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Intrinsic transverse momentum and the polarized Drell-Yan process
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In this paper we calculate the cross section at leading order in 1/Q for polarized Drell-Yan
scattering at measured lepton-pair transverse momentum QT, using a field theoretical parton model
approach. We find that for a hadron with spin 1/2 the quark content at leading order is described by
six distribution functions for each Bavor, which depend on both the light-cone momentum fraction x
and the quark transverse momentum kT. These functions are illustrated for a free-quark ensemble.
The cross sections for both longitudinal and transverse polarizations are expressed in terms of
convolution integrals over the distribution functions.

PACS number(s): 13.85.Qk, 13.88.+e

I. INTRODUCTION

The measurements of unpolarized structure functions
in deep inelastic scattering (DIS) of leptons off nucleons
and nuclei and those of polarized structure functions in
scattering of longitudinally polarized electrons off longi-
tudinally polarized nucleons [1] have yielded the light-
cone momentum distributions fi(x) for quarks in vari-
ous targets and the helicity distributions gi(x) in pro-
tons and neutrons. These measurements, and particu-
larly their interpretation, have shown the importance of
understanding the relation of these distributions to the
structure of the target. The distributions fi (x) and gi (x)
characterize the response of the hadron in inclusive DIS
at leading order in the transferred momentum Q. In in-
clusive deep inelastic lepton-hadron (III) scattering the
quark transverse momentum is not observable, since it is
integrated over. In the Drell-Yan (DY) process at mea-
sured lepton-pair transverse momentum Q~, however,
the quark transverse momentum does enter in observ-
ables, notably in the angular distribution af the lepton
pairs. The main point of this paper is the discussion of
quark transverse momentum in polarized Drell-Yan scat-
tering. We will restrict ourselves to leading order and
discard contributions which are suppressed by orders of
1/Q. We will also not discuss QCD radiative corrections,
giving rise to logarithmic corrections.

For inclusive deep inelastic ZH scattering, assuming
only one Havor, the hadron tensor is given as the imag-
inary part of the forward virtual Compton amplitude,
for large virtual photon momentum q (Q = —q large)

given by the sum of the quark and antiquark handbag
diagrams of Fig. 1. The basic object, encoding the soft
physics of the quarks inside the hadron, is the correlation
function [2,3]

d4x
4,, (PS; k) = e*"' (PSig, (0) g@,(x) ~PS)c i

fi(x) = —jdk d kT Tr p+O(PS;k) (1.2)

where x = k+/P+. It can be interpreted as the longitu-
dinal (light-cone) momentum distribution of quarks. The
function gi appears as

where k is the momentum of the quark and Q
i exp[ —ig I ds" A„(s)] is the path ordered exponential
(link operator) needed to make the bilocal matrix ele-
ment color gauge invariant. The vectors P and S are the
momentum and spin vector of the target hadron. Evalu-
ating the hard part, the scattering of the virtual photon
off the quarks, it turns out that the structure functions
in the cross section become proportional to fi(xB;) and
gi(xB;), where xBj = Q /2P. q. The function fi is given
by

ps c(ps;k) ~ ps
I
I

&I;, k+

PS i 4(PS; k) )—PS
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Another often used notation is q(x) for the light-cone mo-
mentum distribution and Aq(x) for the helicity distribution

(q = u, d, s, . . .).
FIG. 1. Quark and antiquark handbag diagrams for inclu-

sive DIS.
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and can be interpreted as the quark helicity distribution
in a longitudinally polarized nucleon (helicity A = 1).
The functions fq and gq are specific projections of 4.
Which projections of C contribute in hard scattering pro-
cesses in leading order can be investigated by looking at
the operator structure, including the Dirac and Lorentz
structure, of the correlation function. Such an analy-
sis requires some physical constraints on the range of
quark momenta. The analysis of 4 (integrated over k
and Ie~) shows that there is one more leading function,
the transverse polarization or transversity distribution
h~. It is related to a bilocal quark-quark matrix element
through [6]

kk,
p (

ASA

k. t

I
I

PA SA @a/A

k;)

(a)

FIG. 2. The quark and antiquark Born diagrams for the
Drell- Yan process.

(i = 1, 2), (1.4)

which shows that hq can be interpreted as the quark
transversity distribution in a transversely polarized nu-
cleon. This is a chiral-odd distribution, which is not
observable in inclusive ZH scattering. It needs to be
combined with some other chiral-odd structure, e.g. , the
fragmentation part in semi-inclusive leptoproduction of
hadrons or the antiquark distribution part of DY scat-
tering [4,5,7,8].

In this paper we discuss one possible way to extract
more information &om the correlation function 4. We
are after the dependence on the transverse momentum
kT. One way to study this dependence is the observa-
tion of a hadron in the outgoing quark jet, e.g. , in semi-
inclusive EII scattering [9]. This process, however, also
requires consideration of the fragmentation functions. In
this paper we study the process that is sensitive to intrin-
sic transverse momentum and involves only quark distri-
bution functions, namely, massive dilepton production or
the Drell-Yan (DY) process [10].

About 15 years ago Ralston and Soper (RS) published
a pioneering paper [6] on the polarized Drell-Yan pro-
cess. Because we take it as our starting point, we brieBy
sketch its content. RS write down a covariant expan-
sion for jdk 4, which is the quantity that is relevant in
the hadron tensor for the DY process, diagrammatically
given in Fig. 2. To determine this expansion they use
symmetry arguments and an infinite-momentum-frame
analysis. They find five independent distribution func-

The authors of [4] use the name "transversity distribution"
in order to make clear that a quark of definite transversity
is not in an eigenstate of the transverse spin operator but
of the Pauli-Lubanski operator projected along a transverse
direction. The authors of [5] object to this nomenclature,
because of the preexistence of the term, and prefer to call it
transverse polarization distribution.

tions divided in one momentum probability distribution
'P(x, kT, ), two functions describing the quark helicity, and
two describing its transverse polarization. With these
they calculate the polarized Drell-Yan cross section with
the virtual photon transverse momentum QT = gqT
put to zero. In that case they are sensitive to four of
the five distribution functions. When they integrate over
the transverse momentum they are only sensitive to three
distribution functions.

We extend on these results in two ways. First, we
show that RS left out one transverse momentum distri-
bution needed to describe the quark transverse polariza-
tion. This additional function is obtained using general
symmetry arguments. It also shows up in a model that
we are going to employ later and that describes a gas of
free partons. Our second extension is the calculation of
the polarized DY cross section without constraints on QT
[other than it being of O(A)], thereby becoming sensitive
to all six distribution functions.

