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In this paper we calculate the cross section at leading order in 1/Q for polarized Drell-Yan
scattering at measured lepton-pair transverse momentum Qr, using a field theoretical parton model
approach. We find that for a hadron with spin 1/2 the quark content at leading order is described by
six distribution functions for each flavor, which depend on both the light-cone momentum fraction =
and the quark transverse momentum k2. These functions are illustrated for a free-quark ensemble.
The cross sections for both longitudinal and transverse polarizations are expressed in terms of
convolution integrals over the distribution functions.

PACS number(s): 13.85.Qk, 13.88.+e

L. INTRODUCTION

The measurements of unpolarized structure functions
in deep inelastic scattering (DIS) of leptons off nucleons
and nuclei and those of polarized structure functions in
scattering of longitudinally polarized electrons off longi-
tudinally polarized nucleons [1] have yielded the light-
cone momentum distributions f;(z) for quarks in vari-
ous targets and the helicity distributions g;(z) in pro-
tons and neutrons.! These measurements, and particu-
larly their interpretation, have shown the importance of
understanding the relation of these distributions to the
structure of the target. The distributions f;(z) and g1 (z)
characterize the response of the hadron in inclusive DIS
at leading order in the transferred momentum Q. In in-
clusive deep inelastic lepton-hadron (¢H) scattering the
quark transverse momentum is not observable, since it is
integrated over. In the Drell-Yan (DY) process at mea-
sured lepton-pair transverse momentum Qr, however,
the quark transverse momentum does enter in observ-
ables, notably in the angular distribution of the lepton
pairs. The main point of this paper is the discussion of
quark transverse momentum in polarized Drell-Yan scat-
tering. We will restrict ourselves to leading order and
discard contributions which are suppressed by orders of
1/Q. We will also not discuss QCD radiative corrections,
giving rise to logarithmic corrections.

For inclusive deep inelastic £H scattering, assuming
only one flavor, the hadron tensor is given as the imag-
inary part of the forward virtual Compton amplitude,
for large virtual photon momentum g (Q? = —q¢? large)

*Also at Physics Department, Free University, NL-1081 HV
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! Another often used notation is g(z) for the light-cone mo-
mentum distribution and Ag(z) for the helicity distribution
(g =u,d,s,...).
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given by the sum of the quark and antiquark handbag
diagrams of Fig. 1. The basic object, encoding the soft
physics of the quarks inside the hadron, is the correlation
function [2,3]

s - [

diz

(2m)*

e*=(PS|4,(0) Gop; ()| PS).,

(1.1)

where k is the momentum of the quark and G =
P exp|—ig foz ds* A,(s)] is the path ordered exponential
(link operator) needed to make the bilocal matrix ele-
ment color gauge invariant. The vectors P and S are the
momentum and spin vector of the target hadron. Evalu-
ating the hard part, the scattering of the virtual photon
off the quarks, it turns out that the structure functions
in the cross section become proportional to f;(xg;) and
g1(zB;), where zg; = Q2/2P - q. The function f; is given
by

fil@) = %/dk_dsz Tr [y*&(PS;K)],  (1.2)
where x = k¥ /P*. It can be interpreted as the longitu-
dinal (light-cone) momentum distribution of quarks. The
function g; appears as

" =
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FIG. 1. Quark and antiquark handbag diagrams for inclu-
sive DIS.
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Agi(z) = %/dk‘d%T Tr [y ys®(PS;K)],  (1.3)
and can be interpreted as the quark helicity distribution
in a longitudinally polarized nucleon (helicity A = 1).
The functions f; and g, are specific projections of ®.
Which projections of ® contribute in hard scattering pro-
cesses in leading order can be investigated by looking at
the operator structure, including the Dirac and Lorentz
structure, of the correlation function. Such an analy-
sis requires some physical constraints on the range of
quark momenta. The analysis of ® (integrated over k~
and kr) shows that there is one more leading function,
the transverse polarization or transversity? distribution
hi. It is related to a bilocal quark-quark matrix element
through [6]

S hy(2) = %/dk‘dsz T [i0 75 ®(PS; k)|

(i =1,2), (1.4)

which shows that h; can be interpreted as the quark
transversity distribution in a transversely polarized nu-
cleon. This is a chiral-odd distribution, which is not
observable in inclusive £H scattering. It needs to be
combined with some other chiral-odd structure, e.g., the
fragmentation part in semi-inclusive leptoproduction of
hadrons or the antiquark distribution part of DY scat-
tering [4,5,7,8].

In this paper we discuss one possible way to extract
more information from the correlation function ®. We
are after the dependence on the transverse momentum
k7. One way to study this dependence is the observa-
tion of a hadron in the outgoing quark jet, e.g., in semi-
inclusive £H scattering [9]. This process, however, also
requires consideration of the fragmentation functions. In
this paper we study the process that is sensitive to intrin-
sic transverse momentum and involves only quark distri-
bution functions, namely, massive dilepton production or
the Drell-Yan (DY) process [10].

About 15 years ago Ralston and Soper (RS) published
a pioneering paper [6] on the polarized Drell-Yan pro-
cess. Because we take it as our starting point, we briefly
sketch its content. RS write down a covariant expan-
sion for f dk~—®, which is the quantity that is relevant in
the hadron tensor for the DY process, diagrammatically
given in Fig. 2. To determine this expansion they use
symmetry arguments and an infinite-momentum-frame
analysis. They find five independent distribution func-

2The authors of [4] use the name “transversity distribution”
in order to make clear that a quark of definite transversity
is mot in an eigenstate of the transverse spin operator but
of the Pauli-Lubanski operator projected along a transverse
direction. The authors of [5] object to this nomenclature,
because of the preexistence of the term, and prefer to call it
transverse polarization distribution.
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FIG. 2. The quark and antiquark Born diagrams for the
Drell-Yan process.

tions divided in one momentum probability distribution
P(z, k%), two functions describing the quark helicity, and
two describing its transverse polarization. With these
they calculate the polarized Drell-Yan cross section with
the virtual photon transverse momentum Qr = \/g
put to zero. In that case they are sensitive to four of
the five distribution functions. When they integrate over
the transverse momentum they are only sensitive to three
distribution functions.

We extend on these results in two ways. First, we
show that RS left out one transverse momentum distri-
bution needed to describe the quark transverse polariza-
tion. This additional function is obtained using general
symmetry arguments. It also shows up in a model that
we are going to employ later and that describes a gas of
free partons. Our second extension is the calculation of
the polarized DY cross section without constraints on Qr
[other than it being of O(A)], thereby becoming sensitive
to all six distribution functions.

We end this introduction with a remark on possible
QCD corrections affecting transverse momenta and fac-
torization. A difficulty of the extra scale Q7 is the Su-
dakov effect. Soft gluon radiation gives rise to radiative
transverse momentum. However, the large logarithms
connected with this effect can be summed and exponenti-
ated to Sudakov form factors [11]. From these it becomes
clear that if Qr is sufficiently low, i.e., of hadronic scale
A, as compared to @, the transverse momentum govern-
ing the process is predominantly intrinsic. Factorization
means that the process can be written as a convolution
of renormalized distribution functions and a perturba-
tively calculable short-distance part. For polarized DY
at measured Q7 S A factorization has not been proven
yet [12,13]. We will not further address this problem
here, but use the diagrammatic expansion proposed by
Ellis, Furmanski, and Petronzio (EFP) [14] to study the
DY process. In this diagrammatic expansion Green func-
tions appear, incorporating the long-range QCD physics.
These correlation functions are connected by ordinary
Feynman graphs with quarks and gluons, the hard scat-
tering piece.

