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We review the large-N. approach to meson-baryon scattering, including recent interesting de-
velopments. We then study wIV scattering in a particular variant of the linear 0 model, in which
the couplings of the o and m mesons to the nucleon are echoed by couplings to the entire tower of
I = J baryons (including the A) as dictated by large-N. group theory. We sum the complete set
of multiloop meson-exchange 7N — 7N and N — oN Feynman diagrams, to leading order in
1/N.. The key idea, reviewed in detail, is that large N. allows the approximation of loop graphs
by tree graphs, so long as the loops contain at least one baryon leg; trees, in turn, can be summed
by solving classical equations of motion. We exhibit the resulting partial-wave S matrix and the
rich nucleon and A resonance spectrum of this simple model, comparing not only to experiment but
also to mIV scattering in the Skyrme model. The moral is that much of the detailed structure of the
meson-baryon S matrix which hitherto has been uncovered only with Skyrmion methods can also
be described by models with explicit baryon fields, thanks to the 1/N. expansion.

PACS number(s): 13.75.Gx, 11.15.Pg, 12.38.Lg, 12.40.—y

I. OVERVIEW OF THE LARGE-N, APPROACH
TO MESON-BARYON SCATTERING

It is well known [1-6] that QCD simplifies greatly in
the limit N, — oo, N, being the number of colors. Not
surprisingly, the large- N, limit has likewise proved to be
very useful in studying effective low-energy hadron La-
grangians for the strong interactions. Broadly speaking,
such effective theories fall into two categories. On the
one hand, there is the straightforward Feynman diagram-
matic approach in which mesons and baryons are each
treated as explicit dynamical fields, while, on the other
hand, there is the more economical Skyrmion picture [7,8]
in which baryons are viewed as solitons constructed from
meson degrees of freedom. Since both these approaches
purport to describe low-energy strong interactions, it fol-
lows that if they are sensible, they should be equivalent
to one another. Furthermore, this equivalence must hold
order by order in 1/N.. The first steps towards estab-
lishing such an equivalence are just recently being taken
[9-15].

In either approach, a particularly fruitful physical pro-
cess to examine has been meson-baryon scattering in the
large- N, limit. The present paper furthers this study,
taking as a tractable example of a multichannel La-
grangian a variant of the linear o model. Before we spec-
ify the model and our particular treatment of it, it is
helpful to put the present work in a historical context.

A review of the relevant theoretical literature over
the past decade reveals an interesting sociological phe-
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nomenon: There are two disjoint bodies of large-INV,
papers devoted to two topologically distinct sets of
diagrams, namely, Compton-type versus ezchange-type
graphs, which contribute to the meson-baryon S matrix.!
Examples of Compton-type and exchange-type graphs
are displayed in Fig. 1 and Fig. 2, respectively. Topolog-
ically, they differ in the following way: In the exchange-
type graphs of Fig. 2, it is possible to trace a continuous
line from the incoming to the outgoing meson without
ever traversing a baryon line segment, whereas in the
Compton-type graphs of Fig. 1 this cannot be done.

Let us review, briefly, some of the salient points of
physics that emerge from the study of each of these two
classes of diagrams.

A. Compton-type graphs

While  presently the Compton-type graphs
[10-14,16-20] are much less well understood than the
exchange-type graphs discussed below, they neverthe-
less yield some interesting physics, as follows. Look at
Figs. 1(a) and 1(b). Since each vertex scales like /N,
(see Ref. [3]), these graphs individually scale like? N,.

1So far as we are aware, the only attempts to date to treat
these two classes of graphs in a unified manner can be found
in Sec. 7 of Ref. [10] and in the final section of Ref. [14].

2The baryon propagator is approximated by i(v-k+i€) ™! in
the large- N, limit, where v is the baryon’s four-velocity, k is
the momentum imparted by the incoming meson (assuming
the incoming baryon to be on shell), and it is also understood
that one throws away the two small components of the Dirac
four-spinor. We focus on the kinematic regime k& ~ N2 so
that the baryon propagators do not affect the N, counting.
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FIG. 1. Compton-type graphs contributing to me-
son-baryon scattering. Henceforth, directed lines stand for
baryons; all other lines are mesons. The baryons B, B’, and
B" stand for three members of the I = J tower of baryons.
(d) contains a purely mesonic loop and so is subleading in
1/N¢; (a)—(c) do not, and so contribute at leading order [9].

However, we know from Witten’s analysis of quark-gluon
diagrams [3] that the total amplitude for meson-baryon
scattering must scale like N2, not N,. Therefore there
must be leading-order cancellations between Figs. 1(a)
and 1(b). Add to this observation another important
piece of large- N, physics: the fact that for the case of two
light flavors (which we focus on exclusively herein) the
spectrum of stable baryons is a tower of states of equal
spin and isospin [8], I = J =1/2,3/2,5/2,..., which are
all degenerate in the large-N,. limit (more precisely, in
the limit J2/N. — 0). We then demand leading-order
cancellation between Figs. 1(a) and 1(b), for the rea-
son described above, with the three baryon legs drawn
from all possible baryon states in the I = J tower, con-
sistent with triangle inequalities for isospin and angular
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FIG. 2. Exchange-type graphs contributing to me-
son-baryon scattering. (f) contains a purely mesonic loop and
so is subleading in 1/N,; (a)—(e) do not, and so contribute at
leading order. In this paper we explicitly sum all such lead-
ing-order graphs in a model containing both 7 and o mesons.

momentum at each vertex. This exercise is carried out in
Refs. [16] and [17]. The upshot is a set of proportionality
relations between the various coupling constants g.nn,
gxNA, graa, and so forth up the I = J tower, relating
each of these a priori independent couplings to a sin-
gle underlying coupling constant, up to multiplication by
Clebsch-Gordan coefficients. We call this set of relations
for the pion-baryon couplings the “proportionality rule.”
Furthermore, Dashen and Manohar have shown that cor-
rections to the proportionality rule do not occur at order
1/N., as naively expected, but rather at order 1/N2 [18].
This suggests that the proportionality rule should be rel-
atively robust. Calculationally, it implies that, once the
order N, contributions to the amplitude have canceled,
the surviving order N? pieces arise solely from the 1/N,
corrections to the baryon propagator, and not from 1/N,
corrections at the vertices, as one might have thought.