We end this introduction with a remark on possible
QCD corrections affecting transverse momenta and fac-
torization. A diKculty of the extra scale QT is the Su-
dakov efFect. Soft gluon radiation gives rise to radiative
transverse momentum. However, the large logarithms
connected with this efFect can be summed and exponenti-
ated to Sudakov form factors [11].From these it becomes
clear that if QT is sufficiently low, i.e. , of hadronic scale
A, as compared to Q, the transverse momentum govern-
ing the process is predominantly intrinsic. Factorization
means that the process can be written as a convolution
of renormalized distribution functions and a perturba-
tively calculable short-distance part. For polarized DY
at measured QT & A factorization has not been proven
yet [12,13]. We will not further address this problem
here, but use the diagrammatic expansion proposed by
Ellis, Furmanski, and Petronzio (EFP) [14] to study the
DY process. In this diagrammatic expansion Green func-
tions appear, incorporating the long-range QCD physics.
These correlation functions are connected by ordinary
Feynman graphs with quarks and gluons, the hard scat-
tering piece.

The outline of this paper is as follows. In Sec. II we
give the one-photon exchange picture for massive dilep-
ton production. We specify the notation in a frame where
the two hadrons are collinear, and the axes are given with
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respect to which the lepton angles are defined. In Sec. III
we analyze the quark correlation function, and find six
leading distribution functions. In Sec. IV we discuss the
&ee-quark ensemble as an example. In Sec. V we cal-
culate the leading-order hadron tensor and present cross
sections for various combinations of polarizations. We
end with a discussion of these results.

II. THE DRELL-YAN PROCESS

In this section we want to discuss the cross section,
kinematic aspects, and structure functions for polarized
Drell-Yan scattering. For a complete overview we refer
for the unpolarized process to Lam and Tung [15], and
for polarized DY scattering to Donohue and Gottlieb [16],
who make use of the Jacob-Wick helicity formalism.

A. The DY cross section

do

d4qdO 28+
L„„R'"", (2.1)

where the lepton tensor is given by (neglecting the lepton
masses

We consider the process A + B + X+ E+ X, where
two spin-2 hadrons with momenta P& and PB interact
and two outgoing leptons are measured with momenta
kz~ and k2. The leptons are assumed to originate from
a high-mass photon with momentum q = kq + k2, with
Q = q ) 0. We consider the case of pure incoming spin
states, characterized by the spin vectors S& and SB~, i.e.,
S&~ ——S&~ ———1. In the deep inelastic limit Q2 and s =
(P~ + P~) become large compared to the characteristic
hadronic scale of order A 0.1 GeV, while their ratio
w = Q2/s is fixed. The phase space element for the lepton
pair can be written as d q dO, where the angles are those
of the lepton axis in the dilepton rest frame with respect
to a suitably chosen Cartesian set of axes. The cross
section can be written as

M~ + ~M~P~ = +, P~, Oz-
2P~ 2 rcQ

M~ QPg — P~, , o~
2P~ 2Kzg

Q
q = zBPg, zAPg, qT

2 K

rQ
)Ozv»~

]ex M2~, o~, (2.5)
2Q

rcQ

neglecting corrections of order 1/Q, indicated here and
further on by an approximate equal. The parameter ~
fixes the collinear frame. One has K = z~M~/Q for the
frame in which hadron A is at rest, v. = gz~/z~ for
the hadron center-of-mass frame, and K = Q/ziiM~ for
the frame in which hadron B is at rest. The following
Lorentz-invariant relations hold:

q+ Q'
&A- P+ 2'. q

Q2&B-
PB 2PB. q

2
8 ~ 2' PB

XgXB

PB. q
')

PB PA

PA q

P~. PB

(2.7)

(2.8)

(2.9)

The above relations also show that all dot products for
any pair from the vectors q, P~, and P~, are of order Q .
As compared to this, the hadron momenta are almost
lightlike. We can define the exactly lightlike vectors that
in a given collinear frame have the form

n+ =—[o, w, o ],
n = [K-', o, o~], (2.1o)

satisfying n+ . n = 1. Given an arbitrary four-vector a,
and the projector

(2.11)

with the third axis chosen along the direction of hadron
A. One has q&2 = Q&2 + A . It is convenient to work in
a light-cone component representation, p = [p,p+, pz]
with p+ = (p + p )/~2. The momenta of the hadrons
and the virtual photon in a collinear frame take the form

L""= 2 k"k + 2 k"k" —Q g"

and the hadron tensor can be written as

(2.2)
we define the spacelikg transverse four-vector a&
g&"a» or, in coordinates in a collinear frame, a~
[0, 0, nz]. Note that for any transverse vector one has

W""(q; P~S~,.P~S~)
d4x e' (PgSg, PgSg[[J (0),J (z)][P/S/, PgSg).

(2~)4

(2.3)

ar. P~ = az PB = o- (2.12)

For the analysis of the hadronic tensor which satisfies
q" TV„„=q W~„= 0, it is important to construct vec-
tors that are orthogonal to q. We will use the projector

Since the lepton tensor (2.2) is symmetric in its indices,
we will &om now on only consider the symmetric part of
TV""

B. Kinematics

— g ~ q qpv pp'

q

for this, and define

a" = g""a = a" — q".a q

(2.13)

(2.14)
We define the transverse momentum of the produced

lepton pair in a &arne where the hadrons are collinear, As q is timelike in DY scattering, it is useful to de6ne a set
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of Cartesian axes. The Z direction, known as the Collins-
Soper axis [17], is chosen as in [6], but our X and Y
direction are opposite. To be precise, we use (e i = 1)

PB ' q -p PA qZ = A BPB PA PA P
PB'q p PA q

APB PA PA 'PB B)

PB Z -p A Z=P P +P P
1

&" ' PAvpBpq~
A ' B

(2.15)

These vectors are orthogonal and satisfy Z ——Q and
X2 Y2 q&2 ———QT, . They form a natural set of space-
like axes (within the dilepton rest frame only spatial com-
ponents). We will denote q" = q~/Q, z~ = Z"/g —Z,
etc. Explicitly, one has, in a collinear frame,

1 K qT
~2~' ~2' Q

1 K
, OT )~2K' ~2'

QT ~ QT eT
~2r. Q

' ~2 Q
'

QT

0, 0, ~

(2.16)

yielding

(2.17)

where y&
——e'~qT~. Note that since Z~ is a linear

combination of the hadron momenta, it has in collinear
frames no transverse components. The transverse vec-
tors aT, thus, are orthogonal to Z. They are, in gen-
eral, not orthogonal to q. One has, for example, qT—
X" —(QT2/Q ) q~. Note that the second term is only
order 1/Q suppressed. For an arbitrary four-vector a we
define the perpendicular four-vector a~ as the projection
of the transverse vector aT, using the projector

ag bg = aT bT. (2.23)

Restricting oneself to leading order, the vectors aT and
a~ can be freely interchanged. In a higher-order study,
however, the difFerence will become important [18].