The outline of this paper is as follows. In Sec. II we
give the one-photon exchange picture for massive dilep-
ton production. We specify the notation in a frame where
the two hadrons are collinear, and the axes are given with
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respect to which the lepton angles are defined. In Sec. III
we analyze the quark correlation function, and find six
leading distribution functions. In Sec. IV we discuss the
free-quark ensemble as an example. In Sec. V we cal-
culate the leading-order hadron tensor and present cross
sections for various combinations of polarizations. We
end with a discussion of these results.

II. THE DRELL-YAN PROCESS

In this section we want to discuss the cross section,
kinematic aspects, and structure functions for polarized
Drell-Yan scattering. For a complete overview we refer
for the unpolarized process to Lam and Tung [15], and
for polarized DY scattering to Donohue and Gottlieb [16],
who make use of the Jacob-Wick helicity formalism.

A. The DY cross section

We consider the process A + B — £ + Z + X, where
two spin-1 hadrons with momenta P/ and Pj interact
and two outgoing leptons are measured with momenta
ki and k4. The leptons are assumed to originate from
a high-mass photon with momentum ¢ = k; + k3, with

2 = ¢% > 0. We consider the case of pure incoming spin
states, characterized by the spin vectors S% and S%, i.e.,
S§2 = S% = —1. In the deep inelastic limit Q2 and s =
(Pa + Pg)? become large compared to the characteristic
hadronic scale of order A% ~ 0.1 GeV?, while their ratio
T = Q?/s is fixed. The phase space element for the lepton
pair can be written as d*q df2, where the angles are those
of the lepton axis in the dilepton rest frame with respect

to a suitably chosen Cartesian set of axes. The cross
section can be written as

d 2

d > wh, (2.1)

Tigdq ~ 25 QA Lm

where the lepton tensor is given by (neglecting the lepton
masses)

LM = 2k kY + 2 kb kY — Q% g™, (2.2)
and the hadron tensor can be written as

W**(q; PaSa; PeSB)

z/(;:;eiq'm(PASA; PpSp|J*(0), J”(z)]|PaSa; PBSB)-

(2.3)

Since the lepton tensor (2.2) is symmetric in its indices,
we will from now on only consider the symmetric part of
Whv,

B. Kinematics

We define the transverse momentum of the produced
lepton pair in a frame where the hadrons are collinear,

3359

with the third axis chosen along the direction of hadron
A. One has g% = Q2 < A%. 1t is convenient to work in
a light-cone component representation, p = [p~,p", pr]
with p* = (p° &+ p%)/v/2. The momenta of the hadrons
and the virtual photon in a collinear frame take the form

M? xaM2  kQ
PA= [Zpliypiao'r] =~ [\/5&5’ \/E.’EA’OT], (24)
A
M3 Q kT M2
Pgp=|P;,—£ 07| ~ , B orl, (2.5
° [Bng T] [\/Eﬂzs V2Q T} (25)

K

q= [‘L'BPB’:EAPX»QT] ~ [%7 TgaqT] ) (26)
neglecting corrections of order 1/Q?, indicated here and
further on by an approximate equal. The parameter «
fixes the collinear frame. One has kK = z4M4/Q for the
frame in which hadron A is at rest, Kk = /z4/xp for
the hadron center-of-mass frame, and k = Q/zpMp for
the frame in which hadron B is at rest. The following
Lorentz-invariant relations hold:

+ 2

q Q Pg-q
= 0= = R 2.7
*a PX ZPA -q PB . PA ( )

q- Q? Pa-q
= — = = R 2.8
B 3Ps.q  Pa-Ps (2:8)

2

s~ 2Pf Py =~ Q (2.9)

TATB )

The above relations also show that all dot products for
any pair from the vectors q, P4, and Pg, are of order Q2.
As compared to this, the hadron momenta are almost
lightlike. We can define the exactly lightlike vectors that
in a given collinear frame have the form

ny = [0, K, O7],

n_ = [x"10,07], (2.10)

satisfying ny - n_ = 1. Given an arbitrary four-vector a,
and the projector

g7’ =g —nkn? —nin®, (2.11)

we define the spacelike transverse four-vector af =

g%’a,, or, in coordinates in a collinear frame, ar
[0,0,ar]. Note that for any transverse vector one has

aT‘PAr:aquB:O. (2.12)

For the analysis of the hadronic tensor which satisfies
¢ W,, =q¢"W,, =0, it is important to construct vec-
tors that are orthogonal to g. We will use the projector

T
GHr = gnv — —qqg (2.13)
for this, and define
@ = e, =at — L gm (2.14)
q

As q is timelike in DY scattering, it is useful to define a set
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of Cartesian axes. The Z direction, known as the Collins-
Soper axis [17], is chosen as in [6], but our X and Y

direction are opposite. To be precise, we use (%123 = 1)
Zh = Pg - q P;L Py - q P;L
PB PA PA PB
PB q " PA q m

T Pg P, A P, Pg
Pg-Z - Ps-Z
- pr

Pg - P4 A+PA-PB

G#VPUPAVPqua .

X* Ph, (2.15)

il

Y#

Il

1
P,-Pp

These vectors are orthogonal and satisfy Z? ~ —Q? and
X? ~Y? x~ g2 = —Q%. They form a natural set of space-
like axes (within the dilepton rest frame only spatial com-
ponents). We will denote §* = ¢#/Q, 2* = Z*//—22,

etc. Explicitly, one has, in a collinear frame,
[ 1 K QT]

‘j _ﬁﬁ’ﬁ’a

Q

R 1 K o

ZR | = y T = ]
L Ve V2T

. 1 Qr kK Qr QT]

= S S 2.16
V2k Q°V2 Q' Qr]’ (2.16)

| yr

y= 0707 _] 9
L Qr

where yi. = €gr;. Note that since Z* is a linear

combination of the hadron momenta, it has in collinear
frames no transverse components. The transverse vec-
tors ar, thus, are orthogonal to Z. They are, in gen—
eral, not orthogonal to ¢. One has, for example, ar =~
X* — (Q%/Q%) g*. Note that the second term is only
order 1/Q suppressed. For an arbitrary four-vector a we
define the perpendicular four-vector a, as the projection
of the transverse vector ar, using the projector

g = g — g+ e (2.17)
yielding
a =g¢""%ar, =alf — el ;I;IT . (2.18)
Thus, any perpendicular vector satisfies
a;-§=a, -2=0. (2.19)

Note that X is the perpendicular projection of q. The
vectors ny and n_, defined in Eq. (2.10), can be ex-
pressed in terms of the set (2.16):

V2 Q
n_zi(cj—é—@i;).
V2 Q

Inserting these into the definitions of the projectors g
and g7, one derives the relation

(2.20)

(¢“gr + ¢ ar)
Q b

from which one obtains, for a general vector a,

gi" ~ g — (2.21)
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a* ~ al — %ﬂ ¢, (2.22)

provided that ar - gr ~ 1. From this expression it is
evident that for two arbitrary vectors a and b, satisfying
this condition,

a,L‘bJ_zaT-bT. (2.23)
Restricting oneself to leading order, the vectors az and
a) can be freely interchanged. In a higher-order study,
however, the difference will become important [18].