Numerically, the proportionality rule for the pion-
baryon couplings works well. Not only does the decay
width of the A work out to within a few GeV of its mea-
sured value when g,na is related, using this rule, to the
experimental value of gy~ [8,10]; but furthermore, with
the same input parameters, the widths of the “large-N,
artifacts,” i.e., the baryons with I = J > 5/2, are so
large that they cannot be considered “particles” at all,
and as such, pose no problem for phenomenology [10].
This latter observation removes what has been, until re-
cently, one of the chief objections to the entire large-N,
program. Another success of large N, is that the group-
theoretic predictions of the old SU(2Np) symmetry are
recaptured [5,6,16,17,19], without the need to appeal to
the construct of the nonrelativistic, weakly interacting
constituent quark model.

A further refinement was made recently by Jenkins
(20], who examined the one-loop chiral corrections to the
masses My of the I = J baryons, and deduced the con-
sistency relations

J(J+1)

M; =
J Mo + 2T

+ O(NS?), (1)

where My and Z are constants of order IV, that can be
fixed, for example, by pegging M;,; and M3/, to the
experimental nucleon and A masses, respectively.

While the large-N. results of Refs. [17-20] are de-
rived using effective Lagrangians of mesons and explicit
baryons, the physics of the Compton-type graphs can
also be accessed using the Skyrmion approach [10-13].
The parallelism between the two approaches is manifest
in expressions such as Eq. (1). In the language of the
two-flavor Skyrme model, My and Z are interpreted as
the mass and moment of inertia of the soliton, respec-
tively [8,21]. It is reassuring that the expression (1) can
also be gotten directly from looking at quark diagrams
in large-N. QCD [5,6], closing the circle.

B. Exchange-type graphs

Next we turn to the physics of the exchange-type
graphs [9,22-30], which is the primary focus of this pa-
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per. Examples are shown in Fig. 2. These graphs likewise
contribute to the scattering amplitude starting at order
N?. Although the summation of all such graphs would
appear to be an impossible task, it can actually be car-
ried out in a straightforward manner, as long as one con-
tents oneself with the leading-order answer in the 1/N,
expansion [9,14]. As will be reviewed in detail in the sec-
tions to follow, the key idea is to rewrite these multiloop
graphs as trees, exploiting the large-NN, approximation.
Tree graphs have the great advantage over loops in that
they can all be summed by solving classical equations of
motion.® It is this summability property which justifies
our earlier statement that the exchange-type graphs are
much better understood than the Compton-type graphs.

While the analysis of this paper will be carried out us-
ing explicit baryon fields, the set of classical equations
that emerges is, once again, highly reminiscent of the
Skyrmion approach, in which the corresponding classical
equations describe a pion propagating through the back-
ground field generated by the Skyrmion itself [22-27]. In
particular, the group-theoretic relations familiar from the
Skyrme model carry over intact to models such as the
present one with explicit baryons. These include non-
trivial, and experimentally reasonably well satisfied, re-
lations in which isospin-3/2 7w N scattering amplitudes are
expressed as linear combinations of the isospin-1/2 am-
plitudes [22,24]. Similar relations hold for kaon-nucleon
scattering [25], and for 7N — pN [26], and in fact for all
quasielastic meson-baryon scattering processes.

If, extending Donohue’s original suggestion [28], one
crosses these relations among scattering amplitudes from
the s channel to the ¢ channel (e.g., NN — mesons),
they can be reexpressed concisely as two large- N, selec-
tion rules [29,30]. First, there is the very same “pro-
portionality rule” discussed earlier, in the context of the
Compton-type graphs. However, the derivation given in
Ref. [29] makes clear that the proportionality rule is com-
pletely independent of the chiral limit, and furthermore,

3To remind the reader that he or she already knows of a situ-
ation where “loops” become “trees,” recall the ancient prob-
lem of electron-proton scattering in the low-energy regime
where the proton mass is much greater than all other scales in
the problem. On the one hand, these are evidently multiloop
interactions, in which the proton and electron lines exchange
a large number of photons in all possible tanglings. On the
other hand, we know that the physics is accurately described
by classical equations: First the proton generates a classi-
cal Coulomb field, and then the electron propagates linearly
through this nontrivial background (Rutherford scattering).
These two disparate pictures are reconciled by the fact that
the loop graphs are really trees, by exactly the same manip-
ulations described in Sec. II below. The insight of Ref. [9] is
that this same mechanism (modulo nonlinearities due to the
fact that bosons, unlike photons, are self-interacting) holds
for the exchange of arbitrary bosons in the large-N. limit,
thanks to the proportionality rule as well as the I; = J; rule
reviewed below.
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that it applies not only to the pion-baryon couplings but
equally to the baryon couplings of all bosons. Beyond the
width calculations noted above [8,10], the phenomenolog-
ical validity of the proportionality rule is put to the test
in Fig. 7 of Ref. [24], in which the appropriate linear com-
binations of the experimental #tN — N and 7N — wA
scattering amplitudes are compared.

In addition, a second large-N,. selection rule emerges,
the “I; = J; rule” [29,30]. This rule states that the
isospin of the emitted or absorbed meson must equal its
total (spin + orbital) angular momentum, measured in
the rest frame of the large-/V, baryon. Concrete exam-
ples of meson-nucleon couplings that satisfy the I; = J;
rule include the pseudovector coupling of the pion, the
tensor coupling of the p, and the vector coupling of the
w [30]:

(9evn/2My) 8,7 - NYYHZN | gt™8,5, - NoH'#N

9o wu - Ny*N ()

each of which must be augmented by couplings to the
entire tower of I = J baryons as required by the pro-
portionality rule. Since these couplings obey the I; = J;
rule, the three coupling constants are nonvanishing at
leading order in the large- N, expansion:

grNN tens vec
~ ~ ~ VN 3
2Mn 9p 9 (3)

In contrast, the Iy = J; rule forbids at leading order the
other two canonical vector-meson interactions, the vector
coupling of the p and the tensor coupling of the w,

95" Pu -Ny*#N and g¥™d,w, - No*’N , (4)

w

meaning that these coupling constants must be down by
(at least) one power of 1/N, compared to Eq. (3):

vec tens 1

A (5)

The relative unimportance of the vector (tensor) cou-
pling of the p (w) has long been known to nuclear physi-
cists who construct one-boson-exchange models of the
nucleon-nucleon potential [31-34]. It is pleasing to see
these phenomenological rules of thumb emerge as theo-
rems in the large- N, limit.

