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Factorial moments of continuous order
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The normalized factorial moments I'"q are continued to noninteger values of the order q, satisfying
the condition that the statistical Buctuations remain filtered out. That is, for the Poisson distribution
I'"q ——1 for all q. The continuation procedure is designed with phenomenology and data analysis
in mind. Examples are given to show how I"q can be obtained for positive and negative values of
q. With q being continuous, a multifractal analysis is made possible for multiplicity distributions
that arise from self-similar dynamics. A step-by-step procedure of the method is summarized in the
conclusion.

PACS number(s): 13.85.Hd, 2&.75.+r

I. INTRODUCTION

Continuation of the normalized factorial moments Fq
to arbitrary, noninteger values of q is not just a math-
ematical problem. It has high phenomenological signifi-
cance, and provides a powerful method to analyze exper-
imental data that can reveal aspects about multiplicity
fluctuations hitherto unexplored.

A historical review of the problem is in order. Bialas
and Peschanski [1] first introduced I~ as a means of
studying the scaling behavior of multiplicity fluctuations
as a function of the resolution scale b, a subject usually
referred to as intermittency. Although a large part of the
eKect seen in the data has recently been found to be due
to Bose-Einstein correlation among like-charge particles
[2,3], intermittency at a weaker level is still present for the
unlike-charge particles and its origin remains to be clari-
fied [4], especially for q ) 2. There is far more dynamical
information about high-energy collisions than can be un-
covered by studying two-particle correlation only. With
that point of view forming the basis of our discussion
here, we now outline the problems associated with the
use of Fq.

Let us first recall the definition of Eq.

(n(n —1) (n —q + 1))
(n)~ )

where angular brackets denote an average weighted by
the multiplicity distribution P . The most outstanding
property of E~ discovered in Ref. [1] is that it filters out
the statistical fluctuations, so any nontrivial behavior of
Fq is a direct indication of some features about the dy-
namics of particle production. A quick review of that
will be given in the beginning of the next section. An-
other significant aspect about Fq is that an event can
contribute to (1) only if n ) q. Thus for small h where
(n) is small in a bin, only rare events with high spikes
(n & q) contribute. That is why it is sometimes said that
intermittency measures spiky events. There are, how-
ever, disadvantages in the use of Fq. A corollary to the
ability to select spiky events is its inability to extract any

dynamical information about dips. It is by now gener-
ally recognized that rapidity gaps, like voids in galactic
structure, are important to study. Those are, of course,
large dips. In nuclear collisions where multiplicity per
bin is large, unusual dips, which can be small but deep,
are as significant as unusual spikes. For such fluctuations
it is necessary to study Eq for q & 1, especially negative
q. Furthermore, for multifractal analysis of multiparticle
production the continuation of Eq to noninteger values
of q is necessary in order to allow differentiation with
respective to p. These studies cannot be done, if Fq is
defined as in (1).

A method to investigate moments of arbitrary order
was suggested several years ago in terms of the G mo-
ments [5]. It was later modified to achieve better power-
law behavior [6]. However, in overcoming the defects of
Fq, the G moments fail to retain the principal attribute
of Eq, i.e. , the screening of statistical fluctuations. Sub-
traction of the statistical component has to be done by
hand [7]. Since that can be achieved only by simulation,
the method is not elegant. But it has provided the first
glimpses into the multifractal structure of particle pro-
duction.

In this paper we describe a method that retains both
attributes: it eliminates statistical fluctuations and is
defined for continuous q. Although the mathematical
technicalities involved may at first sight appear to be of
theoretical interest only, the method is developed with
phenomenology in mind. The purpose of the program
is to extract quantitative information about dynamical
fluctuations from the experimental data and to present
it in a form suitable for comparison with theoretical pre-
dictions. Thus the problem of data analysis has not been
overlooked in favor of mathematical expediency in the
hope that the procedure can be readily accessible to di-
rect experimental application.