For the spin vectors the above definitions can be illus-
trated. In a collinear frame the spin vectors, satisfying

4 -S4 = Pg-Sp =0, can be written as
My pPr
I P N P e 2.24
Sa [ Aa 2Pt A MA AT (2.24)
Ss A Py ,—A S (2.25)
B MB B P_ »y 2 BT .
where A4 and Ap are the hadron helicities. The two-

component vectors S 47 and Spr give the transverse po-
larization. Since we consider pure spin states, they obey

A2 + S%. = 1. For the spin vectors we have in a collinear
frame St = [0,0,S7]. The perpendicular spin vector is
given by

St -gr
S~ Sk — ———¢*

(2.26)

()0 (5) e v0 ()],

where the longitudinal components follow from the trans-
verse components by demanding Eq. (2.19), and using
Eq. (2.16). If the spin vector would have been projected
directly onto the XY plane with g/”, one would have got

1 K A
o) o(5) - sha

+0 (52)] (2.27)

This differs from St in the transverse sector by order 1,
unless Q1 = 0.

weo
gy ©Ov =

C. Structure functions

With the definition (2.15) of a Cartesian set of vectors
orthogonal to g, we can expand the lepton momenta in
the following way:

kY = 1¢" + 1Q(sinfcos ¢ 2* + sinfsind §* + cosf 2#),
kb = 1¢* — ;Q(sinf cos ¢ &* + sin@sinp §* + cos§ ).

(2.28)
Inserting these into Eq. (2.2), and using some trivial go-

niometric relations and the completeness relation g#¥ =
qrqy — zZHz¥ — g — g*gY, we obtain
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=L {(

+sin? 0sin 2¢ 21#9*} + sin 20 cos ¢ 2{#&*} + sin20sin ¢ 2{*@”}] ,
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1+ cos? ) gt — 2 sin 29 343" 4 2sin® O cos 2¢ (& + IQT)

(2.29)

where the symmetrization of indices, 2{#&*} = 2#&" + 2¥3#, is used. The six tensor combinations in Eq. (2.29) are
not only orthogonal to g, ensuring g, L*¥ = 0, but also to each other.

It is convenient also to write the hadron tensor as a sum of products of tensors and scalar functions, called structure
functions. From the properties of the electromagnetic current, one deduces for the hadronic tensor [Eq. (2.3)] the

conditions

qu WY =

(W) = W

W, (q; Pa —Sa; Pg —Sg) = WH(g; PASAaPBSB)
(W#¥(q; PaSa; PeSB)]"

p,u(qa PASAaPBSB)

where a* = a,. The hermiticity condition, for instance,
requires that the symmetric part of W#¥ is real. In un-
polarized scattering the constraints imply the expansion

W“V = —(Wo,o —_ %Wzyo) gj‘_" + (WO,O + %Wz,o) 2“2”

— Wa, 2437} — Wy, (8727 + 1g%Y), (2.31)

where the four structure functions depend on the (four)
independent scalars, or equivalently on @, z4, g, and
Q7. Since we choose to work with the normalized vec-
tors, the structure functions W5 ; and W5 > contain kine-
matical zeros for X2 ~ —Q2 = 0 of first and second
order, respectively. In that they differ from the ones in
RS [6, Eq. (2.5)]. To be precise: our Wy, is VX272
times theirs, and our W5, is —X 2 times theirs. The
linear combinations multiplying —g/” and 2#2 are of-
ten referred to as W and Wy, respectively. Inserting
Egs. (2.29) and (2.31) into Eq. (2.1), one has, for unpo-
larized Drell-Yan scattering,

do
d4qdQ

2SQ2[2W00+W20(§ — COS 0)

+W3,1sin26 cos ¢ + Ws 2 % sin? 6 cos 2¢]. (2.32)

Because of the extra pseudovectors S4 and Sp, in polar-
ized Drell-Yan there are several more structure functions.
We will not give them in general. Later we will simply
consider the ones that arise at leading order in 1/Q in
the cross section.

III. FORMALISM

A. The correlation function

The basic object that contains the soft physics of the
quarks inside the hadrons is the quark-quark correlation
function

diz .

(2m)*

x (PaSalP'™ (0) G{ ()| PaSa)e,
(3.1)

ik-x

(®aja)ij(PaSa; k) =

[current conservation],
[Hermiticity],

[parity],

[time reversal],

(2.30)

where G = P exp[—ig [, ds* A,(s)]. We will suppress the
quark label a, the hadron label A, and the connectedness
subscript ¢, whenever they are not explicitly needed. A
contraction over color indices is implicit.

First, let us consider the projections discussed in the
introduction, in which one integrates over £k~ and the
transverse momentum k. After these integrations the
nonlocality is restricted to the = direction. Choosing
the lightcone gauge At = 0 in conjunction with using a
link operator containing a straight path from (0,0, 0r) to
(0,z~,07), ensures that the correlation function is equal
to a Fourier transform of a single quark-quark matrix
element.

In this paper we want to investigate the kr depen-
dence of the correlation function, thereby becoming sen-
sitive to separations in the £~ and @7 directions. In that
case one needs (in addition to AT = 0) to fix the residual
gauge freedom in Ar. This can be achieved by imposing
the antisymmetric boundary condition Az (z™,oc0,zT)
= —Ar(zt,—oo,z7) [19,20]. In analogy to the kr-
independent case, one can find a link operator that
becomes unity after thus having completely fixed the
gauge. Explicitly, this link is the average of two path-
ordered exponentials with paths running from (0,0, 07)
to (0,z7,®7) via ¢~ = —oo and z~ = +o00, respec-
tively, as shown in Fig. 3. In this way we have ensured
that, after gauge fixing, the (k™ -integrated) correlation
function (3.1) is just the Fourier transform of the single

matrix element (1(0)¢(0,z~,1)).
(0,27, 21)
{:path 1 path 2]
2= = —c0 (0,0,07) o7 = oo

FIG. 3. The paths in the link operator which is used in the
definition of the correlation function.
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B. The Dirac structure of the correlation function

In order to analyze the diagrams in Fig. 2 for DY scat-
tering, we need to investigate the Dirac structure of the
correlation function. This can be done by making an
expansion in an appropriate basis. Constraints on the
correlation function come from Hermiticity, parity invari-
ance, and time reversal invariance:

ST (PS;k) =y ®(PS;k)+° [Hermiticity]
®(PS;k) =~"®(P —S; k) ~0 [parity]
®*(PS; k) = vsC ®(PS; k) Cts [time reversal]
(3.2)
where the charge conjugation matrix C = iy?4°, and
k* = k,. Choosing the Dirac matrix basis 1, iys, v*,

Y75, and ic"*’ys (note that I'f = 4°T'y°), the most gen-
eral structure satisfying these constraints is

®(PS;k) = A11+ Ay P+ As K+ Asvs 8 + Asvs[ P, 81 + Ae 5[ K, 5]

+A7k-S’YsP+Ask'S’)’5k+A9k'S’75[Pak]'

Hermiticity requires all the amplitudes 4; = A;(k- P, k?2)
to be real. Note the presence of the amplitude Ag which
is left out in Eq. (3.4) of Ref. [6].