C. Two interesting unresolved questions

We close this expanded Introduction with two ques-
tions that are food for further thought. First is the
complete meson-baryon S matrix properly obtained by
adding the Compton-type and exchange-type graphs to-
gether, or, as an alternative prescription, might it be the
case that either set of graphs by itself (assuming an infi-
nite spectrum of mesons) contains the complete answer?
This latter possibility is suggested by the observation
that mesons and baryons are composite particles made
up from quarks and gluons. Since at the quark-gluon
level there is no longer a topological distinction between
the graphs of Fig. 1 and Fig. 2, one must be especially
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FIG. 3. Examples of exchange-type graphs contributing to
(a) the baryon-baryon interaction, (b) the baryon-antibaryon
interaction, and (c) the baryon-baryon-baryon interaction. As
none of these particular graphs contains a purely mesonic
loop, they all contribute to leading order in 1/N., and can
be summed using the methods of Ref. [9].

careful to avoid double counting, and this might con-
ceivably preclude adding the graphs of Fig. 1 and Fig. 2
together in a naive way.%

Second, the exchange-graph formalism of Ref. [9] ap-
plies not only to the meson-baryon system which we fo-
cus on here, but equally to the baryon-baryon, baryon-
antibaryon, baryon-baryon-baryon, and in general to all
n-baryon, m-antibaryon interactions (Fig. 3). Of course,
there are no analogues of Compton-type graphs for these
multibaryon systems. It follows that the exchange-graph
formalism of Ref. [9] gives, in principle, the complete an-
swer for these cases, to leading order in 1/N,. By this we
specifically mean the following: Given an effective hadron
Lagrangian whose meson-baryon couplings properly em-
body the I; = J; and proportionality rules, the complete
set of Feynman diagrams of the sort exhibited in Fig. 3
can be summed to leading order in 1/N,. It would be an
interesting exercise to carry out this program, starting
from a well-motivated effective Lagrangian, and to com-
pare the results to the popular Bonn [33] and Paris [34]
potential models (which are derived from just the ladder
diagrams with at most one crossing) as well as to the re-
cent work of Weinberg and others that relies exclusively
on chiral perturbation theory [36].

D. Outline of the paper

The remainder of this paper is organized as follows. In
Secs. II and III we review the exchange-graph formal-

“For the resolution of similar issues in atomic physics,
namely, the avoidance of double counting when bound states
are involved, see Ref. [35] and references therein.
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ism of Ref. [9] and apply it to two warm-up problems,
a “o-only” and a “m-only” model, respectively. Sections
IV-VI explore in detail the meson-baryon S matrix in
a richer model comprising both pions and o mesons, a
variation on the Gell-Mann-Levy o model [37]. Obvi-
ously, we do not take this model seriously as a realistic
depiction of hadron physics. Rather, we aim only to il-
lustrate how the formalism of Ref. [9] leads in a concrete
way to a quantitative calculation of the exchange-graph
contribution to the multichannel meson-baryon S matrix.
With the present model solved, the scene is set for more
ambitious, realistic calculations, necessarily incorporat-
ing vector mesons. We are also interested in compar-
ing the large- N, effective Lagrangian approach that uses
explicit baryons, with earlier large-NN, results from the
Skyrme model. We come to the conclusion that much
of the detailed structure of the meson-baryon S matrix
which hitherto has been uncovered only with Skyrmion
methods, can equally be described by models with ex-
plicit baryon fields. At the same time, both approaches
share significant problems in the low partial waves, the
complete resolution of which remains a major technical

hurdle.

II. FIRST WARM-UP PROBLEM:
A o-ONLY MODEL

As a first calculation, let us consider a model with only
o mesons and (nonstrange) baryons [9,38]. Because the
o has I = J = 0, this toy model avoids the spin and
isospin complications due to noncommutativity of Pauli
matrices at the meson-nucleon vertices. It also avoids
the complications of inelastic two-body channels (e.g.,
nucleons cannot turn into A’s).

The Lagrangian to be solved in this section is the large-
N, version of

Loy = %(8,‘0)2 — V(o) + N(ir -8 — My)N — goNN |
(6)

where, for definiteness, the o self-interactions are de-
scribed by the fourth-order potential

1 1 1
V(o) = §m020'2 + gﬁw?’ + ﬁ/\a'1 . (7

By the words “large-N. version of” we mean that the
coupling of the ¢ to the nucleon in Eq. (6) must, in prin-
ciple, be augmented by analogous couplings to the entire
I = J tower of large-N,. baryons, starting with the A
(I = J = 3/2) and continuing through the state with
I = J = N_/2. The relative strengths of these couplings
are given by the proportionality rule [29]. However, in
this simple model, since the o carries the quantum num-
bers of the vacuum, it couples diagonally to this tower
(as noted above). Therefore, as long as we restrict our
attention to nucleon targets, we can safely drop these ad-
ditional couplings to the higher baryon states and work
with the simplified Lagrangian (6).
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In the large-N, limit the nucleon has mass of order
N, and its degrees of freedom freeze-out. This means
that the nucleon kinetic energy term in Eq. (6) can be
dropped, and the Yukawa term has NN replaced by a

J

i

7
X X
P+¥ —My+ie p+E, +§, — My +ie

Yo +1 i
2 k1o + i€

X oo X .
kio+ -+ +kn_1,0+ i€

static source j(x). The formal derivation of this intuitive
prescription was given in Ref. [9]. For completeness, we
review it here. Looking at Fig. 4, the product of the
nucleon propagators (reading from bottom to top) is

%
cee X
Prbit o+ — My +ic
z

(8)

In the above we have taken the large-N, (i.e., nonrelativistic) limit of the nucleon propagators,

7 N.—oo Yo+ 1 7

p+E— My +ie

2 k() + ’ié ’ (9)

assuming that the nucleon is in its rest frame. The prefactor (o + 1)/2 is the projector onto the large components
of the Dirac four-spinor. From now on we suppress it, with the understanding that we always throw away the small

components.