For the spin vectors the above definitions can be illus-
trated. In a collinear frame the spin vectors, satisfying
PA . SA ——PB . SB ——0, can be written as

P+A
A2P+) AM ) AT

A A

PB MB
~B ) ~B ) SBT

MB 2PB

(2.24)

(2.25)

where AA and AB are the hadron helicities. The two-
component vectors SAT and SBT give the transverse po-
larization. Since we consider pure spin states, they obey

+ ST2 ——1. For the spin vectors we have in a collinear
frame Sz = [0, 0, ST]. The perpendicular spin vector is
given by

SP SP T qT "P
T

Q

, s~+o
/

(2.26)

where the longitudinal components follow from the trans-
verse components by demanding Eq. (2.19), and using
Eq. (2.16). If the spin vector would have been projected
directly onto the XY plane with g&, one would have got

(11 (vl A
g~ 9„= Oi i, Oi —i, ST — qT2xM

(2.22)aI ~~aT ~
~ q 1

provided that aT . qT 1. From this expression it is
evident that for two arbitrary vectors a and 6, satisfying
this condition,

p p~ p q T pa& = g& aT ——aT — q
q

Thus, any perpendicular vector satisfies

a~ q=a~. z=0.

(2.i8)

(2.i9)

+0 ~, ~

. (2.27)
(1)

This difFers from ST in the transverse sector by order 1,
unless QT = 0.

Note that X is the perpendicular projection of q. The
vectors n+ and n, defined in Eq. (2.10), can be ex-
pressed in terms of the set (2.16):

1 (. Qzn+--~ q+z — x ~,
2 ( )

n = (qz- x).1 ( QT„) (2.20)
I

Inserting these into the definitions of the projectors g~
and gT) one derives the relation

C. Structure functions

With the definition (2.15) of a Cartesian set of vectors
orthogonal to q, we can expand the lepton momenta in
the following way:

ki ——zq~+ zQ(sin9cosgi~+ sin8sing y~+ cos8 z~),

k2 ——zq~ —2Q(singcosg x~ + sinesing y~ + cos0 z~).
(2.28)

pv gsv (q 'VT + q qT)
g~ yz

from which one obtains, for a general vector a,

(2.21) Inserting these into Eq. (2.2), and using some trivial go-
niometric relations and the completeness relation g~
qj"q" —z+z —x~x —yl"y ) we obtain
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2

(1+cos 0) g~~" —2 sin 0 z"z + 2sin Ocos2$ (x"x"+ -'g~")

+ sin 0 sin 2P x& "y"I + sin 28 cos P zlx "I + sin 28 sin P zl~y" I (2.29)

where the symmetrization of indices, z&"x &:—z~x + z"x~, is used. The six tensor combinations in Eq. (2.29) are
not only orthogonal to q, ensuring q~I" = 0, but also to each other.

It is convenient also to write the hadron tensor as a sum of products of tensors and scalar functions, called structure
functions. From the properties of the electromagnetic current, one deduces for the hadronic tensor [Eq. (2.3)] the
conditions

q„W" = 0
[W""]*= W""
W .(q;P~ SA +B SB) = W (g PASA PBSB)
Wp„(g; PASAi PBSB) = [W "(gi PASAi PBSB)]

current conservation],
Hermiticity],
parity],
time reversal],

(2.30)

where a = a~. The hermiticity condition, for instance,
requires that the symmetric part of W~ is real. In un-
polarized scattering the constraints imply the expansion

W = —(Wpp —sW2p) g~ + (Wpp+ sW2p) z

—W2 i z "x"I —W22 (x"x"+ 2g~"), (2.31)

where the four structure functions depend on the (four)
independent scalars, or equivalently on Q, x~, x~, and
QT . Since we choose to work with the normalized vec-
tors, the structure functions W2 q and W2 2 contain kine-
matical zeros for X2 —QT, ——0 of first and second
order, respectively. In that they dier from the ones in
RS [6, Eq. (2.5)]. To be precise: our W2 i is QX Z2

times theirs, and our W2 2 is —X times theirs. The
linear combinations multiplying —g& and z~z" are of-
ten referred to as WT and WL„respectively. Inserting
Eqs. (2.29) and (2.31) into Eq. (2.1), one has, for unpo-
larized Drell-Yan scattering,

[2Wp p + W2 p ( s
—cos 0)

28

+W2 i sin20cosg+ W2 2 2 sin icos 2$]. (2.32)

Because of the extra pseudovectors S~ and S~, in polar-
ized Drell- Yan there are several more structure functions.
We will not give them in general. Later we will simply
consider the ones that arise at leading order in 1/Q in
the cross section.

where g = P exp[ —ig f ds~ A~(s)]. We will suppress the
quark label a, the hadron label A, and the connectedness
subscript c, whenever they are not explicitly needed. A
contraction over color indices is implicit.

First, let us consider the projections discussed in the
introduction, in which one integrates over k and the
transverse momentum kT. After these integrations the
nonlocality is restricted to the x direction. Choosing
the lightcone gauge A+ = 0 in conjunction with using a
link operator containing a straight path &om (0, 0, OT ) to
(0, x, OT ), ensures that the correlation function is equal
to a Fourier transform of a single quark-quark matrix
element.

In this paper we want to investigate the kT depen-
dence of the correlation function, thereby becoming sen-
sitive to separations in the x and m~ directions. In that
case one needs (in addition to A+ = 0) to fix the residual
gauge freedom in AT. This can be achieved by imposing
the antisymmetric boundary condition AT(x+, oo, aT)

—AT(x+, —oo, xT) [19,20]. In analogy to the kT-
independent case, one can find a link operator that
becomes unity after thus having completely fixed the
gauge. Explicitly, this link is the average of two path-
ordered exponentials with paths running &om (0, 0, OT)
to (O, x, mT) via x = —oo and x = +oo, respec-
tively, as shown in Fig. 3. In this way we have ensured
that, after gauge fixing, the (k -integrated) correlation
function (3.1) is just the Fourier transform of the single
matrix element (Q(0)@(0,x, aT )).

III. FORMALISM

A. The correlation function

The basic object that contains the soft physics of the
quarks inside the hadrons is the quark-quark correlation
function path 1

(o, ~-, ~ )

path 2

(4 g~);, (P~ S~,.k) =
4

e* '*

(P s I&, (o) &@."(*)IP S ).
(3.1)

FIG. 3. The paths in the link operator vrhich is used in the
definition of the correlation function.



3362 R. D. TANGERMAN AND P. J. MULDERS 51

B. The Dirac structure of the correlation function et(PS;k) = &' 4(PS;k) &'
4(PS; k) = ~o 4(P -S;k) ~'
4*(PS;k) = psC 4 (PS; k) Ctps

[Hermiticity]
[parity]
[time reversal]

In order to analyze the diagrams in Fig. 2 for DY scat-
tering, we need to investigate the Dirac structure of the
correlation function. This can be done by making an
expansion in an appropriate basis. Constraints on the
correlation function come &om Hermiticity, parity invari-
ance, and time reversal invariance:

(3.2)

where the charge conjugation matrix C = ip p, and
k" = k„. Choosing the Dirac matrix basis 1, ip5, p",
p"ps, and io""ps (note that I"t = p I'p ), the most gen-
eral structure satisfying these constraints is

4(PS) k) = Ai 1+ A2 P+ As g+ A4psP'+ Asps[P, P]+ As'Ys[g) $]
+A7 k S esp + As k Spsjt + As k Sps[p, At]. (3.3)

Hermiticity requires all the amplitudes A; = A;(k. P, k )
to be real. Note the presence of the amplitude A9 which
is left out in Eq. (3.4) of Ref. [6].

