. (18) which is valid for all values of k~, the
full integration over k~ results in the logarithmic energy
dependence of dE, g/dz This logarithm. ic dependence

In the small k~ regime, the phase space is mainly re-
stricted by a small effective formation time 7@CD ( A,
which gives the first term proportional to A. For large
k~, the radiation becomes additive in a restricted phase
space constrained by energy conservation. That region
contributes to the second term which appears to be pro-
portional to the incident energy E. However, in the high-
energy limit the function I2 oc 1/E and hence the radi-
ated energy loss grows only as ln E.

The above derivation assumed that the mean free path
is much larger than the interaction range specified by
1/p. As we shall discuss below, this is satisfied in a
quark-gluon plasma at least in the weak coupling limit.
Therefore, we can neglect the second term in I». For a
high-energy jet parton, E && p, we can also neglect the
second term in I2. The resulting radiative energy loss
reduces in that case to the simple form

as in the Bethe-Heitler formula. In both cases, the ra-
diative energy loss is proportional to the average of the
transverse momentum transfer, (q&), which is controlled
by the color screening mass as in Eq. (40).

To see more clearly how the factorization limit is ap-
proached, we now estimate ( for a parton propagating
inside a high-temperature quark-gluon plasma. From
Eq. (39) and the perturbative QCD expressions for the
quark and gluon densities at temperature T the mean
free path for three quark flavors is

2Ão.' T3
Aq trqqpq + 0qgpg 2 4 x 7((3)

P

2'7t CX T3
Ag = 0'qgpq + cTgg pg ~

2 9 x 7((3)
P 7r

(49)

where ((3) 1.2. We emphasize that the above mean
&ee path corresponds approximately to the color relax-
ation mean free path A, and not the momentum re-
laxation mean free path Az. As shown in Ref. [24],
A, n, A„ is generally the shorter of the two in QCD. The
reason why the color relaxation mean &ee path controls
the radiation pattern is that the color current responsible
for emitting the gluons is coherent only over a distance
scale A, . It takes a much longer path length to stop a
parton. However, unlike in QED, this longer momentum
relaxation mean &ee path is irrelevant for non-Abelian
radiation.

Using Eqs. (48) and (49) and the perturbative color
electric screening mass p2 = 47m, T2, we see that ( ap-
pearing in the logarithms has a common energy and tem-
perature dependence for both quarks and gluons:
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dE1
dz

s/4 d~i 2 Pi
dq~ 2 piv = (q~)oi

2(d
(51)

where v —q&/2cu is the energy transfer of the jet par-
ton to a thermal parton with energy u during an elastic
scattering and (q&2) is the average transverse momentum
transfer given by Eq. (40). Similar to Eqs. (48) and (49),
we have

2(d 2Q)

271 0,'2'T
p

(52)

pq pg 9 2 ITn8 T2 (53)

The elastic energy loss of a fast parton inside a quark-
gluon plasma at temperature T is then given by

37t 0!sT2( 2)
8z 2p

(54)

~4

e2

'0 25 50

E (GeV)
75 100

FIG. 4. The energy dependence of energy loss dE/dz of a
quark with energy E inside a quark-gluon plasma at temper-
ature T = 300 MeV. A weak coupling o., = 0.3 is used. The
solid line is the full expression and the dashed line is the fac-
torization limit of the radiative energy loss. The dot-dashed
line is the elastic energy loss.

r2E 63$(3) E 9 E
for both q and g. (50)

Ap 16' T 2ma T
With the above expression for (, we plot the radiative

energy loss in Fig. 4 as a function of the beam energy
inside a plasma at temperature T = 300 MeV with o., =
0.3. The solid line is the full expression in Eq. (44) while
the dashed line is the factorization limit corresponding
to the first term in Eq. (44). We see that Eq. (46)
approximates Eq. (44) quite well in this parameter range.
The energy dependence of the radiative energy loss is due
to the double logarithmic function in the formula, one of
which comes &om the energy dependence of the average
transverse momentum (qz) in Eq. (40).

The energy loss of a quark in dense matter due to elas-
tic scattering was first estimated by Bjorken [25] and later
was studied in detail [26] in terms of finite-temperature
@CD. For our purpose, a simple estimate taking into ac-
count both the thermal average and color screening will
suKce. In terms of elastic cross sections and the density
distributions for quarks and gluons in a plasma, we have

For comparison, we plot this elastic energy loss in Fig. 4.
In general, it is much smaller than the radiative energy
loss and has a weaker energy dependence (single logarith-
mic).

Using Eqs. (40), (46), and (50), the total energy loss
can be expressed as

dE
dz

dE, 1 dE, g+
dz dz

C2n, 2 3ET ( 9E 3' n,
7I 2p, ( 7l' T 2p,

(55)

It is interesting to note that both the elastic and radiative
energy losses have the same color coefficient C2. For high-
energy partons, the radiative energy loss is dominant over
the elastic one. For E = 30 GeV, T = 300 MeV, and
o., = 0.3, the total energy loss for a propagating quark is
dE/dz 3.6 GeV/fm. Only about 25% of this amount
comes from elastic energy loss.