II. THE PROBLEM

We first review the virtue of factorial moments. To say
that Fq filters out statistical fluctuation, one first assumes
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that the latter enters the multiplicity distribution as a
convolution with the dynamical component

P„=S(3D, (2)

where S represents the statistical component, which we

take to be the Poisson distribution P, and D is the
dynamical distribution. More specifically, (2) implies

OO

P„= dt —e
—'D(t) .

n~

Let the numerator of (1) be denoted by fq, i.e. ,

OO

(n —q)!n=q
(4)

which is well defined for q being a positive integer. Sub-
stituting (3) in (4) and performing the summation yields

f = dt tqD(t) .
0

This is the qth moment of the dynamical D(t) and is &ee
of statistical contamination. Since fi ——(n), we have

Fq = fqlfi'. (6)

&A) =6

g 2

1.5-

If P„ is a Poisson distribution, then D(t) = b(t —(n))
and fq = (n)q so

Fq ——1 for integer q & 1 .

Because of this trivial result, one can state that any non-
trivial Fq reveals the nontrivial properties of D(t).

To generalize Eq to noninteger q, it must first be recog-
nized that there is no unique continuation to complex q.
Since P must vanish as n -+ oo (in fact, it must vanish
for n ) N for some finite N at any finite collision en-
ergy), there are only a finite number of the Fq moments
defined at integer q values. Without an accumulation of
E~ at infinite q, unique continuation to noninteger q is
not possible. Put differently, we can add to Eq any arbi-
trary function that vanishes at the finite range of integer
q where Eq is specified and generate another function Eq
at noninteger q.

A simple way of continuing (4) to arbitrary q is to
replace the factorial by I' functions: i.e.,

). I'(n+ 1)
I'(n —q+ 1)

Procedures similar to (8), such as continuing dqG(z)/dzq
to fractional q [8], have been considered previously [9—11].
Since I'(z) has poles and oscillates rapidly among those
poles when z & 0, Fq as defined in [8] oscillates between
large positive integers of q and is highly suppressed at
large negative q. The question is whether one wants that
kind of behavior at noninteger values of q. If not, what
are the guidelines by which one makes alternative choices
of the continuation schemes?

In our view the only guideline is the primary rationale
for considering factorial moments in the first place. And
that is the elimination of statistical fI.uctuation at all q,
not just at integer values of q. If one substitutes Poisson
distribution into (8), one will find that fq g (n) . Figures
1(a) and 1(b) show the results for Fq when

-10

5.

-0 5.
10 15 20

(9)

for (n) = 6. Although (7) remains true for positive inte-
gers of q, F& is by no means equal to one for all q. The
oscillations have larger amplitudes at high q, as revealed
in Fig. 1(b). The situation is worse at smaller (n). In
Fig. 2, we show the result for (n) = 1 in (9), for which

&n&=1
2500.

-2500 .

-5000.

26 27 q
2.5-

-7500

-10000-

-12500-

—0.5

10

FIG. 1. Normalized factorial moments Eq in the simple
continuation procedure using (8) with Poisson distribution (9)
as input and with (n) = 6. (a) —10 & q & 25; (b) 25 & q & 30. FIG. 2. Same as Fig. 1 but for (n) = 1.
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(6) and (8) are again used. Notice that there is no con-
nected region of q in which E~ = 1, not even between
q = 1 and 2. Between q = 9 and 10 the peak of ~I"~~ is
greater than 10 . From these results it is therefore not
possible to claim that (8) contains no statistical contri-
bution at noninteger q. The reason for studying Eq at
noninteger q is consequently lost. The G~ moments [5,6]
would be better.

(12)

where x~ and k~ specify the mean and inverse width of
P (j). How they depend on j will be discussed in the
next section. We remark that x~ is equal to

III. THE SOLUTION

To achieve our aim of retaining only the dynamical
Buctuation in our continuation procedure, we demand
that (5) defines f(q) for all q. Hereafter, we use the no-
tation that when q appears as an argument of a function,
instead of as a subscript, it is to be regarded as a continu-
ous (complex) variable. A consequence of that condition
is that the normalized factorial moment function satisfies

(10)

for all q in the case of Poisson distribution. Equation (10)
should be used as a test of the continuation procedure.