The basic assumption made for the correlation functiori
is that in the hadron rest kame the quark momentum k is
restricted to a hadronic scale A, explicitly k and k P are
of O(A2). In a frame where the hadron has no transverse
momentum, the momentum k is written as

k'+k~ + „p+ ) 1 T ) (3.4)

with the light-cone momentum fraction z = k+/P+.
The restrictions on k and k - P imply that also' Icr
—k2 + 2xk P —z2Mz is of O(A2). Considering dia-
gram 2(a), one sees easily that momentum conservation
on the hard vertex implies g = k + kb . However,

kb P&, whereas k M&/P&, which is down by a
factor M /Q in any collinear frame. Therefore, for
hadron A, one is led to study J dk 4(PS; k), or equiv-
alently its projections f dk Tr[I'4]. These latter quan-
tities do not carry Dirac indices anymore, but because
of the I' matrices, they do have a specific Lorentz tensor
character. De6ning the projections

@f1] = f d(2k. P)dk'

xb (kT+ k —2zk. P+ x M ) Ai, (3.8)

@'h'+] = fi(»&T)

4'[P Ps] = giL(x, kT)A+ giT (x, kT)+ 2 IcT sT
(3 9)

4 [iver'+Ps] = hiT (z, k T ) S'T

A:T. ST+ ~1L(z& kT)~ + ~lT(z& kT)

contain an iritegral of order 1 multiplied by a factor 1/P+.
In the cross section, this factor will give rise to a suppres-
sion of order 1/Q. In this way it is seen that the leading
contributions come from the Dirac structure where the
number of + components minus the number of —com-
ponents is largest (that is, 1). They are parametrized
as

(3.5)

1 dX d KT exp[i(zP+z —kT . xT)]
2 27r (27r)'

x (PS[7/d(0)I' g@(0,x, xT) iPS) (3.6)

4 [p+] = d(2k P)dk

x h (k2T + k' —2zk . P + z'M') (A, + x A, ),
(3 7)

(with contraction over color indices understood) one has
for instance the vector projection

defining six real distribution functions per flavor, depend-
ing on x and ICT. These encode the leading behavior of
the quark correlation function. In the diagrammatic ex-
pansion for the DY hadron tensor (with the gauge-fixing
conditions for A+ and AT for the lower blob), diagrams
with gluons will appear, involving quark-quark-gluon cor-
relation functions. These correlation functions can be
analyzed in the same way. The contribution of these di-
agrams turns out to be suppressed by one order of 1/Q.

In summary, for a leading-order DY calculation, the
Dirac structure of the quark-quark correlation function
1s

dk @ = —,'@[a+] W + -', @5'+Vs] Vs&

which is of order 1. Other projections, e.g. , the scalar +2@'[d& 8] i'7s& d + (3.10)
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C. Antiquarks

The antiquark correlation function, describing the an-
tiquarks of flavor a, is given by

(C -~w), , (P~sx, k) = 'k*
(2~)4

x(P„S„~q,' '(0) gq. ,' (*)~.P~S&).
(3.11)

where i is a transverse index (i.e., i = 1, 2), and the dots
represent projections that will come in only at O(l/Q).
At the leading-order level, one is left with only three pro-
jections, which have vector, axial-vector, and axial-tensor
character, respectively, and which can be parametrized
by six distribution functions.

f~(x kr) = —f~(—* kr)