V. SUMMARY AND DISCUSSION

We extended our previous derivation by considering
the role of gauge invariance and target radiation in the
case of spin-1/2 quarks to improve our estimate of ra-
diative energy loss of a fast parton inside a quark-gluon
plasma. Our main result [Eq. (44)] interpolates be-
tween the factorization and Bethe-Heitler limits, and has
unique non-Abelian properties. The factorization limit is
of course consistent with the general bound [16] imposed
by the uncertainty principle, but reveals a peculiar energy
and temperature dependence of the mean square radia-
tion transverse momentum controlling that energy loss.
The total energy loss is very sensitive to the color screen-
ing scale in the plasma. The double logarithmic energy
dependence of dE, g/dz is the result of non-Abelian as-
pects of the LPM effect in @CD. The same effect should
be responsible for the limited gluon equilibration rate as
discussed in Ref. [27].

Our derivation improves that in [8,10] in a number of
ways. First, an effective formation time rQCD in @CD
radiation was used to account for the color interference
due to multiple scatterings. The dependence of this ef-
fective formation time on the color representation of the
jet parton gave rise to the different color factors, pro-
portional to C2, for the radiative energy loss of a quark
and gluon. In contrast both are proportional to C~ in
the case of a single scattering. Second, the gluon spec-
trum including radiation from both the jet line and the
internal gluon line and regulated consistently with the
requirement of gauge invariance was used. However, Eq.
(44) is still an idealization to the physically realizable sit-
uation in nuclear collisions because a number of strong
assumptions were made in its derivation. The strongest
is the extrapolation of PQCD in a regime g 1 and the
assumption that the interaction range is small compared
to the color relaxation mean &ee path. We are there-
fore left with an explicit dependence on p, in dE/dz since
strong nonperturbative variations of p, (T) occur in the
vicinity of T,. The basic result that dE/dz is propor-
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tional to p2 is, however, very general and consistent with
the uncertainty bounds in [16]. Therefore, in a separate
paper [28], we will investigate the phenomenological con-
sequences of the interesting temperature dependence of
p(T) suggested by lattice calculations.

in Eq. (1), the singularity in A(q) can be neglected and
the integration over t', (with respect to the z direction of
x2i ——x2 —xi ——Lz +. r~) gives us

hÃ' —&g) f 2; -, (s's)( —a')r()"-;(s'*)
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APPENDIX

g(p p) g(p p. )e (P P')' x (Py P)'
2'.

where p = (E, QE2 —E&, E~) is the four-momentum of
the internal line. One can derive the classical Glauber
multiple collision cross section from this amplitude by
averaging and summing over initial and final state en-
semble of the target [10]. In the limit of high energy and
small angle scattering, one can neglect the phase factor in
the above equation and obtain the amplitude [as defined
in Eq. (Al)]

The radiation amplitude within multiple scattering
theory has been derived in Ref. [10] in a general from.
In this appendix we use the radiation induced by double
scattering as an example to demonstrate how the general
formula arises from the multiple scattering theory. We
consider the scattering of a high-energy particle o8' po-
tentials as given by Eq. (1). For simplicity, let us first
neglect the color indices as in the case of @ED. The am-
plitude for a single scattering is then

M(, ) = 27rib(E, —Eg)4vrE fi(E, t), (A1)

fi(E, t) = —,E u-, (pt) @(q)u-. (p')e ""
where E = E, = Ey and the amplitude f (E, t) is defined
such that the differential cross section is given by

f2 (E, t) = — d b [
—y(b—, E)] e*~

2' 2!
(A6)

where 1/2! comes from the different ordering of the target
potentials and q~ ——py~ —p,~ is the total transverse
momentum transfer due to the multiple scatterings. The
eikonal function y, ~, (b, E) is defined as the Fourier
transform of the single scattering amplitude (in addition
a factor i/27r):

d2 QL . b g
(2.)" 2E,"- (")

x g(q~)u, (p, ).

, (b, E)—:—
(A7)

In the definition of the product of eikonal functions, sum-
mation over the polarizations of the intermediate lines is
implied:

d,
=~If(E t)l' ~1 i ~ ~ ~ )~n —1

~~f ~&n —1 ~~n —1 ~n —2 ~~1 i~i (A8)

M(, ) = 2vrih(E, —Eg)( g)—d3E

(2 ),u-, (Pt) A(Pt —&)

x g(P p. )u (p, )e ~(~ Pt)'~1 +(Pf ~)'~2

(A4)

where the energy conservation at each potential vertex
sets the energy of the internal line to E = E = Ey.
Amplitudes involving backscattering are suppressed at
high energies because of the limited momentum transfer
that each potential can impart. When the mean free path
(or distance between two sequential scatterings) is much
larger than the interaction range ( 1/)M) of the potential

and a„oy are the initial and final polarizations which
should be averaged and summed over in the calculation
of cross sections. One can check that with the definition
of A(q) in Eq. (1), the above formula leads to drr/dt =
4' n2/(q2 + p 2)2.