The basic assumption made for the correlation function
is that in the hadron rest frame the quark momentum k is
restricted to a hadronic scale A, explicitly k2 and k- P are
of O(A?). In a frame where the hadron has no transverse
momentum, the momentum k is written as

_ [#2 4k

+
= [Wyl'}’ ,kT];

(3.4)
with the light-cone momentum fraction z = k*/P™.
The restrictions on k2 and k - P imply that also k2 =
—k? + 2zk - P — 22M? is of O(A?). Considering dia-
gram 2(a), one sees easily that momentum conservation
on the hard vertex implies ¢~ = k; + k, . However,
k, ~ Pg, whereas k; ~ M3%/P}, which is down by a
factor ~ M2/Q? in any collinear frame. Therefore, for
hadron A, one is led to study [dk~ ®(PS;k), or equiv-
alently its projections [ dk~ Tr[['®]. These latter quan-
tities do not carry Dirac indices anymore, but because
of the I matrices, they do have a specific Lorentz tensor
character. Defining the projections

B[T)(z, kr) = %/dk‘ T[T 3], (3.5)

= %/%% exp[i(zPtz™ — kr - 7))
x(PS|$(0)L G¢(0,z~,xr)|PS) (3.6)

(with contraction over color indices understood) one has
for instance the vector projection

Byt = / d(2k - P)dk?
x8 (k% + k® — 2zk - P + 2 M?) (A2 + z A3),
(3.7)

which is of order 1. Other projections, e.g., the scalar

(3.3)

a1 = 57 / d(2k - P)dk?

x6 (k% + k* — 2zk - P+ 2?M?) A;, (3.8)

contain an integral of order.1 multiplied by a factor 1/P*.
In the cross section, this factor will give rise to a suppres-
sion of order 1/Q. In this way it is seen that the leading
contributions come from the Dirac structure where the
number of + components minus the number of — com-
ponents is largest (that is, 1). They are parametrized
as

(I)['7+] = fi(=, k%‘)v

kr-S
(v 5] = g11(@, KA + rr (2. k) = s (39)
®lic* T vs] = har(z, k2)Sh
kr - St |k
+ | iz (2, )X + hiz (2, k3) = | 37

defining six real distribution functions per flavor, depend-
ing on = and k2. These encode the leading behavior of
the quark correlation function. In the diagrammatic ex-
pansion for the DY hadron tensor (with the gauge-fixing

" conditions for AT and Ar for the lower blob), diagrams

with gluons will appear, involving quark-quark-gluon cor-
relation functions. These correlation functions can be
analyzed in the same way. The contribution of these di-
agrams turns out to be suppressed by one order of 1/Q.

In summary, for a leading-order DY calculation, the
Dirac structure of the quark-quark correlation function
is

/dk_<1> =18yt v + B[y 5] sy~

+%‘I’[iai+’75] Y50 s+ e, (3.10)
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where i is a transverse index (i.e., i = 1,2), and the dots
represent projections that will come in only at O(1/Q).
At the leading-order level, one is left with only three pro-
jections, which have vector, axial-vector, and axial-tensor
character, respectively, and which can be parametrized
by six distribution functions.

C. Antiquarks

The antiquark correlation function, describing the an-
tiquarks of flavor a, is given by
3 d*z s
(Paja)ij(PaSas k) = / @) e
x (PaSal{* (0) Wﬁ'a) (z)|PaSa)e
(3.11)

(with contraction over color indices understood). Also
the antiquark momentum k can be written as in Eq. (3.4).
Its Dirac structure can be analyzed likewise. We define
the antiquark projections

BT (c, kr) = %/dk‘ Tr [T 3] (3.12)

1 [dz~ d’= . -
=3 / Fﬁ expli(zPtz™ — kg - ®7)]

x(PS|Tr [T'$(0) G4(0,2~,@1)] |PS).
(3.13)

Using the charge conjugation properties of Dirac fields
and hadron states, we deduce

- _ T
Pajn=—-C 1 (®,/a) C. (3.14)
Upon demanding charge conjugation invariance of the
distribution functions, i.e., the quark distributions in the
antihadron A are the same as the corresponding anti-
quark distributions in A, we obtain the expressions

3] = fu(z, k7),

- B k.S
By s] = ~guz (@, kPN — gur (2, k3) ST, (3.15)
6[i0i+’)’5] = ’_l]_T((E,kg—v)S}Iv
- - kr-Sr] ki
+ a3+ hir o) M1 5T ] AL

We note that the anticommutation relations for
fermions can be used to obtain the symmetry relation

®:;(PS; k) = —@;(PS; —k). (3.16)
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For the distribution functions this gives the symmetry
relation

fl(z’kg") = —-fl(—:l:,k%-), (3.17)
and identically for gi7, hir, and hiy, whereas
glL(zv k%”) = glL(_w,k%‘)a (318)

and identically for hij,

Finally, we note that hadron B can be treated in the
same fashion. However, since we have chosen to work
in the collinear frames where the third axis lies opposite
to the direction of hadron B, the role of the + and —
components for B must be interchanged as compared to
A.

IV. FREE-QUARK ENSEMBLE

The leading kr-integrated distributions fi(z), g1(z),
and hj(z), have a parton model interpretation as the
longitudinal momentum, helicity, and transversity distri-
bution, respectively. In this section we show how, for a
free-quark ensemble, this identification can be general-
ized to the kr-dependent distributions.

It is instructive to calculate the correlation function
for a free-quark target of flavor a. This is given by

(®asa)ij(p 5; k) = 6*(k — p) ui(p, 5)7;(p, 5)

= 6%(k — p) [(mm)(“%‘)] ,

(4.1)

where the momentum and spin vector are parametrized
as

m2 +k2
k= [W_T,kﬁk;p] , (4.2)
_ k% - mz k+ kT
S—Aank+sat:)\a|:2mk+ ,Eag
kT - 8,
- [“ka T,O,saT]. (4.3)

We identify the light-cone helicity A,, helicity vector ny,
and transverse polarization s,: (transverse in the sense
that sq: - & = sq: - nx = 0). Note that the light-cone
helicity vector ng, satisfying nx -k = 0 and nZ = —1,
acquires its conventional meaning [21, Eq. (2-49)], either
if k7 = Of, or in the infinite-momentum limit £+ —
oo with kg fixed. One checks that A2 + 82, = —s% =
1. With the simple form (4.1) it is straightforward to
calculate the leading projections for a free-quark target
with nonzero transverse momentum:
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1

1

1

5 / dk~ Tr[y " ®(p s; k)] = & (1’;—: - 1) 6%(kr — pr),

kbt
3 / dk™ Tr[ytvs®(p s;k)] = 6 (F - 1) 82(kr — P1) Ao,
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(4.4)