and identically for g~T, h&T, and h~z, whereas

~~~(»kr) = »I ( *—kT)

(3.i7)

(3.is)
and identically for h&&

Finally, we note that hadron B can be treated in the
same fashion. However, since we have chosen to work
in the collinear frames where the third axis lies opposite
to the direction of hadron B, the role of the + and-
components for B must be interchanged as compared to
A.

IV. FREE-QUARK ENSEMBLE

For the distribution functions this gives the symmetry
relation

(with contraction over color indices understood). Also
the antiquark momentum k can be written as in Eq. (3.4).
Its Dirac structure can be analyzed likewise. We define
the antiquark projections

1
C[r](x, k ) = — dk Tr C- (3.i2)

1

2

dx d aT exp[i(xP+x —kT xT)]
27r 27r 2

x (PS
~

Tr rg (0) g@(0, x, xT ) ~

PS) .

(3.13)

Using the charge conjugation properties of Dirac fields
and hadron states, we deduce

4-y~ = —C ' (4 g~) C. (3.i4)

Upon demanding charge conjugation invariance of the
distribution functions, i.e. , the quark distributions in the
antihadron A are the same as the corresponding anti-
quark distributions in A, we obtain the expressions

The leading kT-integrated distributions fz(x), gz(x),
and h, q(x), have a parton model interpretation as the
longitudinal momentum, helicity, and transversity distri-
bution, respectively. In this section we show how, for a
free-quark ensemble, this identification can be general-
ized to the ICT-dependent distributions.

It is instructive to calculate the correlation function
for a free-quark target of Aavor a. This is given by

(C'-y-)*~(» k) = ~'(k —I ) ~'4» s)~'(I s)

2 2m +I
2k+ (4.2)

=S'(k-I) (g+~)
I'1+

(4.1)

where the momentum and spin vector are parametrized
as

C'[&+1 = &~(» k~)

ICT STC [p ps) = gal, (x, k~) A —g—gT (x, kz ) (3»)

A:T2 —m' k+ A;Ts=A nI, +s, =A
2mk+ ' m' m

kT-S T
, 0, 8 T (4 3)

O[io'+ps] = h»(x, kT)S*T

kT. ST A:T+ h, l(x, kT)A+ h, T (x, kT)

4;~(PS;k) = —4;~(PS; —k). (3.io)

We note that the anticommutation relations for
fermions can be used to obtain the symmetry relation

We identify the light-cone helicity A, helicity vector nI„
and transverse polarization s | (transverse in the sense
that s & k = s q ng = 0). Note that the light-cone
helicity vector nI„satisfying nI, - A: = 0 and n&

———1,
acquires its conventional meaning [21, Eq. (2—49)], either
if kT ——OT, or in the infinite-momentum limit A:

oo with kT fixed. One checks that A + 8 T ———s
1. With the simple form (4.1) it is straightforward to
calculate the leading projections for a free-quark target
with nonzero transverse momentum:
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&k+
dk Tr[p+4(p s;k)] = b

~

—1
~

&'(&T —pT),
2 &p+ )
1 + (k+dk- T [p+ws4(p s; k)] = b

i

—1
I

~'(&~ —p~) &-
2 (p+ )

(k+
dk T-[z~*+~.@(p ', k)] = ~

i

—1
I

~'(I T —
S T) s'.T.

2 ~p+

(4.4)

This simple example of a quark target can be generalized to the case in which the hadron is considered as a beam
of noninteracting partons of total momentum P and angular momentum S. This is tantamount to inserting free-Geld
plane-wave expansions into the correlation function (3.1). One gets (summing over n, P = 1, 2)

4;,. (PS;k) = 2h(k —m ) 0(k+)uI )(k)Pp (k)ui (k) —0(—k+)v( l( k)'P—p ( k)8—)(—k) (4.5)

The functions 'P and 7 are given by

d 'd2k'
Pp (k) = Pp ('z, ICT)=,{Ps~bt (k')bp(k)~PS),

d 'd2k'
'Pp (k) = 'Pp (x, kT)=,(PS~de(k')d (k)~PS).

(4.6)

(4.7)

The form of quantization one can choose to be instant-
front, as well as light-front quantization, since for free
fields they are equivalent [19]. As for the choice of
coordinates, the use of light-cone coordinates is conve-
nient, because of the integration over A: that is needed
in deep inelastic processes. The Dirac structure can be
parametrized as

-(k) ' '(k) ='P(k)(~+

(4 8)

v(Pl(k)'Pp (k)8l ~(k) = 'P(k)(/E' —m)
~ )

(4.9)

—e(—x)
' (g+ m)

P(—z, k~~)

2k+
r'1+ p5g( —x, —k~) l

)i
(4.10)

in terms of positive-definite quark and antiquark prob-
ability densities 'P(k) and P(k), and spin vectors s"(k)
and s"(k) . Inserting the &ee-field expansion in the cur-
rent expectation value {PS~/(0)p"@(0)~PS) = 2P~(N-
N), where N and N are the total number of quarks
and antiquarks, respectively, one obtains from the +
component the normalizations J' dx jd kT'P(x, kT, )

and Jo dz I d kT'P(x, ICY ) = N. The average
quark spin vector s"(k) is parametrized by the helic-
ity density A (x, kz ) and transverse polarization density
s T(x, kT) by. expanding s" as in Eq. (4.3). A similar
parametrization is used for s~(k) in terms of A-(x, kT )
and s-T(x, kz).

Integrating Eq. (4.5) over k one obtains the result for
a free-quark ensemble:

This gives (for x ) 0)

1
dk Tr[p+4(PS; k)] = P(x, kT),

1

2
dk Tr[p+ps4(PS;k)] ='P(x, kT) A (x, kT),

(4.11)
1
2

dk Tr[ia*+ps@(PS; k)] = 'P(x, kT) s'z, (x, kT).~

~

A comparison with Eq. (3.9) yields

'P(x, k~) = f(x, IeT),

P(x, kT) S~T(x, kT) = hlT(x, kr') Sz

+ hil, (x, kT)A+ h, T, (x, kT, )

kg Sz k'
M M'

which shows how for x ) 0 the functions gir„giT, hi~,
hz&, and hiT are to be interpreted as quark longitudi-
nal and transverse polarization distributions. The func-
tion 6&& was omitted in the paper of RS. Specifically for
nonzero transverse momenta of the quarks, it becomes
relevant. For the antiquarks the same relations hold be-
tween the antiquark probability density P, helicity den-
sity A-, and transverse polarization density s-~, on the
one hand, and the antiquark distributions on the other
hand. Extending to all x, results are obtained in accor-
dance with the symmetry relations in the previous sec-
tion, e g , f(z, kT2. ). = 8(x)P(z, k~2) —8(—x)'P( — k~z). 2

P(x) @T)~a(x) kT) glL(x) @T)~ + g1T(zl kT)

(4.12)
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For on-shell quarks, relations exist between the distribu-
tions due to constraints from Lorentz invariance [14]. The
scalar 'P can only depend on 2k. P = m2/z+M2x+ k&/x
and the pseudovector s" can be parametrized by two
functions depending on the same combination of x and
kz.

We note that for the leading-order matrix elements
the &ee-6eld results can be used to provide a parton in-
terpretation, even in the interacting theory, because the
distribution functions can be expressed as densities for
speci6c projections of the so-called "good" components
of the quark field; @+ = A+@, where A+ ——2p p+. In
light-&ont quantization a Fourier expansion for the good
components (at z+ = 0) can be written down in which
the Fourier coefBcients can be interpreted as particle and