Our desired result is obtained by summing over the n! crossed ladders (Fig. 5), and using the interesting identity

for distributions,

) 7

z
Z ki10 + i€ x

permutations

27é (i kiO)
i=1

X ooe X
kijo + kiyo + i€

kijo+ -+ ki,_,0+ic

= 27!'(5(’610) X 27!'6(](:20) X eee X 27l'6(kn0) . (10)

(To prove this, Fourier transform both sides of this iden-
tity in all n momenta.) Each of the n! terms in this sum
corresponds to a distinct crossing or ordering of the n
rungs of the ladder. The § function on the left-hand side
of this equation reflects conservation of energy along the
nucleon line in the large- N, limit:

27é (—pf) + po + Z k,‘o) Nﬁi)oo 2md (Z kio) . (11)
=1 =1

Recognizing 2mé(ko) as the four-dimensional Fourier
transform of the static spatial distribution §3(x), we im-
mediately understand the meaning of the simple factor-

kyn —

\ kn1 =

Z kp —

ky = [

FIG. 4. An uncrossed n-meson exchange graph included in
the summation of Fig. 2. The shaded blobs contains meson
self-interactions that do not concern us.

ized right-hand side of Eq. (10) in terms of graphs. Sim-
ply put, the sum of the n! crossed ladders is equal to
the single graph of Fig. 6, generated by the effective La-
grangian

Lux = 3(040)" = V(o) = 0i(x) , (12)

where, as promised, the nucleon field has been frozen out
in favor of the external c-number source:

j(x) = g8 (x) . (13)

The complete exchange-graph contribution to o N scat-

FIG. 5. A specific “crossing” or “tangling” of Fig. 4, for
n = 4. There are n! such tanglings.
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FIG. 6. The sum of all n! tanglings including Figs. 4 and 5. o <
In all three figures, the contents of the shaded blob are held R Ol
constant (classical sources).
.
.
tering in the large- N, limit now emerges from a two-stage .

numerical program, which is most transparent in graph-
ical terms. In the first stage, one defines a “classical” o
field o) as the sum of all one-point trees (Fig. 7). The
reason one considers only trees is that meson loops are
suppressed by powers of 1/N, [2,3,6]. In the second stage,
one considers a propagating o field (which we call the
“quantum” field o4y, to distinguish it from o) interact-
ing with an arbitrary number of o insertions (Fig. 8).
By inspection, this two-stage procedure is equivalent to
summing all the tree graphs of the form shown in Fig. 6
(the loop graphs being subleading in 1/N,.). As promised,
the loops (Figs. 4 and 5) have turned into trees, exactly
as in the old electron-proton problem mentioned in Sec. I.

This two-stage graphical procedure is easily translated
into the language of differential equations. Solving for
oq as per Fig. 7 is equivalent to solving the classical
Euler-Lagrange equation for the effective Lagrangian of
Eq. (12): namely,

~V204(x) + V'(0a(x)) +j(x) = 0. (14)

Note that o) is time independent because the source j(x)
has this property. Next, solving for the propagating field
Oqu, as given by Fig. 8, is accomplished by noticing that
at every vertex there are exactly two o, legs, the rest

i(x) i)

X 0 + —<: + —é )

Jx) Jx)

=)
Ix)
1)
X x4+
ix)
Jitd]

FIG. 7. The tree-level one-point function o., where the
baryon has been replaced by an external source j(x).

FIG. 8. The fluctuating field oqu propagating through the
nontrivial background generated by o.1. Vertices can be read
off from the quadraticized Lagrangian, Eq. (15).

being insertions of o, with the coupling constants read
off from V(o). Therefore, the relevant equation of motion
comes from the quadraticized Lagrangian

1 1
Lauad = 50,0qu0¥0qu — 50, V" (0a(x)) ,  (15)

which induces the linear time-dependent equation

[8,0* + V" (0a(x))] oqu(z) = 0. (16)

In short, we have outlined a two-stage numerical
procedure, the first stage involving a nonlinear time-
independent equation for a “classical” meson field, the
second involving a linear time-dependent equation for a
“quantum” meson field in the classical background. This
is reminiscent of the Skyrmion approach to meson-baryon
scattering [22-27]. In the subsequent sections, when pi-
ons are introduced, this correspondence will be sharpened
by the emergence of a hedgehog structure to the classi-
cal pion field that is familiar from the Skyrme model
[7,8]. (The chief difference between the two approaches
is, of course, that baryon number is carried by topology
in the Skyrme model, and by smeared §-function sources
when the baryon fields are explicit. The renormalization
group connection between these two pictures is explored
in Refs. [14,15].)

The analogue of the hedgehog ansatz in the present
model with I = 0 o mesons alone is just ordinary spher-
ical symmetry:

oa(x) = G(r) . 17

The profile function G(r) is found by solving the nonlin-
ear radial differential equation
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\ Yukawa-like

o) (infm™) :

FIG. 9. The profile function o.(r) = G(r) for the o-only
model of Sec. II.

A .
gcz - S =), (19

6"+ 26— mrc—
implied by Egs. (7) and (14). Unfortunately, Eq. (18) suf-
fers from ultraviolet problems when j is literally taken to
be a 6 function as per Eq. (13). The source of these diver-
gences (which are worse than in the original loop graphs,
Figs. 4 and 5) can be traced to the nonrelativistic reduc-
tion of the propagator (9), which is only valid as long
as the components of the exchanged meson momentum
satisfy |k,| < My. (A similar breakdown of the large-IV,
approach is discussed in Sec. 8 of Ref. [3].) A simple cure
is to smear out the source, say, as a Gaussian:

30— s exp(=r?/ak) |
This approximation now renders Eq. (18) tractable, at
the expense of introducing a “nucleon size” parameter
ay into the problem. This new parameter provides an
ultraviolet cutoff on the momentum allowed to flow into
or out of the nucleon. We have checked that our numeri-
cal results are not overly sensitive to ay over a reasonable
range of values.®

Equation (18) represents a two-boundary value prob-
lem which can be solved in an iterative fashion using
a standard “shoot and match” Runge-Kutta integration
procedure [39].6 Figure 9 shows the profile function G(r)
for the specific choice of parameters m, = 600MeV,
k = 185, A = 214, g = 13.6, and ay = 0.5 fm.
Note that G(r) looks very much like a Yukawa function,

ay ~ N2 . (19)

5The formal independence of physically measurable quan-
tities on ax implies a set of large-N. renormalization group
equations, as explained in Refs. [14,15].

SFor details, see the Appendix.

10 T T T T T T T T T
0

20 |
-0 |
-80 |-
b

L 1 1 It 1 1 1 1 1

0 1.0 2.0 3.0 4.0 5.0

k (1/4m)

FIG. 10. Phase shifts for the o-only model, as a function of
o momentum, for model parameters m, = 600 MeV, g = 13.6,
and ay = 0.5 fm.

exp(—m,7r)/7r, except that it is finite at the origin (be-
cause of the smearing of the nucleon source term) and
has small deviations in the 0.5 — 1.0 fm region due to the
nonlinear terms involving k and A.