. + .
3 /dk_ Tr[ic*tvs®(p s;k)] = & (% - 1) 6%(kr — pr) 84

This simple example of a quark target can be generalized to the case in which the hadron is considered as a beam
of noninteracting partons of total momentum P and angular momentum S. This is tantamount to inserting free-field
plane-wave expansions into the correlation function (3.1). One gets (summing over o, 8 = 1,2)

Bi3(PS; k) = 26(k* — m?) [0(k*)ul®) (K)Paa(k)aS (k) — 0(—k* )0 (=K Ppa(—k)o{ (k)]

The functions P and P are given by

1 dz' d2kly,

Pﬂa(k) = Pﬁa(x7 kT) = 2(27‘_)3

Ppa(k) = Poala,kr) = 5 (;W)s /

The form of quantization one can choose to be instant-
front, as well as light-front quantization, since for free
fields they are equivalent [19]. As for the choice of
coordinates, the use of light-cone coordinates is conve-
nient, because of the integration over £~ that is needed
in deep inelastic processes. The Dirac structure can be
parametrized as

) (1) Paa (B3 (8) = PE)(E -+ m) (HERAD)
(4.8)

o) ()P (R)91%) () = P(R) (K — m) (251,
(4.9)

in terms of positive-definite quark and antiquark prob-
ability densities P (k) and P(k), and spin vectors s*(k)
and 5#(k) . Inserting the free-field expansion in the cur-
rent expectation value (PS|(0)y*4(0)|PS) = 2P*(N —
N), where N and N are the total number of quarks
and antiquarks, respectively, one obtains from the +
component the normalizations fol dr [ d’k7P(z, k%) =
N and fol dz [ d*krP(z,k%) = N. The average
quark spin vector s*(k) is parametrized by the helic-
ity density A, (z, kr) and transverse polarization density
sqor(z, kT) by expanding s* as in Eq. (4.3). A similar
parametrization is used for 5#(k) in terms of A;(z, kr)
and sgr(z, k).

Integrating Eq. (4.5) over £~ one obtains the result for
a free-quark ensemble:

[ 2w = 02) DB (1 ey (1120 RT) )
_9(_:5)7’(—223;’%) (K +m)

(4.5)
R (PSIEL(¥)ba )| PS), (4.6
g’;;ﬂ ;": (PS|d!,(k')da (k)| PS). (4.7)
[
This gives (for z > 0)
3 [ @ Tt (P = Pl k),
%/dk“ Trfy s (PS; k)] = Pz, k2) Aa(, k1),
(4.11)

%/dk_ Trfic* T ys®(PS; k)] = P(z, k%) sbr(z, k).
A comparison with Eq. (3.9) yields

P(makle“) = f(kag‘)’
kr-St
M b
(4.12)

P(z, k’.zt’) Aa(z, k) = 911(2, k?l") A+ gir(z, kle’)

P(z, k%") ssz(w’ kr) = hir(z, k%‘) S?F

M | M’

ko ST] ki,
which shows how for £ > 0 the functions g:11, g17, hiT,
hiy, and hi; are to be interpreted as quark longitudi-
nal and transverse polarization distributions. The func-
tion th was omitted in the paper of RS. Specifically for
nonzero transverse momenta of the quarks, it becomes
relevant. For the antiquarks the same relations hold be-
tween the antiquark probability density P, helicity den-
sity Az, and transverse polarization density sz7, on the
one hand, and the antiquark distributions on the other
hand. Extending to all x, results are obtained in accor-
dance with the symmetry relations in the previous sec-

tion, e.g., f(z,k%) = 0(z)P(z, k%) — 0(—z)P(—=z,kZ).
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For on-shell quarks, relations exist between the distribu-
tions due to constraints from Lorentz invariance [14]. The
scalar P can only depend on 2k-P = m?/z+ M2z +kZ/z
and the pseudovector s* can be parametrized by two
functions depending on the same combination of z and

We note that for the leading-order matrix elements
the free-field results can be used to provide a parton in-
terpretation, even in the interacting theory, because the
distribution functions can be expressed as densities for
specific projections of the so-called “good” components
of the quark field; ¥4 = A, v, where A, = 1y7yT. In
light-front quantization a Fourier expansion for the good
components (at z* = 0) can be written down in which
the Fourier coefficients can be interpreted as particle and
antiparticle creation and annihilation operators [19]. The
different polarization distributions involve projection op-
erators that commute with A4 [4].

At subleading order, the analysis of the quark-quark
correlation functions leads to a number of new distri-
bution functions. For free quarks, they can also be ex-
pressed in the quark densities, and thus they can be re-
lated to the leading distribution functions. However, it
turns out that the presence of nonvanishing quark-quark-
gluon correlation functions causes deviations from the
free-field results [18].

V. RESULTS

A. Hadron tensor

The leading-order Drell-Yan hadron tensor with Qr =
O(A) is in the deep inelastic limit after gauge fixing given

by the quark and antiquark Born diagrams in Fig. 2.
First, we will calculate diagram 2(a), in which a quark of
hadron A annihilates an antiquark of B. It reads

v 1
Wt = 3 azb: Syae? / d*kq d*ky 5 (ke + ks — q)

X'I‘r[q)a/A(PASA; ka) ’7“
x®y/p(PpSB; k) 7],

where a (b) runs over all quark (antiquark) flavors, and
€q is the quark charge in units of e. The factor 1/3 comes
from the fact that the quark fields in both the correlation
functions are traced over a color identity operator, which
is appropriate since only color-singlet operators can give
nonzero matrix elements between (color-singlet) hadron
states (Wigner-Eckart theorem). However, since the di-
agrams we consider have only one quark loop, one has
only one color summation, leading to a color factor 1/3.
Note that, as in the case of Qr-averaged DY, the choice
of different gauges for ® and ® presents no problems.

Using the boundedness of quark momenta in hadrons
as discussed before, one finds k} > k; and k; > k.
Thus, the delta function can be approximated by

(5.1)

8% (ka + ks — q) = 8(kT —q")8(ky —q7)
x8%(kor + ko — qQT)- (5.2)
It follows that indeed we are sensitive to [ dk~® 4 (k) and

J dk*@p(k). Furthermore, the trace in Eq. (5.1) can be
factorized by means of the Fierz decomposition

4(v")ik (Y )i = [LiaLie + (875)5: (#v5)ie — (V)i (Va) ik — (Y*¥5) 35 (Ya¥s )ik + 3 (i0ap7s) i (0™ vs )] g

+(r ™) D + ()5 (Y s ik + (0B ys) i (60" arvs) ik + -+ -,

where the ellipsis denotes structures antisymmetric under the exchange of p and v.
projections, as they were found in Sec. III. This leads to

(5.3)

We keep only the leading

Q

v 1
Wauark = ~3 Z Svael / d’kor d*kyr 8% (kar + kor — qT)
a,b
X (q)a/A['Y+1 ®o/B[Y7]+ Bayalr*s] 6b/)_fz[’Y—’Ys])g&ﬁ"
io > g~ v v 1
+®,,/4lic *s] ®,/plic? 5] (gTi{ugT }j — grijg” ) +0 (__) ,
[
where the ®,,4 projections are taken at * = x4 and

k.T, the Eb/B projections at * = xp and kyr. The next
step would be to insert Eq. (3.9) and their hadron-B
antiquark counterparts. In this leading-order calculation
we may interchange the subscript 7 by a | where we
wish, because of Egs. (2.21), (2.22), and (2.23). The
resulting expression contains convolutions such as

/dzkaT d’ker 6% (kar + kor — qr)F (K27, k37 )KY | .