antiparticle creation and annihilation operators [19].The
different polarization distributions involve projection op-
erators that commute with A+ [4].

At subleading order, the analysis of the quark-quark
correlation functions leads to a number of new distri-
bution functions. For free quarks, they can also be ex-
pressed in the quark densities, and thus they can be re-
lated to the leading distribution functions. However, it
turns out that the presence of nonvanishing quark-quark-
gluon correlation functions causes deviations from the
free-field results [18].

V. RESULTS
A. Hadron tensor

The leading-order Drell-Yan hadron tensor with Qz =
O(A) is in the deep inelastic limit after gauge fixing given

W" ,b
= —) db-e* f d k d kb d (k + kb —q)

a,b

xTr[Ck /A(PASA, . k ) p"

x@5/B(PBSB,. k5) p ], (5.1)

where a (b) runs over all quark (antiquark) fiavors, and
e is the quark charge in units of e. The factor 1/3 comes
from the fact that the quark fields in both the correlation
functions are traced over a color identity operator, which
is appropriate since only color-singlet operators can give
nonzero matrix elements between (color-singlet) hadron
states (Wigner-Eckart theorem). However, since the di-
agrams we consider have only one quark loop, one has
only one color summation, leading to a color factor 1/3.
Note that, as in the case of Qz -averaged DY, the choice
of different gauges for C and 4 presents no problems.

Using the boundedness of quark momenta in hadrons
as discussed before, one finds k+ )) kb+ and k& )) k
Thus, the delta function can be approximated by

S'(k. + k, —q) = b(k.+ —q+) &(k; —q )-
xb (le ~+ &5m —qr) (5.2)

It follows that indeed we are sensitive to jdk 4A(k) and
jdk+CkB(k). Furthermore, the trace in Eq. (5.1) can be
factorized by means of the Fierz decomposition

by the quark and antiquark Born diagrams in Fig. 2.
First, we will calculate diagram 2(a), in which a quark of
hadron A annihilates an antiquark of B. It reads

4(V'), 1.(w )i; = &,'&ia+ (~&5),;(~&5)i~ —(g ),;(Z )ia —
(W &5),'(Z &5)i&+, (~~ p&5), '(~~ y5)ia] g""

+(Vf"),*(V"l)i~ + hi"&5),*(v"I&5)i~ + (~~ I"&5),*('~"I &5)iI + (5.3)

where the ellipsis denotes structures antisymmetric under the exchange of p and v. We keep only the leading
projections, as they were found in Sec. III. This leads to

W )
———) db —b f k Td kbTd (k T+kbT lIT)

a, b

x
l
@./A[V+] @'5/B[W ] +@./A[V+~5]@5/B[V &5] I

gz"

1
+@a/A[~+ Y5] @b/B[~+ Y5] gTi gT j gTijg + O

(
(5.4)

where the 4 g~ projections are taken at x = x~ and
k z, the 4~y~ projections at x = x~ and kgb . The next
step would be to insert Eq. (3.9) and their hadron-B
antiquark counterparts. In this leading-order calculation
we may interchange the subscript T by a t where we
wish, because of Eqs. (2.21), (2.22), and (2.23). The
resulting expression contains convolutions such as

They are not of the desired form, since the (perpendic-
ular) Lorentz index is carried by a convolution variable.
In order to write the hadron tensor in terms of structure
functions, the Lorentz indices must be carried by exter-
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nal vectors, like X+. In the Appendix we describe the
method we used to project perpendicular Lorentz ten-
sors, like (5.5), onto the A Y basis. For instance, (5.5)
can be written as (up to order I/Q2)

d'IC T d'@bT ~' k T + IebT —aT + &'T kbT

2 +k2 —k2
(5 6)

)

Before presenting the results, we mention that the an-
tiquark diagram 2(b) can be obtained from the quark di-
agram 2(a) by making the replacements a ~ a, f ++ f,
g ~ —g, h ++ 6, where g is generic for the quark axial-
vector distributions, etc. It is convenient to define the
convolution of two arbitrary distributions dl(x, kT) and

d2(x, kT) (possibly multiplied by an overall function of
k T and k~2T),

I[dld2] —= —) bg-e d k T d kgT b2(k T+kgT —qT)
a, b

X dl (xAI k~T )d2 (xBI kgT )I (5 7)

summing over quark and antiquark Qavors, with the pre-
scription that if its argument is of antiquark (quark) na-
ture, then dl (d2) is to be replaced, either by dl (d2)
if it concerns a vector or axial-tensor distribution, or
by —dl (—d2) if it concerns an axial-vector distribu-
tion. We split up the general leading-order hadron tensor
W" {SA,SB) in four cases, corresponding to unpolar-
ized, longitudinal-longitudinal, transverse-longitudinal,
and transverse-transverse scattering:

W""(0,0)
W""(AA, AB)

W""(SAT, AB)

W "(SAT, SBT)

-WT g~,
(WT + 4+T ~A~B) gJ 4+2, 2 ~A~B(x x + 2gJ )~

T T ( AJ) B]gJ + 22 ( AJ) B( +2gJ )

+2,2 ~B x SAJ (x SA L)gJ

WT IT (SAJ ' SBJ ) + IT (x ' SAJ )(x SBJ ) gJ

+ &2'2 (SAJ . SBJ) —V2', 2 (x. SAJ)(x. SBJ ) (x"*"+—2'gJ )

++2,2 (*.SB L) x "SAJ —(x SAJ )gJ

+U2, 2 (x SA~) x' SBi —(* B~)gi

AJ BJ (S» S»)gJTT 4p v)

(5.8)

(5.9)

(5.10)

(5.11)

where the structure functions, depending on xA, xB, and QT, are given by

WT ——I[fl fl],
IT — 41[glLgl L] I

yLL I )~ + (~ p) li 1L 1L

yTL I ( Q2 ~ + p)
glTglL

2 A T

( —P) ) h,, Il

(5.12a)

(5.12b)

(5.12c)

(5.12d)

(5.12e)

U-TL
22

'V2 TT

Q2 TT
22

{Q' — +P) M
' +

~

Q'{ —P) —2{ ' —P')+
2

I
~

-Q. + -+ P-
T ) 4 A B

(n —P) gTgT
l QT ) 2MAMB

2(~+ P)(~ —P)' (~ —P)'& "1T"1T

(5.12f)

(5.12g)

(5.12h)

(5.12i)

It is seen from Eq. (5.4) that this amounts to replacing A «+ B, rendering a result, symmetric under the exchange of the two
hadrons.
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Vl TT PATT UB TT I 5~2 ( P) ~i ~1T~]T ~~2 (+ P) i 1]TIllT

E

q2( +p) 4 2 4p2+ 5(~+P)(~ —P) 2(n —P) l h~ h

Q4T ) 4MA2MB2
(5.12j)

U'A TT UB TT I f 2 (~ P) ~1T 1T ( 2 (~ P) ~~ h'1Th'1T

(5.12l )

UTT+ lUATT+ lUBTT I h h + 1T 1T + p
1T 1T

2, 2 2 2, 2 2 2,2 1T 1T 2M 2M2
A B(, 2(~+ P)(~ - P)' (~ - P)') h, , t, (5.121)

where n = k T, and P = kt,T. In the last three equations we only gave the combination of structure functions that
will show up independently in the cross section, to be discussed in the next subsection. As for the nomenclature, we
based ourselves on the RS notation, except that we almay8 denote both hadron polarizations by the TL-superindices.
So, for instance, their Vo 0 corresponds to our Vo0, and their U2 2 equals our U2 2 . The subindex T stands for the
linear combination (0, 0) —

8 (2, 0). Note that the hadron tensors (5.8)—(5.11) manifestly conserve the electromagnetic
current, i.e. , q„W" = 0.

B. Cross sections

It is now a straightforward matter to contract the hadron tensor with the angle-dependent leptonic tensor (2.29).