Given G(r), we then solve Eq. (16) for o4, by means
of a standard partial-wave analysis. For angular momen-
tum !, the radial scattering wave function u;(r) = roy(r)
having energy w satisfies

d? A l(l+1
(g7 + o =60 - 56%0) - LD ) =0,
@ =w?-—m2. (20)

This is a Schrodinger-like linear differential equation
that can also be solved by Runge-Kutta integration from
the origin [where u;(r) must be regular, going like r!*1].
The asymptotic form of u;(r) is then fit in the usual way
to a linear combination of spherical Ricatti-Bessel func-
tions, j;(gr) and mn;(gr), yielding the phase shifts for o N
elastic scattering.

The potential in Eq. (16) [or Eq. (20)] has a short-
range repulsive core (coming from the quartic term in
the Lagrangian) and intermediate-range attraction [com-
ing from the cubic term and the fact G(r) < 0]. Conse-
quently, as shown in Fig. 10, the S-wave phase shift at
low energies is positive because of the medium-range at-
traction, but it soon turns over and looks like the phase
shift for a hard-core repulsive potential. At still higher
energies (not shown), the phase shift returns to 0, since
the short-range repulsive core is finite. The higher partial
waves exhibit similar behavior, but offset to increasingly
higher energies because of the angular momentum bar-
rier.
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III. SECOND WARM-UP PROBLEM:
A w-ONLY MODEL

As a second simplified example, we consider a model
of gradient-coupled pions and I = J baryons. The La-
grangian we want to solve is the large- N, version of

1 A
L.N = é@uw“ o — §m12r Tt — ﬁ(‘/r“ﬂ“)2

+N(iv-8 — My)N — go0,7 - NyY°y#7#N . (21)

The reason for choosing pseudovector coupling rather
than the pseudoscalar coupling —g’# - Niy®#N is that
it is more amenable to a large-N, treatment, for the fol-
lowing reason. The matrix v® is purely off diagonal, con-
necting the large to the small components of the Dirac
four-spinor. This means that taking the nonrelativistic
limit of the baryons is a singular operation when the
pion is not soft. In contrast, v5y* does connect the
large components to themselves for u = 1,2,3 so that,
with a pseudovector coupling, we can follow the simple
leading-order large-NN. prescription given earlier of just
throwing away the small components (including, inter

J

14y = >

R=1/2,3/2,...

(2R +1)Y/2 Z

normalizing the volume of SU(2) to unity. On the right-
hand side of this equation, the baryons are given in
the usual spin-isospin basis; e.g., a neutron of spin up
and a A™* of spin projection —3/2 would be denoted

1/2 3/2
—1/4,1/2> and ‘1/2,/—3/2

coordinate language, the correct pion-baryon coupling
reads

—3gx Z

a,b=—1,0,1

as ‘ >, respectively. In collective

By / dAD® (A)|A) 4] . (23)
sU(2)

This coupling was first written down on general grounds
(without reference to soliton physics) by Adkins, Nappi,
and Witten [8], and is necessary for the consistency of
the Compton-type graphs with the overall N? scaling
of the pion-baryon scattering amplitude in the large-N,
limit, as reviewed earlier [16,17]. It has also recently
been established using collective coordinate quantization
of the Skyrmion {10]. Despite our convenient adoption
of Skyrme-model notation, we emphasize that the cou-
pling (23) is, in the present context, understood to be

J

iz,8:=—R,...,
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alia, the v57° contribution; remember that the 1/N, ex-
pansion breaks up Lorentz invariants). Of course, in a
different limit from large N., namely, the soft-pion limit
in which the pion is emitted from the on-shell nucleon
at approximately zero four-momentum, the pseudovec-
tor and pseudoscalar couplings are indistinguishable, pro-
vided one takes g, = g../2My.

The meaning of the words “large-IN, version of” pre-
ceding the Lagrangian (21) is that, as in the o N model
of the previous section, the coupling of the pion to the
nucleon must be supplemented by analogous couplings
to all the other members of the tower of I = J baryons,
and likewise for the nucleon kinetic term. In the previ-
ous case this was an irrelevant complication: Because the
zero-isospin o cannot induce transitions between states in
this tower, the problem diagonalizes. In contrast, pions
can and do change nucleons to A’s, etc.

The most convenient way to implement the gradient
coupling of the pion to the I = J tower of baryons is to
change baryon basis to the so-called collective coordinate
basis |A) familiar from the Skyrme model, with A an
SU(2) element [8]. These basis elements are defined by

8,21]
R
1,8,/

built from explicit baryon field operators, and not soli-
tons.

Let us verify explicitly that Eq. (23) is indeed the cor-
rect large-N. pseudovector coupling of the pion to the
baryon tower. In particular, Eq. (23) has the following
four desirable properties: (1) It is invariant under isospin
and angular momentum; (2) it contains the pion-nucleon
interaction shown in Eq. (21); (3) it correctly imple-
ments the “proportionality rule” governing couplings to
the higher states in the I = J tower; (4) it accurately pre-
dicts the width of the A, and furthermore, gives widths so
large for the large- V. artifacts of the model (the baryons
with I = J > %) that these pose no phenomenological
problems for the large- N, approach.

We deal with each of these assertions in turn.

(1) The state |A) transforms as

()" D, (A
R

|4) " Uy 4) and |4) TEST|AUT), (24)

so that

/ dADS) (A) |A)(A] — / dAD;‘g(A)‘U,AU}><UIAU}|
SU(2) SU(2)

= [ aaDgwiav,)la)al
SU(2)

aa'

DY, (UHDE.UY) / ey AP (A1)

(25)
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Here we have used the group invariance of the SU(2) measure, d(U}AU ;) = dA, and the reality property of the D™
matrices. Similarly,

B — Gy DX _(U)D, (U;) - (26)

Combining these last two equations and using the composition property of the Wigner D matrices, we confirm that
the coupling of Eq. (23) is invariant under isospin and angular momentum rotations.
(2) Using Eq. (22), we rewrite the coupling of Eq. (23) as
R > < R
i, s, 1,8,

=392 0" 3 D
a,b
x / dA DY (ANDR), (AHD®, (ah)
su(2)

(—)F=*= (=) R~ [2R + 1) (2R’ + 1)]"/*

R,i,,s, R'i 8/,
_-51111

' R\/ R
= e Towt S5 (M Ear LR ) (5
Ryise. R, 0, BEl

using standard D-matrix integration tricks. We now pick out the terms with R = R’ = 1/2 in this expression in order
to study specifically the pion coupling to NN. Isospin and angular momentum invariance can be made more manifest
by rewriting this subset of terms as

1/2 1/2

i, s, 1,8,

gﬂ'zz ZT‘L' iz s 8b7|'
a,b i;,8,1

which we recogmze as the nonrelativistic (or, equivalently, in the present context, large-N.) limit of the gradient

coupling —g.8,7 - Ny5y*#N.