(5.5)
They are not of the desired form, since the (perpendic-
ular) Lorentz index is carried by a convolution variable.
In order to write the hadron tensor in terms of structure
functions, the Lorentz indices must be carried by exter-
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nal vectors, like X#. In the Appendix we describe the
method we used to project perpendicular Lorentz ten-
sors, like (5.5), onto the XY basis. For instance, (5.5)
can be written as (up to order 1/Q?)

& / d’kor ki 8% (kar + kot — qr)F (K21, ki7)

x (Q%‘ +k§T _ k%T) i (5.6)

2Qr
Before presenting the results, we mention that the an-
tiquark diagram 2(b) can be obtained from the quark di-
agram 2(a) by making the replacements® a > @, f < f,
g <+ —§, h & h, where g is generic for the quark axial-
vector distributions, etc. It is convenient to define the
convolution of two arbitrary distributions d;(z, k%) and

J
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d2(z, k%) (possibly multiplied by an overall function of
ki, and ki),

Ildid,) = Z Spae’ /d2 ot kyr 62 (kar + ksr — q71)

(5.7)

summing over quark and antiquark flavors, with the pre-
scription that if its argument is of antiquark (quark) na-
ture, then d; (d2) is to be replaced, either by d; (dz)
if it concerns a vector or axial-tensor distribution, or
by —d; (—ds) if it concerns an axial-vector distribu-
tion. We split up the general leading-order hadron tensor
WH¥(S4,Sp) in four cases, corresponding to unpolar-
ized, longitudinal-longitudinal, transverse-longitudinal,
and transverse-transverse scattering:

X dl(wA’ aT)d2($Bv kiT)’

WH(0,0) = —Wyp g*” (5.8)
W (A4, Ag) = — (Wr + 1VEEA40B) ¢4 — V2 L Aadp (342 + Lg1Y), (5.9)
W (S ar,Ag) = — [WT —VEE(& - Sar) s g + VL (& - SA_L)/\B(z‘“” + 1)
~Ufk [ g} —(2-Sa1)g" ] , (5.10)
W (Sar,Spr) = [WT —V3TT(Sa1 -Sp1) + VETT(&-Sa1) (3 - Sp1)] g
+ [Vas T(Sar - SB1) — Vi3 T (& SarL)(&- Spur)] (848" + 361°)
+ULTT (8- Spa) [81485) — (@ - Sas)gt]
+Uyy (& Sa1) [ gy — (- SBL)HT']
~U3y3 [53'15}'31 —(SaL- Sm)yi”] , (5.11)
where the structure functions, depending on z 4, =g, and Qr, are given by
Wr = I[f1fi], (5.12a)
VEL = —allg115:1), (5.12b)
r _ 2 4hJ. ’—ZJ‘
VEIL — _ (a—-p) 1L™ML
22 =1 -(a + 3 @ MaMg | (5.12¢)
TL 91791L
VT =1 -(—Q% —a+ ,6) m:l y (5.12d)
r _ 3 hJ_ h.L
VTL:I ( 2+ 2+ -2 2_(a IB) ) :l, 5.12
2,2 I ﬂQT a aﬁ 18 Q%” M?2 MBQT ( e)
harhi (a—B)%\ hiphi
UTL =7 1T ML + < 2 . -2 2 _ 2 1T'°1L 5.12f
- 2 _
varr _ 1l (_oz2 _ (a —B)*\ girdir
T - QT +2a+20 Q2 AMaMg |’ (5.12g)
- 2 _
V2TT _ P (a—B) girgit
2 I ( a=B+ 52 ) anrants ] (5.12h)
[ 2(a+,8)(a—,8)2 (¢ = B)*\ hizhs .
V2TT _ | (a2+,82 irar | 5.12
=T < @ ) M3z (o120

31t is seen from Eq. (5.4) that this amounts to replacing A <+ B
hadrons.

, rendering a result, symmetric under the exchange of the two
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| harhi — B)2\ hih
V21’2TT+UATT+U21,32TT=I[(Q§_2a+( Q;) ) ;L;T + (Q%—2,3+ (aQ%ﬁ) ) ;L%T

5 —8)2  2a—B)4\ hi.hi ‘
+ (Q%(a+ﬂ) —40? — 487 + (a+lggl B)? _ (an,ﬂ) ) 4]\14:%]\%}, (5.12))
—8)2\ hirhs — 32\ hLt.h
UATT — UBZT =I|:(Q§1 et (OIQ;) ) ;1];41%1‘ _ (Q:zr _ 28+ (a %ﬁ) ) ;qj;lfllT
_ 3 hJ_ EJ_
+ (Q%(a—ﬁ)—2a2+2ﬂ2+ (QQ;) )4@]\%} (5.12Kk)

hizh hiThi;
szl:g+%U21‘§2TT lUBTT I|:h1Th1T+a 17T +ﬂ 1T

2M31 2M%
o — B)2 o — B)4 1 7L

where o = kZ;, and 8 = kZp. In the last three equations we only gave the combination of structure functions that
will show up independently in the cross section, to be discussed in the next subsection. As for the nomenclature, we
based ourselves on the RS notation, except that we always denote both hadron polarizations by the T L-superindices.
So, for instance, their VOI“O corresponds to our VOI"({‘, and their U, ; equals our U27: 7. The subindex T stands for the
linear combination (0,0) — $(2,0). Note that the hadron tensors (5.8)-(5.11) manifestly conserve the electromagnetic
current, i.e., g, W*” = 0.

B. Cross sections

It is now a straightforward matter to contract the hadron tensor with the angle-dependent leptonic tensor (2.29).
For the four combinations of polarization we deduce the following leading-order differential cross sections:

do (0,0 o?
#d{z) = %s 2WT(1 +COSz 0), (513)
da'()\A,/\B) _ [0
d4qdQ  2sQ?
do(S A 2
U(d‘;;z] B) = 2?622 [(WT + VEEAR cos ¢A) (1 + cos?8) +1 TL\p cos ¢4 sin’ 0 cos 2¢

+U21:2L/\B sin20cos(2¢—¢A)}, (5.15)

[(WT + 3VEEA40B) (1 + cos®9) + 1V2 LXa)p sin 0cos2¢:l (5.14)

dU(SAT,SBT) _ a2
d4qdQ T 2sQ2

{[WT+ lTTcos(¢A—¢>B)+ 2TTcos¢Acos¢B](1+c0520)

+21,V2TT cos ¢4 cos g sin? 8 cos 2¢

(VITT UATT UBTT)cos(qSA-—¢B)sin29cos2¢

+1ULST —UPT) sin(¢pa — ¢p) sin® Osin2¢
+(U2‘ UATT %UszT) sin® 0 cos(2¢ — a4 — ¢B)}, (5.16)
where ¢4 (¢B) is the azimuthal angle of S4, (Sp1), i.e., cospa = —& - Sq1 = qr - Sar/Qr for pure tra.nsverse

polarization (]S 47| = 1). Equation (5.16) shows that the structure functions V212T T U{}zTT UB TT, and U7 cannot
separately be extracted from the experiment, but only in three particular combinations. This is due to the fact that
the corresponding tensor structures in Eq. (5.11) are not independent, because of the relation

977 (2848 + gi) — 2°(2 g7 — 7 gh") — 27 (&g} — aPgh) — (6797} — 77 gt) =0, (5.17)
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which can be proven by using g” = —&#2¥ — §#3”. One
easily checks that the angular functions of Egs. (5.13)—
(5.16) have no further dependencies.