For the four combinations of polarization we deduce the following leading-order differential cross sections:

do (0, 0)
d4qdO

do. (AA, AB)
d4qdO

do(SAT, AB)
d4qdO

d (SAT, SBT)
d4qdO

CI
WT (1+ cos O),28

0!
(WT + 4VT AAAB) (1 + cos O) + 8 V2 2 AAAB sin O cos 2p

28

(WT + VT AB cospA) (1+cos O) + 2V2 2 AB COSTA sin Ocos2$
28

+U2 2 AB sin Ocos(2$ —PA)

WT + VT cos(QA —QB) + VT' cos fA cos fB (1 + cos O)
28

+ 2 V2 2 cos PA cos PB sin O cos 2$

+2(V22 + U22 + U22 ) cos(QA —pB) sin Ocos2$

+ 2 (U2 2
—U2 2 ) sin(QA —pB) sin O sin 2$

(5.18)

(5.14)

(5.15)

(5.i6)

where pA (pB) is the azimuthal angle of SA~ (SB~), i.e. , cospA ———x SA~ = qT . SAT/QT for pure transverse
polarization (~SAT~ = 1). Equation (5.16) shows that the structure functions V2 2, U2 2, U2 2TT, and U2T2 cannot
separately be extracted from the experiment, but only in three particular combinations. This is due to the fact that
the corresponding tensor structures in Eq. (5.11) are not independent, because of the relation

g~~ (2x"x" + g~~") —x~(x&"g~l —x g~~ ) —x (x&"g~l~ —x~g~~ )
—(g~I"g~l —g~~ g~~ ) = 0, (5.17)
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which can be proven by using g& ———x"x —y+y . One
easily checks that the angular functions of Eqs. (5.13)—
(5.16) have no further dependencies.

In order to circumvent normalization problems, in spin
experiments one usually considers the asymmetries

g, (T) = jd'kr g, r ( T, , kg),

2

kl(T) = f g kT klT(Z, kT) + M2 k]g ( TkT), (6.3)2M2

(SA, SB) —&(SA, -SB)
o.(SA, SB) + o (SA, —SB)

(5.18)

For example, the longitudinal-longitudinal asymmetry
follows from Eq. (5.14):

1 VP sin Hcos2$ z
A„A~ —

4
A B gr 1+ cos2 0

(5.19)

where the structure functions can be found in
Eqs. (5.12a), (5.12b), and (5.12c). The angle-
independent term is a generalization of the qT-integrated
longitudinal-longitudinal asymmetry [22].

WT(xA xB) —s ) e f1(xA)fi(xB)
a

VT (xA, *B) s ) e gl(xA)gi(*B),
a

U2 2 (xA, xB) = s ) e hi(xA) hi(xB),

(6.4a)

(6.4b)

(6.4c)

and similar antiquark distributions. This can be seen in
two ways. It is easiest to return to Eq. (5.4) and observe
that the b function is absorbed by the qT integration,
so that the transverse intergrations over k T and kbT
separate. One is left with three independent structure
functions:

VI. DISCUSSION AND CONCLUSION

In this last section we will look more closely into the
results we derived, first by comparing the cross sections
with those integrated over qT, second by considering the
limit QT -+ 0, and finally by considering a Gaussian kT
dependence of the distribution functions.

A. Qx-integrated results

f, (*) = d kT fi(*,kT), (6.1)

If the QT dependence is eliminated by integrating
over the transverse momentum of the produced lepton
pair, one recovers the lightcone momentum, helicity, and
transversity distributions of Eqs. (1.2), (1.3), and (1.4);

with the by now well-known prescription that if a is an
antiflavor, the vector and axial-tensor distributions have
to be replaced by their charge conjugated partners, the
axial-vector distributions by minus their antipartners.
The names of the structure functions in Eq. (6.4) refer to
the Lorentz tensor structure they multiply in the hadron
tensor (and hence the angular distribution in the cross
section). That is, WT in the hadron tensor is the coef-
ficient of —g&, etc. The same expressions are obtained
if one integrates the full results in Eqs. (5.8)—(5.11) over—LL
qT. It is then seen that WT and VT are the integrals of

WT and VT, respectively, but that U2 2 originates fromLL —TT

the combination U TT + 1 UA TT + 1 PB TT + 1 V2 TT
2, 2 2 2, 2 2 2, 2 8 2, 2

Contraction of the hadron tensors with the lepton ten-
sor leads to the following leading-order fourfold differen-
tial cross sections [6]:

do(0, o)
dX~dXBGO

d(T(AA, AB)
dX~dXBdO

do. (SAz, AB)
dz~dXBdO

do (SAT, SBT')
dz~dZBdQ

4 2 WT(1 + cos 0),

2 (WT + -VT AAAB) (1 + cos 6)),

4 2 WT (1 + cos 8),

4 2 WT (1 + cos 8) + U2 z sin 0 cos(2$ —pA —pB)

(6.5)

(6.6)

(6.7)

(6 8)

Note that no absolute azimuthal angles occur, but only the relative angles P —PA and P —PB. Two remarks are in
place here. Comparing with the full cross sections (5.13—5.16), we observe the disappearance of the sin 0 cos 2P-term
in the longitudinal-longitudinal cross section, and hence in the asymmetry (5.19). Second, we see no polarization
dependence in the integrated transverse-longitudinal cross section, and hence no asymmetry. Indeed this asymmetry
is suppressed by a factor 1/Q [4].

H. Qz ——0

Only a few of the structure functions are nonvanishing at QT ——0, the other ones having kinematical zeros (see
also [15]). Therefore, it is worthwhile to consider the limit Qz ~ 0 of the structure functions in Eq. (5.12). In general
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we can do this, rewriting the convolutions in Eq. (5.7) by making a transformation to the momenta kT =
2 (k~T —kbT)

and KT ——k T+ A:aT:

I[did. j
= —,') .~.* jd'I r 4 *~,(~r+ ,'ar)'—d.*a, (~r —2q~)'-

= —) e J d k& d~(z~, kf ) d (z2~, k&) + O(Q&j =—10[dzd2) + O(Q&)
a

(6.9)

(6.10)

assuming the distribution functions to be sufBciently well-behaved to justify the Taylor expansion of the integrand.
For instance, for V2L2L of Eq. (5.12c) one finds, in the limit QT —+ 0 (omitting the flavor sum),

V2, 2 ~ d kT 2kT 2 + 2QT l 1I +»(kT+ 2 IT) hlL +»(kT 2+T)
LL 2 ~l 2 (+T kT) 1 2 ~ J 1 2 J 1 2

d kT (2b';~kT —kT;kT~) hiL(zA) k7) hiL(zB) k7, ) + O(QT) = O(QT).
T

(6.11)

So V2 2 has a kinematical zero of second order, which is the natural behavior, because it multiplies a tensor that is
quadratic in x and y. In the same fashion all structure functions can be treated. Since this is a rather cumbersome
procedure, we will illustrate below the behavior by considering a Gaussian A:T dependence, from which the order
of the kinematical zeros is simply read oK We obtain only four structure functions without a kinematical zero, in
agreement with the results of RS:

lVTlg =o = Io[fifi]
VT g

——4IO[giLglL],

(6.12a)

(6.12b)

V1 TT
T 2M~My)

(U22 + 2U22 + 2&22 ) = I()
l
hiT+ h, T l l

hiT+ hiT l

TT 1 ATT I BTT kT ~ j (- kT
2MA2 ) ( 2MB2

(6.12c)

(6.12d)

An easier way to obtain this result is to start &om
Eq. (5.4), and put QT ——0 from there. One then never
picks up the other structure functions in the 6rst place.
The cross sections at QT = 0 can be obtained by insertion
of these structure functions into the explicit expressions
given for the cross sections in Eqs. (5.13)—(5.16).