(3) A careful reading of Ref. [29] reveals that this criterion will be automatically satisfied due to the diagonality of
the pion-baryon coupling, Eq. (23), in the collective coordinate A. It is instructive nevertheless to see how this comes
about explicitly. The baryon-antibaryon Hilbert-space operator in Eq. (27) can be written in terms of states with
good t-channel (exchange-channel) quantum numbers as

R R
i st [ \i.s,

where the phases in the above are the usual cost of turning bras into kets in SU(2) [40]:

) (27)

(28)

= 3 3 ()RF ()R (L L R Ril, —i,)(RR's,, —5,| ], J..)
I, Iy JeyJez

It;RRI Jt;RR/
2
L. Jo | @

lim) « (=)7+™(j, —m|.

Plugging Eq. (29) into Eq. (27) and using Clebsch-Gordan orthogonality gives, for the pion-baryon coupling,

—9Gr Z 8.1“ nlt

Iz, Jez R,R'

This equation correctly embodies two large-IV. selec-
tion rules: The fact that the exchanged angular momen-
tum J; is equated to the isospin I; = 1 of the pion is a
specific example of the more general I; = J; rule [29,30],
whereas the square-root proportionality factors relating
the pion’s couplings to the various baryon states in the
I = J tower illustrate the proportionality rule [29].

(4) The coupling (23) can be used to calculate the de-
cay width of a baryon with spin or isospin J to the next-
lower state J —1 via the emission of a single pion. For the
case A — N one calculates I'a = 114 GeV as against
a measured width of 120+5 MeV [8,10,41]. Pleasingly,
for the higher states, I = J > g, the widths turn out
to be so large that these large-N. artifacts cannot be
said to exist as particles, and therefore, pose no phe-
nomenological problem for the large-N, program. One
finds T's ~ 800 MeV, I'; ~ 2600 MeV, I's ~ 6400 MeV,

and so forth (10,41].

= 3 (9)F*R 2R+ 1)(2R +1)]"/*

(30)

It=1;RRI Jt—_-l,RR,
Itz Jtz '

As before, we seek to sum the set of exchange-type
graphs of the form shown in Fig. 2. However, a priori,
the situation is not so simple as in the o-only model of
Sec. II. Look again at the interesting identity (10) for dis-
tributions, which is the key to turning loops into trees.
The n! terms on the left-hand side correspond to the n!
distinct “tanglings” in which the exchanged o lines are
attached in a different order to the baryon line. Because
the o carries no spin or isospin, each tangling enters with
the same relative group-theoretic weight in Eq. (10), and
the identity goes through as written (so, too, for photon
exchange). In contrast, =, p, w mesons, etc., carry non-
trivial isospin and/or spin, and the n! tanglings would
not be expected to occur with the same group-theoretic
factors. (Pauli spin and/or isospin matrices do not com-
mute.) Specifically, one expects a different product of n
spin and n isospin Clebsch-Gordan factors weighting each
term on the left-hand side of Eq. (10), and destroying
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the identity. Nevertheless, acting together, the I; = J;
and proportionality rules assure that, to leading order in
1/N,, these n! group-theoretic factors are indeed equal,
once the intermediate baryon legs are summed over all
allowed I = J states. Therefore, the identity (10), de-
rived for ¢ (or photon) exchange, applies as well to the
exchange of these nontrivial mesons. This theorem is
proved in Ref. [9], using elementary properties of 65 sym-
bols. However, there is an easier way to see this, which
is to work directly in the |A) basis. So, look again at
Fig. 5, and understand the baryon line to mean, not a
nucleon or a A or any specific member of the I = J tower
(which can change identity at each pion interaction ver-
tex), but rather a baryon state |A) sharp in the SU(2)
collective coordinate A, which is preserved at each vertex,
due to the diagonality in A of the coupling (23). Initial
and final nucleon, A, etc., states can be projected out
at the very end of the calculation using standard group-
theoretic techniques borrowed from the Skyrme model
[i.e., inverting Eq. (22)]. At earlier stages, however, we
can use the full machinery of Sec. II to turn loops into
trees with impunity.

Therefore, once again, the graphs of Fig. 5 can be
summed following a two-stage program. In the first stage,
one solves a static nonlinear equation for 7.;(A) [noting
that the classical pion field depends on the SU(2) col-
lective coordinate A]. Isospin covariance trivially relates
this quantity to @.(A = 1), henceforth called just 7;. Us-
ing D{)(A = 1) = 845, one obtains the Euler-Lagrange
equation

1
—V278 + mind + E/\wgﬁr’cl Ry — 39r0.63(x) = 0.
(31)

This equation is solved by smearing the d-function source
to a Gaussian as in Eq. (19), and by assuming a hedge-
hog ansatz for the classical pion field (anticipating the
resemblance to the Skyrme model):

r&(x) = #°F(r) . (32)

Equation (31) then becomes an ordinary differential
equation (ODE) for the classical pion profile F(r):

A

FII+gF/ _(_22_+m12r> F___FS
r r 6

_ 6_(]‘,,7' 2, 2

= —W exp(—r*/ay) , (33)
subject to the boundary conditions that F'(r) be regular
near r = 0 and bounded as 7 — oo:

F(r) = Br+O(r®) nearr =0,
F(r) » Cexp(—mgr)/r astT — oo . (34)

B and C are scale parameters that are initially un-
known to us but are fixed implicitly by the nonlinearity of
Eq. (33). This is another two-boundary-value problem,
which can be numerically solved as before (see Fig. 11
and the Appendix).