In order to circumvent normalization problems, in spin
experiments one usually considers the asymmetries

o(Sa,58) —o(S4,—SB)

= - .1
AsaSs = (54, 55) + 0(Sa, —55) (5.18)

For example, the longitudinal-longitudinal asymmetry
follows from Eq. (5.14):

VEL  sin?@cos2¢ iVEf
A = /\ A 2 5.19
Aals A%\ W 1+cos?2§ Wrp ( )
where the structure functions can be found in
Egs. (5.12a), (5.12b), and (5.12c). The angle-

independent term is a generalization of the gr-integrated
longitudinal-longitudinal asymmetry [22].

VI. DISCUSSION AND CONCLUSION

In this last section we will look more closely into the
results we derived, first by comparing the cross sections
with those integrated over g7, second by considering the
limit Q7 — 0, and finally by considering a Gaussian k2
dependence of the distribution functions.

A. Qr-integrated results

If the Qr dependence is eliminated by integrating
over the transverse momentum of the produced lepton
pair, one recovers the lightcone momentum, helicity, and
transversity distributions of Egs. (1.2), (1.3), and (1.4);

- / Pk fi(z, k), (6.1)
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g1(z) = /dsz a1r(z, kZ), (6.2)

hi(z) = /dsz [hm(%k%’) s

2M2

ir(z, k7)|, (6.3)

and similar antiquark distributions. This can be seen in
two ways. It is easiest to return to Eq. (5.4) and observe
that the § function is absorbed by the gr integration,
so that the transverse intergrations over k,r and kpr
separate. One is left with three independent structure
functions:

Wr(za,zB) = 3 Z fi(za) fi(zB), (6.4a)
Vi (za,z5) = —£> €2 gi(za)d(z), (6.4b)
U;Z(mA,wB) = %Zez hi(za)hi(zB), (6.4c)

with the by now well-known prescription that if ¢ is an
antiflavor, the vector and axial-tensor distributions have
to be replaced by their charge conjugated partners, the
axial-vector distributions by minus their antipartners.
The names of the structure functions in Eq. (6.4) refer to
the Lorentz tensor structure they multiply in the hadron
tensor (and hence the angular distribution in the cross
section). That is, W in the hadron tensor is the coef-
ficient of —g'”, etc. The same expressions are obtained
if one integrates the full results in Eqgs. (5.8)—(5.11) over

gr. It is then seen that W and V;:L are the integrals of

Wr and V:,{‘L, respectively, but that UZZ originates from

the combination UZT:’{ + $U£TT %UszT + %VZ%ZTT.
Contraction of the hadron tensors with the lepton ten-

sor leads to the following leading-order fourfold differen-

tial cross sections [6]:

ﬁzﬁ%ﬁ = 107 WT(l + cos? 0), (6.5)
% = 46222 Wr + VT Aadg)(1 + cos? §), (6.6)
% = WWTU + cos? §), (6.7)
% = 4Q22 [WT(l + cos?0) + Uz 5 sin® @ cos(2¢ — pa — ¢B)] (6.8)

Note that no absolute azimuthal angles occur, but only the relative angles ¢ — ¢4 and ¢ — ¢p. Two remarks are in
place here. Comparing with the full cross sections (5.13-5.16), we observe the disappearance of the sin® 8 cos 2¢-term
in the longitudinal-longitudinal cross section, and hence in the asymmetry (5.19). Second, we see no polarization
dependence in the integrated transverse-longitudinal cross section, and hence no asymmetry. Indeed this asymmetry

is suppressed by a factor ~ 1/Q [4].

B.QT=0

Only a few of the structure functions are nonvanishing at Q7 = 0, the other ones having kinematical zeros (see
also [15]). Therefore, it is worthwhile to consider the limit Q1 — 0 of the structure functions in Eq. (5.12). In general
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we can do this, rewriting the convolutions in Eq. (5.7) by making a transformation to the momenta kr = (kar — kor)
and K1 = ko1 + ko

I[dl(iz]

Il

%Zeﬁ/dsz di[24, (kr + 1ar)?] &[5, (kr — Yar)’] (6.9)

1 e / Pl dy (24, k2) do(z, k2) + O(QZ) = Loldids] + O(Q2), (6.10)

assuming the dlstrlbutlon functions to be sufficiently well-behaved to justify the Taylor expansion of the integrand.
For instance, for V of Eq. (5.12c) one finds, in the limit Q7 — 0 (omitting the flavor sum),

-k _
V2I:2L o ¢ /dsz (%k:zr — (q—TQzT_T)__ 2QT> 1L I:zA’ (kT + %qT)z] h‘iLL [zBa (kT _ %qT)Z]
i od .
= qZ?'ZT /d2k:r' (36:;k% — krikr;) hig(za, k%) hiy(zB, k%) + O(Q%) = O(Q%). (6.11)
T

So VZI"Z,L has a kinematical zero of second order, which is the natural behavior, because it multiplies a tensor that is
quadratic in & and §. In the same fashion all structure functions can be treated. Since this is a rather cumbersome
procedure, we will illustrate below the behavior by considering a Gaussian k3. dependence, from which the order
of the kinematical zeros is simply read off. We obtain only four structure functions without a kinematical zero, in
agreement with the results of RS:

WTlQTWO = L[ f1f1], (6.12a)
Vit opeo = —4lo[912911), (6.12b)

3 erma = o [ 5700 | 6120
TT ATT | 1yBTT k2. LN

(Us3 + 3Us 3022 )opeo = To [ { Par + 2M2 hir + M hiz )| . (6.12d)

[

An easier way to obtain this result is to start from
Eq. (5.4), and put Qr = 0 from there. One then never
picks up the other structure functions in the first place.
The cross sections at Q1 = 0 can be obtained by insertion
of these structure functions into the explicit expressions
given for the cross sections in Egs. (5.13)—(5.16).