The burden of this procedure is to determine D(t). If
a theory specifies the dynamical distribution D(t) com-
pletely, then (5) prescribes a unique continuation of fq to
the complex function f(q) at any q. But how is that to
be checked by experiments where only P is measured. 7
Thus the procedure must supplement (5) with a way of
determining D(t) Rom P„This de.convolution process
also cannot be made unique. The discrepancies show up
as deviations of E(q) from 1. The region where (10) fails
significantly can fortunately be controlled and pushed to
large ~q~.

To deconvolute (3) one could consider making the in-
verse Laplace transform of the generating function G(z).
However, there are diKculties connected with the fact
that G(z) determined &om the experimental P is a poly-
nomial having no singularities in the finite z plane.

Our proposal is to expand P in terms of negative bi-
nomial distributions (NBD's) P (j). One of the at-
tributes of NBD is that it can also be expressed as a
Poisson transform [12], as in (3). They do not form a
complete set of orthogonal functions, so in general they
cannot be the basis functions for the expansion of an ar-
bitrary function. However, we do not have an arbitrary
function. The experimental P„(ignoring errors for the
moment) is a set of K + 1 numbers for n = 0, 1, . . . , N.
Thus the expansion

N

) PNB( .
)

j=o

is well defined with N + 1 coeKcients a~, provided we
specify P+ (j) appropriately. One could consider other
distributions instead of NBD, but for factorial moments
that we shall eventually calculate NBD is most conve-
nient.

Now P NB (j) is defined by [12]

) PNB(
n=O

only if the sum extends to oo . Since our method is de-
signed with phenomenological analysis in mind, where
P is given only for n = 0, . . . , N, all sums over n will
be from 0 to N, whether the summand involves P or
PN . Consequently, xz is not exactly n(j). Although
the discrepancy is small for the x~ and k~ to be chosen,
accuracy will be important, as we shall see. Extending
the sum in (11) to a larger upper limit N' with P = 0
for N + 1 & n & N' would cause a~ to be very large
and highly sensitive to the accuracy of the calculation;
it is a procedure that should be avoided. . Hereafter N
will always be the maximum value of n for which P is
measured to be nonzero, and xz and k~ should only be
regarded as real parameters of P (j ) that will be var-
ied in the expansion in (11). It should be recognized that
because PNB(j ) are all positive (unlike a harmonic func-
tion) and small on the wings, a~ will have alternating
signs and can have large absolute values if P is small
for a range of large n values. Thus accuracy in the ensu-
ing calculations will be essential. With P (j ) specified,
(11) is a set of N + 1 simultaneous algebraic equations
that can be solved for az in terms of the experimental
P„.

Define DNB(t) by the negative-binomial versions of (3),
i.e.)

OO

P„"'(j)= (i4)

Then it is known that [12]

(i5)

The substitution of (3) and (14) to the two sides of (11)
results in

(16)

Thus we have inverted (3) and extracted the dynami-
cal distribution D(t) from the experimental data on P .
In principal, this D(t) can be compared directly with
the theoretical distribution. However, the more famil-
iar arena for comparison involves the factorial moments,
which are more closely related to the data.

An interesting side remark that can be made here is
that the feasibility of determining D(t) from the data
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makes possible an experimental look at such theoreti-
cal quantity as the Landau free energy if the data on
hadronic multiplicity distribution correspond to quark-
hadron phase transition [13],or if the data are on photon
distribution at the threshold of lasing in quantum optics
[14 . That is because in such problems D(t) in (3) is
e +~i~, where E[t] is the free energy of the system.

Returning to the problem on the factorial moments,
we substitute (16) into our basic equation, (5), for con-
tinuation to complex q, and get

(24)

We therefore define first

(
2 N) (25)

which ranges from —6/2 to +A/2 in equal steps, as j
varies from 0 to ¹ For x~ and k~ to vary from the lower
to higher sides of x and k, we set

f(q) =). J' (q j)
x, = x(1+ A, ),

k, =k(1+A, ) .