In the second stage, one solves the linearized time-

0.2

()

01

r (fm)

FIG. 11. Classical profile F(r) in inverse fermis for the
m-only model of Sec. III.

dependent equation for 7y, propagating in the back-
ground of 7.(A). Again, isospin invariance trivially re-
lates this process to the propagation of mq, in the back-
ground of m. (A = 1), the latter quantity being given by
Egs. (32) and (33). Initial and final nucleons or A’s are
then projected from the hedgehog by inverting Eq. (22),
using the orthogonality over SU(2) of Wigner D matri-
ces. Finally, the initial and final pion-baryon systems are
combined into states of good total isospin and angular
momentum in the usual fashion to give the partial-wave
S matrix for tN - N, 71N — wA, etc.

Fortunately, this cumbersome (if straightforward) se-
quence of group-theoretic steps can be circumvented,
once one realizes that they are identical to the proce-
dure followed in the Skyrme model [22-27]. Rather than
“reinventing the wheel” one can therefore carry over in-
tact the machinery of Refs. [22-27] of K-spin decompo-
sition and 65 symbols. We postpone the explicit review
of this formalism to Sec. VI, in which we complete the
analysis of the richer model containing both pions and o
mesons.

Unfortunately, the pion-only model discussed in this
section is inherently uninteresting phenomenologically.
Because of G parity, the pion-pion interactions can only
come from even powers of #(z), which means that the po-
tentials entering into the coupled Schrodinger-like scat-
tering equations are strictly repulsive. [They are propor-
tional to AF%(r).] As a result, all 7N phase shifts exhibit
repulsive behavior (i.e., clockwise motion in the Argand
plots with increasing energy). Thus there is no possibility
for TN resonances in such a model. We need something
like the o meson to provide a range of attraction between
7’s and N’s.

IV. DEFINING THE o-r MODEL

In view of the two models discussed in the two previous
sections, one might have some hope that a model com-
bining o and 7 mesons would provide a more promising
(if still crude) description of pion-nucleon interactions.
In this model the o meson will be taken as an “elemen-
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tary” field, along with the three 7 fields. Indeed, in the
large- N, limit, the o, if such a state exists, is necessarily
a stable particle, as the decay amplitude to two pions is
suppressed by 1/v/N_.

For guidance in constructing our large-N. model of pi-
ons and o mesons, and selecting reasonable values of the
coupling constants, we recall the linear o model of Gell-
Mann and Levy [37]:

1 A
c= %a,,a'a“a' 50 O = (0 4 T - a?)?
+aoc’ — go' NN — gt - Niv®FN 4+ Niy-ON . (35)

In this well-known model, the nucleon and o get their
masses through dynamical symmetry breaking, the o vac-
uum expectation value v being g"! My, and chiral sym-
metry emerges in the limit & — 0. It is convenient to
redefine the o field by subtracting the vacuum expecta-
tion value (VEV):

o(z) = v+o(z). (36)
By substituting for ¢’ and expanding, the four coupling

constants {g, A, a, a} can be traded for the more physical
set of parameters, {g, My, m,, ms}, using

2 2
g 2 2 my"Mn
A= - = ,
2M]2v' (ma m'lr) ’ « g
(37
2 _ MZ (m7 —3m2)
g? (m} —m3)
In this paper we will take
g=136, My =50fm ', m,=07fm !,
(38)

and m, =5.0fm™ .

This choice for the nucleon mass roughly averages the
actual N and A masses, while the 0 meson here could
be identified with the fu(975) meson for concreteness.
The value of g is the measured pion-nucleon pseudoscalar
coupling constant.” With these values, the nonlinear self-
interaction strength has a large value, A = 91.

For a large-N, treatment, the Gell-Mann-Levy model
needs to be modified in the following two ways. First,
as discussed in Sec. III, the pseudoscalar 7N coupling is
inappropriate, and should be replaced by pseudovector
coupling as in Eq. (21), with g, = g/(2My) = 1.42 fm.
Unfortunately, with this replacement chiral symmetry is
lost, even for a = 0.

However, as stated in the Introduction, our purpose in

"For simplicity in this toy model, we ignore the very inter-
esting distinction between the bare and renormalized Yukawa
couplings; see Refs. [14,15] for a thorough discussion of this
point.

this paper is to explore the large-NN, approach in a mul-
tichannel model, not to present a fully realistic effective
Lagrangian of the low-lying hadrons, which would require
not only approximate chiral symmetry but also the incor-
poration of vector mesons. (Fully implementing chiral
symmetry requires care: Additional mesons such as the
o, p, and w must be coupled to the pions and baryons in a
chirally invariant way and their kinetic energies must be
constructed from chirally covariant derivatives. To look
at the bright side, the fact that we are sacrificing chiral
symmetry in the present model reemphasizes the point
that our large- N, techniques have nothing to do with the
chiral limit.)

Second, the meson couplings to the nucleon must be
augmented by suitable couplings to the entire I = J
baryon tower (and likewise for the nucleon kinetic en-
ergy). The prescription for doing so is Eq. (23) for the
pion. It is easy to check that the analogous prescription
for the o is given simply by

_goNN — —ga/ dA|A)(A| . (39)
SU(2)

As previously, we solve for the classical meson fields,
for the reference choice of collective coordinate A = 1, by
means of a hedgehog ansatz:

Ta(x) =8F(r), oca(x)=G(r). (40)

Smearing out the §-function baryon source as in Eq. (19),
we find coupled nonlinear Euler-Lagrange ODE’s for F
and G:

d? 2d 2 2
- A[F?®+ FG? + 20FG]

—___ 39 2 /,2

= My a3, exp (—r?/a%) , (41a)
2
—;—EG+%%G—miG—A[G3+F2G+3vG2]
"

= Lexp (—rz/afv) + MF? .

(any/7)?
(41b)

We will generally set the nucleon size parameter ay =
0.52 fm, but we will also consider the dependence of our
results on ay in Sec. VIC below. The boundary condi-
tions are that F' and G must be regular at the origin and
exponentially decaying (rather than growing) at infinity.
The classical pion profile F(r) falls off like exp(—m,7)/r
at large distances. On the other hand, G(r) falls off
not like exp(—m,7)/r as one might naively expect, but
rather like exp(—2m,r)/r? due to the F? source term
on the right-hand side of Eq. (41b), and the fact that
2m, < my. Details of our numerical “shoot and match”
procedure for solving Eq. (41) can be found in the Ap-
pendix.

The solution for F(r) and G(r) is shown in Fig. 12.
Note that G(r) is negative with respect to F(r) and v.
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FIG. 12. Classical profile functions F(r) and G(r) for the o-m model, with parameters as in text.