C. Gaussian transverse-momentum distributions

It is instructive to consider a Gaussian k1 dependence,

d(z, k%) = d(z,0) exp (—r? k2), 6.13)
T T
|
Wr = I[f1fi],
VCZPL = —4I[g12G1L],
8Q32 rre
LL — T A'B I h h
VZ 2 MAMB (,’,A TB) [ lL]
TL Qr 7‘3 _
=-=__58 7T
VT MA ("'i ¥ 7‘123) [ngglL]a
2
VIE 2Q% rirh Ik

T M3Ma (5 + 13

where the transverse radius r in principle depends on
both the particular distribution function, and on z. One
can explicitly perform the convolution integration (5.7)
(for simplicity we will omit the color factor and flavor

summation),
w 2T Ar%
2z T
r2 g " i +r%

Xdl(xA,O)Jz(l‘B,O),

I[dydy] =
(6.14)

being regular in Q7 = 0. One can identify an “average”
transverse size , given by r=2 = r ;%> + r3%. We find, for
the structure functions,

(6.15a)
(6.15b)
(6.15¢)

(6.15d)

(6.15¢)
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2 2 2
UTL — QT 7'7 QT (rA—rB) L osL
22 7 Mg (r3 +13) Tharhiz] + 2Mp MZ(r? +r3)2 I[hirhiz], (6.15f)

1
lTT _
Ve = o MaMa (s 13 IHgrrgrr); (6.15¢)

VETT = _ Qf rars I[g1rd17] (6.15h)
MaMg (’I‘A+’I'2 )2 1Tg1irT),s

2Q4% rir
V2 TT __ T A B I h
= MAME (43

hizl, (6.151)

4
VlTT UATT UBTT QT A I[thth] + QT TB [ECRPRY) I[thth]

M2 (’I‘ ) (7' )
Q% ( rh —4rirh + 7'13) ’ .
+2M§M123 (2 +r3)3 Ihizhiz), (6.15j)
4 4
ATT BTT _ Q7 TA Q7 B 17
Uss™ — Uy M’121 2 1 r3)? Ifhyrhiy] — ME % +13) Ihyphar]
Q7 (ri—r%) 17l
I .
Jr'21‘4“21]\4123 (r2 +13)? [PizhiT], (6.15k)
TT ATT B 7 1 r4 -
Uzz +3Usz T +3Uss © = Illarhir] + (L ) ( + Q% ATB IThizhar]

1 7‘4 -
o e (9% g g ) bl

1 QT (rA r%)? el
YA B ) Ihiphiz). ,
T OMEME(r + 75)? (1+ 3 12 5re ) [iarhir (6.151)

These explicit results illustrate the kinematical zeros, and can be used to obtain their order. For instance, Eq. (6.15c¢)
is an illustration of the result in Eq. (6.11). The expressions can also be used to illustrate the expected behavior of
the longitudinal-longitudinal asymmetry in Eq. (5.19), which becomes

Ilgirgiz]  sin’@cos2¢ Q% r2ry  I[hiphiy]
Axaxg = AaAB 73 = (6.16)
l: I[.flfl] 1+C0829 MAMB (TA+7'B)2 I[flfl] :l
The second (angle dependent) term in the asymmetry D. Conclusion
starts off with Q% and is proportional to the average
transverse radius squared of the functions hj; and hiy.
As a second example we note the structure function In this paper we presented a field theoretical parton
VFEL, being directly proportional to the transverse ra- model calculation of the leading-order polarized Drell-
dius squared of the helicity distribution g7 for hadron Yan cross section at measured transverse momentum of
B. the lepton pair Q7 S A. The result can be written in
Finally, we mention the CERN NA10 experiment [23], terms of six quark and six antiquark distributions, de-
which indicates a possible sin? 0 cos 2¢-asymmetry in un- pending on longitudinal light-cone momentum fraction z
polarized DY scattering at measured Qr, not suppressed and transverse momentum k2. For each flavor they rep-
by powers of 1/Q. Such an asymmetry, however, does not resent the light-cone momentum, helicity, and transverse
appear in the leading-order result (5.13). It is, however, polarization distributions. Measurements of these distri-
important to note that any kind of polarization in the butions require a study of the asymmetries in doubly-
beams leads to such an asymmetry. Recently, Branden- polarized DY scattering, using longitudinally and trans-
burg, Nachtmann, and Mirkes [24] have suggested that versely polarized beams.
the nontrivial QCD vacuum structure could be responsi- The quark distributions of Sec. III incorporate the in-

ble for the asymmetry. Another suggestion is that higher- trinsic kr dependence. Although this involves higher-
twist effects are responsible [25]. twist operators, the presence of a second scale Q7 in the
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process enables one to find observable effects that are not
suppressed by the large scale Q. Similarly, kr-dependent
correlation functions can be used to analyze other deep
inelastic processes, particularly semi-inclusive DIS. They
will then appear in convolutions with the quark fragmen-
tation functions. At this stage we have not considered the
logarithmic corrections necessary to proof factorization.
Therefore we do not know if the distribution functions
are universal.
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APPENDIX: PERPENDICULAR PROJECTION
METHOD

Consider the convolutions

Tk kb2 g = / Phor dkor % (kar + kor — q7)

x F(kor, kip)ky1 kst .. kit (A1)

= 0,1,2,3, and n = 4 with two of the indices sym-
metrized. We want to project these perpendicular ten-
sors onto a basis of XY tensors, multiplied with scalar
functions of Q.

Take the simplest nontrivial case of n = 1:

kL) = /deaT d*ker 62(kaT + kvr — qr)

(kaT7 gT)kiLL

Since the only perpendicular direction available is ¢/} ~
X*#, this expression must be proportional to £#. The
proportionality constant is easily obtained by contract-
ing with &,, and using 2 = —1. We get (discarding
corrections of O(1/Q?) in this appendix)

J[k‘,iﬁ_] = —(ﬁ“][i . kl.L] = i"J[qT . le]/QT,

making use of Eq. (2.23).
grand as a function of Qr,
of the relations

. (A2)

(A3)

We choose to write the inte-
kZr, and kZ;, by making use

qr - kot = %(QT + k2r — kir), (A4)
qr - ksr = %( T + kir), (A5)
kor - ko = 1(Q% — kir). (A6)

For the more intricate cases, n > 1, the procedure is
essentially the same. Instead of £# and §*, we will use the

The perpendicular vectors k;; are taken from the set more convenient building blocks &#, and g/¥ = —&#&" —
{kai,kb.}. In practice we only needed the cases where g*g¥. For n = 2 we find
J
21 Jl(gr - kir)(gr - k21)]/QF
I v — 7 T
L k5L = (8%, ol )(1 1) (—J[le-sz] (A7)
= (282" + g1")J((qr - kar) (qr - kaor)]/QF — (83" + ¢')J[kar - kor], (A8)

where the matrix notation of the first line should be clear from the second. In the same notation, the n = 3 case reads

By P 1 ARV EP P MY v KPP  Ap VP
J[lekZ.Lk3J_]_(mzm7$g_Lazg_Lang_)

4111 J(qr - ki7)(gr - k2r)(qT - k3T)]/ Q%
(1100 —J[(qr - kar) (k1T - k21)]/ QT (A9)
1010 —J((qr - k2r) (k1T - k37)]/QT
1001 —J{(qr - kar) (K2t - ksr)]/Qr
Finally, for n = 4 and two indices symmetrized, we find
TSk kg kg ) = ((aravarac, anavgl”, aeagh, Laralngtte, lamaluglde, )
822221 2J[(qr - kar)(qr - k2r)(qr - kar)(qr - ka1)]/Q7F
221001 —2J[(qr - k1r)(qr - k2r) (ks - kar)]/Q%
212001 —2J((qr - k3r)(qr - kar) (k1T - k21)]/Q% (A10)
200200 —J((qr - ki) (qr - kar)(kar - kar) + 1 © 2]/Q2
200020 || —Jl(gr- kir)(gr - kar)(kor - ksr) + 1 © 2]/Q%
111001 2J[(k1r - kar)(ksr - kar)]

For the implementation of these rather lengthy formulas we used FORM [26].
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