(26)

(27)
where

r'x, ) I'( + k, )
r(k,-)

This expression is obtained by integration over t in (5)
and is valid only for

Req ) —k- . (19)

+(q) = &(q)/&(1)' (2o)

instead of f (q)/(n)~. From (17) and (18) we then have

N

E(q) = ) a, ' F (q,j),
j=o

(21)

Thus the domain of q that can be continued into be-
fore encountering the first singularity is governed by the
smallest value of k~.

It should be noted that whereas f~ as defined in (4) is
obtained directly Rom the input P, f(q) is determined
from (17) after the inversion is done and the continuation
procedure followed. Even at positive integer values of q,
f (q) is not exactly equal fv because of finite accuracy in
the computation. Following (6), we define the continued
normalized factorial moments by

V ~'l = (n+ 0.3)'e-""/Z, n = 0, . . . , m, (28)

Thus PN+(j) with lower x~ has wider width (lower k~);
while that with higher x~ has narrower width. If 4 is
not too large, all components PN (j) will have compara-
ble magnitudes at large n, which should be small where
P is small. Otherwise, a~ would be hypersensitive to
the accuracy of the computation. With 4 being free to
choose, the procedure is obviously not unique. As we
have remarked earlier, no unique continuation should be
expected from a finite set of numbers, P . However, there
are guidelines for an optimal choice of A. If x is very
small, then (26) may have to be modified, as discussed
in the last paragraph of this section.

We have mentioned in connection with (19) that the
domain of continuation of q is limited by the smallest
value of k~, which is k(1 —A/2). Thus to increase that
domain we would want to have a small value for A. How-
ever, with a small range of x~ and kz it will be necessary
to have highly accurate expansion coefficients a~ in (ll)
to well represent P . So a larger value of 4 is preferred.
This point needs to be demonstrated quantitatively. A
way to do this is to calculate f (1) and examine its depen-
dence on A. To that end we consider specific examples
in the following.

Consider a sample P given by

where

~NB( )
r(q+ k~)"=
r(k, )kv (22)

Equation (21) is our result, which is explicit once the
values of a~ are determined.

IV. THE RANGE OF x~ AND k~

N
*—:(n) = ) nP„,

To complete the description of our continuation proce-
dure, it is necessary to specify x~ and k~, which represent
the average and inverse width of P (j) They should.
be chosen to be not too far &om the values of x and k of
the input P, where

where N = 30 and Z is the normalization factor so that
0 P = 1. For this 'P we have z = (n) = 7.6966

and k = 7.2193. For 4 chosen to be in the range 0.1 &
A & 0.6, we follow the procedure described in Sec. III
and calculate f (1). The result is shown in Fig. 3(a) as a
function of L. Evidently, there are Buctuations at small
values of 4, but quite stable for 4 ) 0.25. However,
when the vertical scale is expanded as shown in Fig. 3(b),
we see that small fluctuations at a level of ( 0.3% are
still present until A & 0.4, where f(1) = 7.7016. A
discrepancy between f (1) and x is anticipated because of
the finiteness of N but at 0.06% level it is unimportant.
What is important is that 4 should not be too small.
This example demonstrates the limitation of the method
due to (19), if one attempts to continue q to large negative
values. From Fig. 3 an appropriate value for L can be
set at 0.5, for which min(k~ j = 0.75k = 5.4145. Thus
E(q) can be continued to q —5.4 before encountering
divergence. In practice this range of negative q is quite



FACTORIAL MOMENTS OF CONTINUOUS ORDER 3327

14.
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4 ~
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0.1 0.2 0 ~ 3 0 ' 4 0.5 0.6

yond —1. Decreasing 4 would not improve the situation
due to the limitation of small k for P . Since L should
not be changed in the analysis of data with varying b, we
suggest that 4 be fixed at 0.5.

There are situations where (26) may not be the opti-
mal choice for x~. Such is the case when 2: is extremely
small, e.g. , 0.1, while N = 5. Then, x~ varies from 0.05
to 0.15, which does not provide enough range to expand
P in without demanding extremely high accuracy in the
computation. A more suitable definition can be, for ex-
ample,

x~ = 0.01N+ 0.09', (30)

7.74.