One can similarly write down the amplitude for double
scatterings,

One can generalize the double scattering amplitude to
multiple scatterings and sum them together to get the
total amplitude:

f(E t) = ).f (E t) =
n=l

d b [
—y(b, E)]"e*~-

2vr nf

d2b[1 e
—x(b &)]e'~ b

2'

= 27rib(E, —Ey —(u) u(pt)( —g )
(2) d Eg 3
I'Mi

(2vr) '
x [I" + I'i, + I',]u(p;), (A10)

This is recognized as the elastic amplitude in the eikonal
formalism. One can generalize this to the case of
Pomeron exchange so that one can obtain both the total
and inelastic cross sections for hadron-hadron collisions
[29,30].

For radiation induced by double scatterings, there are
contributions from three different diagrams as illustrated
in Fig. 2. The total amplitude can be written as
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I = '
g(pt —E)2' X2+ Ze q,

x g(1+k —p )
'

g'
p, —k2

xe —~(&+k—p;) xl —i(py —&).x2

dS,
Ib = ' g(pt+4 —E)

(All)

With E = E+ u, the singularity in the second term put
the internal line before the radiation vertex on mass shell
with four-momentum p'. This contribution corresponds
to the initial state radiation of the second scattering.
For the first term in the above equation, we can make
a variable change S' = 8 —k. With /0 ——E, the internal
line after the radiation vertex is put on shell with four-
momentum p. This term can be identified as the final
state radiation of the first scattering. Using identities

(I. —k) 2 + i e I2 + i e

g(g i —i(t—p;) rc —i(pi+I —/) xp, je (A12)

I'. = ' g', g(pt+k —E)
dE,
27r p;+k 2 +z& e =~+

x g(g —p. )e '(& *)' ' '( ~+ &)'"' (A13)

where we have denoted E = Ey ——E; —w. Similarly as in
double elastic scattering, one can integrate over 8, and
obtain

P f(»(+ N) = 2s . » »(

(»(' —F) K»(' = 2s .p' »('

(A19)
(A20)

rb = 8(pt —p) . l(p + k —p') I

+ 8(pf + k p') . , 8(p' —p') I2ip',
'

q k. p')
i@Z)+ik X2 (A21)

one has the amplitude of the radiation &om the middle
line between two scatterings:

E' p;Ir- =4(pt —p) . A(p+k —p') I—
2ip k p;)

—x(p+k —pi) xl —x(py —p) x2
)

r. =+(pt+k —p'), &(p' —p') I

»(', (s.pt ')

2ip (k pt )
—a(p' —p, ).xl —2(py+k —p') x2

)

(A14)

(A15)

r. +rb+r. = —g(pt —p) . g(p+k —p, )2ip.
iP~+ik xq~ek. py'

fs p;x
qk p,

Summing all contributions together, we have the total
amplitude for radiation induced by double scatterings:

where we have used Dirac equations for the spinors and
taken the soft radiation limit (neglecting terms like p' g).
Notice that the four-momenta for the intermediate line
between two scatterings before and after the radiation
are diferent:

—8(pt+k —p') . , 8(p' —p')2iJ'.
1fs. p s.py'),

X ek. p, )~
(A22)

p = (E, E2 —E~~, Ei),

p' = (E + (u, (E + ~)2 —l~~, i.'i )

Define Pii = —(p —p;) . xi —i(py —p) w2 ——p, I + IJ
r~+p; xi —py -x2 as the phase factor for double elastic
scattering, the corresponding phase factors in the above
two amplitudes for induced radiation become

= QD+ik zi, Q, = pD + ik . x2,

where we used p', p, +~/v„v, = p, /E and we defined
the time components of the four-coordinates as ti ——0,
t2 ——I/v, . These two terms can be identified with the
initial radiation of the first scattering and the final state
radiation of the second scattering, respectively.

In the amplitude of the radiation from the middle line,
I'b, we can see that there are singularities in both of the
two propagators. They should both contribute to the
integration over 8 . To complete the integration, we may
use the identity (with k2 = 0)

which has two distinct contributions induced by each
scattering. In the high-energy and small-angle scattering
limit, we can neglect the small momentum transfer at
each scattering as compared to the beam energy E. We
also assume the soft radiation limit in which k~ (( q~,
with q~ being the transverse momentum transfer at each
elastic scattering. Substituting the above expression back
into Eq. (A10), the total amplitude factorizes as

~(2) ~(2) ~WED
rad el (A23)

(A24)

with the double elastic amplitude M(&) given by Eq. (A5)
and the radiation amplitude 7Zz by Eq. (21).

In the case of gluon radiation in @CD, we will have
diferent color matrices for difI'erent diagrams in Fig. 2.
With the color indices as defined in Fig. 2, the corre-
sponding color factors for I', I'b, and I' are, respectively,

k). +, ]-i@2+,,]-i t(~ —k)' + 'e]
2k (l —k)

[E'+ ie]
2X. k

(A18)

When taking the high-energy limit, all the contributions
have a common momentum dependence, e . p;/k p;
&'p/k p —e py/k py 2(& k&/k&. One can immediately
arrive at Eq. (23).
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