where the transverse radius r in principle depends on
both the particular distribution function, and on x. One
can explicitly perform the convolution integration (5.7)
(for simplicity we will omit the color factor and flavor
summation),

C. Gaussian transverse-momentum distributions

I[did2] =
2 2 exp
A+rB ( A+ B)

X d, (xA, 0)d2 (xB, 0), (6.14)

d(2:, kT) = d(x, 0) exp ( rkT), —(6.13)

It is instructive to consider a Gaussian ICT dependence, being regular in QT = 0. One can identify an "average"
transverse size r, given by r = r& +r& . We find, for
the structure functions,

WT = I[fiji],

TL

VT = 4I[giLy iL], —

2, 2 M M (
2 + 2)2 [ 1L 1L]&

M( ~
)
-[""']Mg (r~ + r~)

M2M ( 2+ 2)s

(6.15a)

(6.15b)

(6.15c)

(6.15d)

(6.15e)
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pTL QT rA «h f J QT (rA rB) «J —J
2 2 — 2

2, 2 M y 2 2i ( 1T 1I]+ M M2g 2 2&2 (~lT 1L]&
B ("A+ "B) 2 B A&rA+ rB

V1 TT 1
-2M„M.(,„+,.)

(" " ]

(6.15f)

(6.15g)

2 2 2
y2 TT QT rArB rr

A B (~A + ~B~
(6.15}1)

4 2 2
y2 TT 2QT rArB «rgJ h J

M2M2 ( 2 2 i2 I. 1T 1T]&
A B (~A+ TBJ

(6.15i)

n2 „4 4
plTT + pATT + pBTT QT A «[Z hJ-

] + QT rB «[hJ h, ]

+ QT ( A ArB + rB) «(hJ gJ
2M2 M2 (r2 + r2 )2 I. 1T 1TJ)

A B A
(6.15j)

rB2 4

(1T»]
A (~A +~B)

Z4pATT pBTT QT A «(g hJ
B A B

QT ( A
— B) «I J hJ

M2M2 r 2 2 &2 ( 1T 1T]~
B &"A+ "B)

(6.15k)

4

+ 2 ., 2 —«(~»h»] + 2 2 2 ~

1+ QT 2, ~

«[h,»h»]
2MA "A + "B) & rA + rB )

p4

BirA+rB) & rA+rB)
Q' (

' — ')'&
2M M (r +r ) ( 2 r +r )

(6.151)

These explicit results illustrate the kinematical zeros, and can be used to obtain their order. For instance, Fq. (6.15c)
is an illustration of the result in Eq. (6.11). The expressions can also be used to illustrate the expected behavior o
the longitudinal-longitudinal asymmetry in Eq. (5.1.9), which becomes

«[glLglL] sin 0 cos 2~ QT rArB «[hlLhlI ]

«[fl fl] 1+cos 8 MAMB (rA + rB) «[f1f1]
(6.16)

The second (angle-dependent) term in the asymmetry
starts off with QT and is proportional to the average
transverse radius squared of the functions h~& and h~&.
As a second example we note the structure function
VT, being directly proportional to the transverse ra-
dius squared of the helicity distribution gal, for hadron
B.

Finally, we mention the CERN NA10 experiment [23],
which indicates a possible sin 0cos 2P-asymmetry in un
polarized DY scattering at measured QT, not suppressed
by powers of 1/Q. Such an asymmetry, however, does not
appear in the leading-order result (5.13). It is, however,
important to note that any kind of polarization in the
beams leads to such an asymmetry. Recently, Branden-
burg, Nachtmann, and Mirkes [24] have suggested that
the nontrivial @CD vacuum structure could be responsi-
ble for the asymmetry. Another suggestion is that higher-
twist effects are responsible [25].

D. Conclusion

In this paper we presented a field theoretical parton
model calculation of the leading-order polarized Drell-
Yan cross section at measured transverse momentum of
the lepton pair QT & A. The result can be written in
terms of six quark and six antiquark distributions, de-
pending on longitudinal light-cone momentum fraction x
and transverse momentum A:T. For each flavor they rep-
resent the light-cone momentum, helicity, and transverse
polarization distributions. Measurements of these distri-
butions require a study of the asymmetries in doubly-
polarized DY scattering, using longitudinally and trans-
versely polarized beams.

The quark distributions of Sec. III incorporate the in-
trinsic ICT dependence. Although this involves higher-
twist operators, the presence of a second scale QT in the
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process enables one to find observable eH'ects that are not
suppressed by the large scale Q. Similarly, kT-dependent
correlation functions can be used to analyze other deep
inelastic processes, particularly semi-inclusive DIS. They
will then appear in convolutions with the quark &agmen-
tation functions. At this stage we have not considered the
logarithmic corrections necessary to proof factorization.
Therefore we do not know if the distribution functions
are universal.
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n = 0, 1, 2, 3, and n = 4 with two of the indices sym-
met riz ed. We want to project these perpendicular te n-
sors onto a basis of XY tensors, multiplied with scalar
functions of QT.

Take the simplest nontrivial case of n = 1:

d(k,"z] = f d k z d' kid*(k r+k» —qr)

XF(kaT, kbT)ki~ (A2. )

J[k,"~] = x"J[x—. ki~] = x"J[qT kiT]/QT, (A3)

Since the only perpendicular direction available is q&
X", this expression must be proportional to x~. The
proportionality constant is easily obtained by contract-
ing with x„, and using x = —1. We get (discarding
corrections of O(1/Q ) in this appendix)

APPENDIX: PERPENDICULAR PROJECTION
METHOD

making use of Eq. (2.23). We choose to write the inte-
grand as a function of QT, k T, and kbT, by making use
of the relations

Consider the convolutions

J[k", ' k2"~. . . k„"- ] = d k T d kbT b (kaT + kbT —qT)

qT ' kaT =
2 (QT + kaT kbT) &

'qT ' kbT 2 (QT k T + kbT)

kaT ' kbT —2(QT kaT kbT)'

(A4)

(A5)

(A6)

xP(k T, kbT)k", ~k2~~. . . k„"~. (Al)

The perpendicular vectors Ak, ~ are taken from the set
(k ~, kb~) In pract. ice we only needed the cases where

For the more intricate cases, n ) 1, the procedure is
essentially the same. Instead of x" and y~, we will use the
more convenient building blocks x", and g& ———x~x
y~y" . For n = 2 we find

J[k k-
] (.-.-- .-

) , 1 1),-J[k,. k,.] )
= (»"x"+ a~")J[(qT . »T)(qT k2T)]/QT —(*"x + g& )J[kiT . k2T],

(A7)

(A8)

where the matrix notation of the first line should be clear from the second. In the same notation, the n = 3 case reads

J[k,"~k;,k,'~] = (
x-/" x-"x/', x/'g~~

(4 1 1 1)
1 0 1 0

(1 0 0 1)

x"g" x"g )
(d((q* k )(q k )(q k ))/q' )J[(qT k3T)(k—lT ' k2T) /QT

l
J[('qT ' k2T)(klT ' k3T) /QT
d((llT ' k1T)(k27 ' k)/QT»

(A9)

Finally, for n = 4 and two indices symmetrized, we find

d(kiik. ~ksik4il = (*"*'*'*',*'*'d', ,

(8 2 2 2 2 1) (
2 2 1 0 0 1
2 1 2 0 0 1
2 0 0 2 0 0
2 0 0 0 2 0

(1 1 1 0 0 1)

x~x g"" -' x~x&~~"' -' x x&~~"' g"J J i
»((q~ k»)(q~ »)k( ' q»)k( &' q»)kI &'r /)

2J[(qT kiT)(qT—. k2T)(k3T ' k4T)]/QT
2J[(qT k3T)(qT —. k4T)(k» k2T)]/QT
J[(qT kiT)(qT —k3T)(k2T . k4T) + 1 ++ 2]/QT—J (ql kiT)(qT k4T)(k 2kT3T) + 1 ++ 2]/QT

2J[(klT k2T)(k3T ' k4T)]

(A10)

For the implementation of these rather lengthy formulas we used FORM [26].
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