7.72

which ranges from N/100 to N/10. We have tried this
for some sample distributions and it works very well. In
the following only (26) is used, not (30).

7.7-

7.68.
V. CONTINUED FACTORIAL MOMENTS

7.66-

0.2 0.3 0.4 0.5 0. 6

FIG. 3. Dependence of factorial moment f(q = 1) on A
when the input distribution is 'P . The resolution in (b) is
higher than that in (a).

enough to exhibit the low-n behavior of P . Increasing 4
would improve the stability of the solution, but decrease
the range of continued q. The choice of 4 = 0.5 seems like
a good compromise between the two opposite preferences.

Consider next another example where (n) is much
smaller, corresponding to the situation where the phase-
space cell size b is small. Assume

P(') = (n+ I)"e-"/2, N = 20, (29)

0.838.

0.836 .

0.834.

0.832.

0.83 0.1 0.2 0.3 0.4 0.5 0.6

FIG. 4. Dependence of f(q = 1) on A when the input
distribution is 'P

for which x = 0.8352 and k = 1.395. Figure 4 shows the
result of f(1) vs A, which is rather free of Huctuation
for all 6, except near 0.1. The value of f(1) = 0.8352 is
equal to x to 5 significant figures. Choosing L = 0.5 gives
min(k~) = 1.046 which does not allow q to go much be-

0.84

The continuation procedure having been completely
specified in Secs. III and IV, we can now proceed to
the study of the normalized factorial moments F(q). We
continue to use the three distributions P ', i = 0, 1, 2,
as our sample inputs for P . Unless otherwise stated,
L = 0.5 is used.

For the Poisson distribution 'P, let us consider the
same two cases: (a) (n) = 6 and (b) (n) = 1, already ex-
amined in Sec. II, where the simple continuation scheme
n! -+ I'(n + 1) was used. Now, we assume N = 30 for
(a) and N = 10 for (b) as the upper limits of n in the
experimental P . If N = oo, P would give F2 ——1,(o)

so according to (24) k would be infinite. For the finite
N chosen for the two cases, F2 are still very close to 1,
so A: would be extremely large. For our calculation it is
sufficient to set k = 10 . Using our procedure of contin-
uation the results are shown in Figs. 5(a) and 5(b), for
the two cases (a) and (b), respectively. Note the high
resolution of the vertical scale. For (n) = 6 in case (a)
F(q) is essentially 1 for —10 & q & 30. In case (b) where
(n) = 1, F(q) is almost 1 for —10 & q & 20 except
near the edges of that range. This case is more difficult
to continue accurately because there are fewer values of
nonvanishing P . Theoretically, P is nonzero for any(o) (o) .

finite n, but we cut off at N = 10 to simulate a realis-
tic situation where (n) is only 1. With only 11 values
of a~ the continuation to large ~q~ cannot be expected to
have extremely high accuracy. That is why F(q) deviates
from 1 near the two ends in Fig. 5(b). Nevertheless, the
deviation is only of order O. 1%%. Upon comparing Fig. 5
to Figs. 1 and 2, the advantage of this method over the
simple scheme of Sec. II is self-evident.

For 7 given in (28) with N = 30 the result of our
calculation for F(q) is shown in Figs. 6(a) and 6(b).
The dependence on q is evidently very smooth. It grows
rapidly at negative q, even though the first singularity is
located at q & —5. We have also calculated F(q) for b, =
0.3, the result of which is plotted in dashed lines, lying
very close to the solid lines for A = 0.5. For q ) 0 the
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F(q)
1.004 .

1.002

(a) (n) = 6
F(q)

(a)

0.998

0.996.

30.
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0.994

0.992 .
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10

1.004 .

(b) &n& = 1

1.002-

0.998.

—10

0.996-

0.994 .

0.992.

10 15 20
—1.5 —1

0.95.

—0. 5 0 0.5 1.5 2. 5

FIG. 5. Normalized factorial moments F(q) with high ver-
tical resolution for Poisson distribution with (a) (n) = 6 and

(b) (n) = l.
FIG. 6. F(q) with 'P as input distribution. The solid line

is for E = 0.5, the dashed line is for A = 0.3. (a) —3 ( q ( 10;
(b) —1.5 ( q ( 2.5.

two cases are indistinguishable. For q ( —2 the diBerence
is actually not negligible in absolute value but because
of the rapid rise of E(q) it is not significant in terms of
percentage discrepancy. In Fig. 6(b), we see that for the
range of q shown the difFerence between the two cases is
totally insignificant. This is the most important range for
the continuous q problem, and we have found a reliable
continuation of E(q).

It should be pointed out that E(0) = 1 is not acciden-
tal. From (21) and (22) we see that E(0) = Z~a, which
is 1 by virtue of the normalization of P and P (j) in
(11). Of course, fo is also 1 if the continuation scheme
of (8) is followed.

Finally, let us come to the third example where P is
as given in (29) with K = 20. Now, the values of x and
k are small. The calculated result for E(q) is shown in
Figs. 7(a) and 7(b). There is a fast rise at large q be-
cause of the smaller z (compared to the case above). The
continuation to negative q encounters irregularity due to
the small value of k. For q ) —0.5, there is essentially
no difFerence between the use of 4 = 0.5 (solid line) and
A = 0.3 (dashed line). Only the solid line is plotted in
Fig. 7(a); both are plotted in Fig. 7(b). The difFerence
between the two 4 cases becomes noticeable and quanti-
tatively significant only for q ( —0.5, a region very close
to the singularities. The reliability of our continuation
should therefore be restricted to the domain to the right
of the sudden downturn of E(q) around q = —0.5. In
that domain our result is smooth and insensitive to L.

VI. MULTIFRACTAL ANALYSIS

With E(q) continuable to noninteger q, it is now possi-
ble to consider multifractal analysis, assuming that E(q)
has a power-law dependence on the resolution scale b for
a range of q covering both positive and negative values.
Such an analysis was suggested previously using G mo-
ments, which are defined for all q by [5]

(31)

where n; is the multiplicity in bin i, nt ——P, n, , and the
sum in i is over all nonempty bins. G(q) shows scaling
behavior

for q ) 1 in both experimental data and model simula-
tion, when g(n, —q) is included in the summand in (31)
[6]. However, for q ( 1 (32) is not valid for any extended
range of b, so multi&actal analysis cannot be made for
that range of q. The problem is rooted in the empty-bin
efFect and the fact that G(q) contains statistical fluctu-
ations. Since E(q) is now defined for noninteger q, its
scaling behavior
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(a)
50-

40-

30-

20 '

10-

the scaling properties of dynamical fluctuations in terms
of the multifractal spectrum f (a)

It is not our purpose here to examine speci6c dynami-
cal models or experimental data and to extract their mul-
tiplicity Huctuation behaviors. However, we can demon-
strate the nature of f(a) if we assume that the scaling
behavior (33) is true for a set of P (8) for a range of 8.
Let us further assume that among those P„(b), a specific
one at some bp is exactly 'P given in (28). Then we
have

0
&p(q) = clnE(q) + ci(q), (37)

1 4-

0 6-

0 4 ~

0.2-

—0.5 0. 5 1.5

FIG. 7. E(q) with P„a's input distribution. The solid line
is for A = 0.5, the dashed line is for A = 0.3. (a) —1 & q ( 6;
(b) —I & q & 2.

especially for negative q, should be checked for a variety
of existing data. If (33) is valid for a range of q around
1, multi&actal analysis can then proceed without the ne-
cessity of subtracting out the statistical component, as
was done for G(q).

We can relate G(q) and I" (q), if we assume that (31) is
defined for the dynamical distribution only without the
statistical fluctuation. The sum over all bins in (30) can
then be related to averaging over the dynamical distri-
bution in (5). Using (6), (32), and (33), we get

Dq = ~(q)/(q —1) (38)

which is related to n by

Dp = f(crp), (39)

where c = (—lnhp) and ci(q) is some function of q in-
dependent of bp arising &om the proportionality factor in
(33). Scaling behavior means that Ip(q) is unchanged, as
b is varied from bp. The major part of the q dependence
of &p(q) derives from that of E(q), which we know from
Fig. 6. Apart &om the unknown constant c and the un-
known function ci(q) in this example, we can determine
f (n) from F(q) by varying q parametrically. For illustra-
tive purpose, let us assume that ci(q) = 0 so that using
(34)—(37} and the result of our calculated I" (q) pertain-
ing to P, we can determine f(n) In Fig. . 8 we show
the result for four possible values of c. We stress that
in a model or data analysis c is not a variable, ip(q) is
determined f'rom the log-log plots when there is scaling.
Figure 8 merely illustrates the possible form of f (cr), if
rp(q) happens to coincide with the result of analyzing a
particular P = Pw'ith a specific c in (37) and with
ci(q) = 0. The dashed line indicates where f(n) = n,
and is tangent to each of the f(n) curves at q = 1. The
range of q covered by f (cr) in Fig. 8 is, depending on c,
roughly —2 & q & 4, with the q = 0 point always oc-
curring at the peak of the f(a) curve. The multifractal
dimension Dq is [5,16]

~(q) = q —1 —q (q), (34)

where the —1 comes from the fact that g, by itself gives
the total number of bins, which varies as b . The multi-
&actal spectrum is then obtained by the Legendre trans-
form [5,15]

0.8-

0 6.

0.4-

&(~) = q~ —~(q) (35) 0.2-

with

cr = d~(q)/dq .
0.5 1.5 2. 5

Thus the verification of the power law (33) and the capa-
bility of calculating n by differentiation with respect to
q, which we now have, make possible the presentation of

FIG. 8. Multifractal spectra f(n) for four values of c (see
text), if the input P~ belong's to a class of scaling distribu-
tions. The dashed line is for f(n) = n.
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where n~ is the value of o. at q. Thus no is where f (n) is
maximum, and ai is where f (ai) = Q.'i. The multifractal
spectrum f(n) is the most elegant way of displaying the
scaling properties of dynamical fluctuation. Reduced to
the bare minimum, two parameters can be used to char-
acterize f(n), viz. no and ai, the location of the peak
and a measure of the width, respectively.

In many multiparticle production processes the scal-
ing behavior (33) is not valid over an extended range of
b. The multi&actal analysis described above cannot be
applied then. However, it has been found phenomeno-
logically [17—19] as well as theoretically [13,20], not only
in hadronic and nuclear collisions, but also in quantum
optics [14], that Pz satisfies a difFerent scaling law

0.8

0.6-

0.4.

0.2.

0.5 1.5 2. 5

Fq oc F2 ' .

Let us assume that this behavior can be established for
continuous q so that the function P(q) can be determined
for a range of q values both positive and negative. Then
it is possible to define formally another spectrum, call
it g(o.), in exact analogy to (34)—(36), but without the
geometrical implication of multi&actality. Thus we define

0.8

0.6

0.4

0.2

o.(q) = q —1 —P(q), (41) 0.5 1.5 2. 5

g(a) = gn —o.(q),

n = do (q)/dq .

(42)

(43)

FIG. 9. Spectrum function g(a) is (a) 'P and (b) P be-
long to separate classes of self-similar distributions satisfying
F scaling (3.9).

The only input into this scheme of description is P(q),
which is

P(q) = lnF(q)/lnF(2) + b(q), (44)

where b(q) is the log of the proportionality factor in (40).
Mathematically, cr(q) and g(a) correspond to 7 (q) and
f(n) if we set c = 1/lnF(2), but physically (33) need
not be true, rendering p(q) meaningless, while (40) can
well be true (no exception having been found so far).
Reference [13] gives an explicit example of (40) being
valid for a problem that does not have (33).

In the example where 'P is considered, let us assume(1)-
that it belongs to the type of physical problem for which
(40) is valid. Then the function F(q) obtained is suffi-
cient to determine g(n), assuming b(q) = 0. The result
is shown in Fig. 9(a). Since F(2) = 1.14, g(n) corre-
sponds to f(n) in Fig. S with c = 7.64. In Fig. 9(a),
the peak occurs at o.p = 1.45 while the tangent point is

at o.1 ——0.52. If, on the other hand, 'P~ is used as an(2)

example that has a scaling behavior (40), totally unre-

lated to 'P, then the corresponding spectrum g(a) is as
shown in Fig. 9(b). Note that in this case the maximum
o. is 2.15~corresponding to q = —0.24. Our continua-
tion to lower value of q has led to a sudden downturn
of F(q) around q = —0.4, exhibited in Fig. 7(b). That
causes a drastic change in the derivative in (43) at around
q = —0.24 which in turn gives rise to an irregular behav-
ior in g(n) at n = 2.15. Thus the nature of 7 prevents(2)

the use of F(q) for q ( —0.24, thereby setting an up-

per bound to how far to the right the spectrum g(a. ) can
be developed. In that figure o.p ——1.76 and o.i ——0.41,
quite difFerent from the corresponding values in Fig. 9(a).
These two figures are suKcient to indicate that 'P and

cannot belong to the same class of E-scaling facto-(2)

rial moments.
In summary, g(n) is a representation of the character-

istics of the F-scaling behavior, (40), of F(q), and may
be a generally useful description of all multiparticle pro-
duction processes.

VII. CONCLUSION

We have presented a way to determine F(q) for contin-
uous q such that it is 1 for all q if the input distribution
is Poissonian, i.e., the statistical fluctuation is filtered
out. The range of q into which F(q) can be continued
depends on the nature of P . Generally speaking, the
low n part of P is characterized by the negative q re-
gion of F(q). Thus the study of the scaling behavior of
multiplicity fluctuations can now be extended to dips,
gaps, and voids. All existing data that have been put
to intermittency analysis at positive integer q should be
reanalyzed for continuous q. Similarly, such reanalysis
should be done for all models and Monte Carlo (MC)
codes. Thus the confrontation between theory and ex-
periment can now be extended to a significant portion of
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the real line of q, as compared to the previous situation
where it has been done for only a few isolated points at
the integer values. For comparison, the study of Bose-
Einstein correlation is focused on only one point: q = 2.

If the dynamics of particle production is self-similar so
that E(q) exhibits a power-law dependence on the reso-
lution scale ~}, then the intermittency index rp(q) can be
determined as a continuous function of q. It then fol-
lows that the multi&actal spectrum f (n) can be derived
without any ambiguity or need for correction to eliminate
statistical contamination. On the other hand, if there is
no power-law dependence on b, but there is F scaling, i.e. ,

Fq oc E2', which is more commonly observed, then the
knowledge of P(q) is sufficient to determine the spectrum
g(n) that gives an excellent description of the self-similar
behavior of the dynamics of Huctuations.

For the purpose of providing a convenient outline of
the procedure to determine P(q), f (cr), and g(n), we
summarize here the steps needed to do the analysis.

(1) Starting with the input P, n = 0, . . . , N, deter-
mine x and k from (23) and (24), and then x~ and kz
from (25)—(27) with 4 = 0.5. When z is very small, use
(30) instead of (26).

(2) Using (12), set up N + 1 linear algebraic equa-
tions, (11), with P„(j) as the matrix and P„as the
input vector. Solve for a~. , j = 0, . . . , N. (The use of
MATHEMATIGA has been found to be convenient. )

(3) Use (21) to calculate E(q) for a range of real q.
(4) If the input P (b) is known for a range of h, deter-

mine f (q) as a function of 8 and examine the validities
of (33) and (40) over that range of 8.

(5) If (33) is valid for a subrange of h, then from p(q)
and (34)—(36) determine f (n)

(6) If (33) is invalid but (40) is valid, then &om P(q)
and (41)—(43) determine g(n).

(7) Compare theory and experiment at any of the three
levels: F(q), f(o.), or g(n).
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