It is this relative sign that leads to the attractive 7V
interaction found in this model.

V. PION-HEDGEHOG SCATTERING

Having solved for the classical pion and o fields, we
turn to the small-fluctuations problem of meson-baryon
scattering. As in the Skyrme model [22-27], one first
solves for meson-hedgehog scattering, and subsequently
one folds in some group theory (65 symbols) to obtain
meson-nucleon scattering. The meson-hedgehog S ma-
trix is the topic of this section, while the meson-nucleon
S matrix is the subject of Sec. VI to follow.

We return to the o-m Lagrangian, Eq. (35), as modified
subsequently in the text in the manner suggested by large

n%(z) = FF(r) + mgu(z) , o(x) = G(r) + oqu(z) .

(42)

Since F' and G satisfy the Euler-Lagrange equations,
terms linear in the fluctuating fields vanish. The
quadratic terms then lead to linear equations of motion
for wg,(z) and oqu(z). Higher-order nonlinearities in the
meson fields are subleading in 1/N,, as previously noted.

We will work out the partial-wave scattering ampli-
tudes factoring out a uniform time dependence exp(—iwt)
from all the fluctuating fields. For the o this involves the
usual expansion in spherical harmonics:

N.. Consider fluctuations of the meson fields about their Oqu(w,x) = E okk. (w,r) Yk, (%) . (43)
classical solutions: K,K,
60
s~ Ve
e v,
40 + N — e B2
N — == AF(G+v)
€
= e
-40 L L 1 1 L
0 05 1.0 15 20 25 3.0

r (fm)

FIG. 13. Diagonal and off-diagonal potentials appearing in the small-fluctuations equations.
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For the pions the decomposition is slightly more compli-
cated [22-27]. The conserved quantum numbers are not
isospin and total angular momentum but the so-called
“grand spin,” K =T+ J. Since pions are spinless, Jis
just L, the orbital angular momentum. Thus the appro-
priate partial-wave analysis for pions involves an expan-
sion in terms of vector spherical harmonics:
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Fau(w,x) = Y Yxr.n(w,r) Yk, (%), (44)
K,K,,L
where L runs over values K — 1, K, and K + 1.

For each value of K, the equations for the four radial
wave functions ¢, Yk x, and Yk k+1 might be expected
to form a 4 x 4 coupled system,® but parity uncouples

YK,k from the other three. It obeys

2

;?1/)&1{ + %%1/11(,1{ + [Q,zr - ﬂf—z—ﬂ — Vﬂ(r)] Y,k =0, (45)
where

@2 =w?’—m2 and Vi(r)=A{F%*(r)+G(r)[2v+G(r)]} . (46)

The remaining 3 x 3 coupled system of equations® is best expressed in matrix form. Assembling ¥k x+1 and ¢x
into the column vector

Y, k-1(T)
Ur(r)=| Y r(r) | , (47)
Pk (r)
we find1°
d? 2d
o — ¥k + - d—‘I’K+[QK Vk|-¥x =0. (48)
Here Qg is the diagonal matrix
Qk = diag (q,zr - (K_izl)K @ - (K + ”ﬁK *+2) a; K(K2+ 1)) , (49)
r r T
and Vg is the symmetric potential energy matrix,
Vi = Vi(r) 4 22F2(r) [ 2 (50a)
2K+1)°
K(K +1)
2
- _ b
Vlz 2\F (’I‘) ( 2K+ 1 ) 5 (50 )
Viz = 2AF(r)[v+ G(r)] (2 ) (50¢)
K 1
_ 2
Vas = —20F(r)[v + G(r)] 211 (50e)
23 — K+1 )
V33 = Va(’l') ) (50f)
where we have defined
@2 =w?—m2 and V,(r)=A{F%*(r)+3G(r)[2v+G(r)]} . (51)

8From now on we drop the K label on ¢ and 1 since the ensuing equations are independent of K.

°For the special case K = 0 this is a 2x2 system, as 10,—1 does not exist.

1%In so doing we are greatly assisted by the vector spherical harmonic identities, Eq. (10), in Ref. [27]). Note a typo there: K
in the numerator of the square root in the middle line of Eq. (10) should instead be K + 1.
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Note that g2 can be positive or negative, depending on
whether the energy w is above or below the o threshold.

The “diagonal” potentials V; and V, are plotted in
Fig. 13. They are repulsive at short distances and at-
tractive at intermediate range. The factor of 3 in the
definition of V, makes it about 3 times more repulsive
and attractive than V. Note that the vertical scale is in
inverse fermis; these are potential wells of depths about 6
and 2 GeV, respectively, which means there is substantial
attraction in both the o N and w N systems. Also shown
in Fig. 13 are the off-diagonal transition potentials Vi,
and V;3 (but without K-dependent factors) which are
comparable in size to the diagonal potentials.

Numerically, the uncoupled equation (45) is readily
solved using the Runge-Kutta technique employed in
Secs. IT and III. This method also works for the coupled
equations (48), but only above the o threshold, w > m,.
The problem below threshold is to ensure that the o wave
function remains exponentially decaying:

bk (r) = exp(—kr)/r, k= (m2—w?)/?, (52)

In our experience, numerical noise in the Runge-
Kutta integration invariably induces exponential blowup:
oK (r) — exp(+kr)/r. We emphasize that even below
threshold the o cannot be neglected as it causes substan-
tial attraction in the 7N channel. [Recall that the “box
diagram” for tN — o N — ©N, Fig. 2(c), is attractive.]

A numerically more robust approach that works both
above and below the o threshold is to convert Eq. (48)
into a set of coupled Fredholm integral equations of the
second kind:

v (r) = TP (r) + / Gi (r, P )i (r) 2R (') dr’ | (53)

where the index 7 labels the linearly independent choices
of inhomogenous driving terms. Above the o threshold,
7 runs over 1,2,3 and the inhomogeneous terms are

jkfl(qf")
;7(1)(7') = 0 )
0
(54)
0
5(2)(7‘) = | Fx+1(gx7) ..7(3)(7‘) = 0
0 jK(qcrr)

Below threshold, only the first two of these should be
kept. The multichannel Green’s function Gk is the diag-
onal matrix

1, N
Gii(r, 7") = —q—]K—l((brT'<)nK—1(Q7rT>) s
™
1, .
Gaz(r,7') = —;JK+1(QWT<)nK+1(QwT>) . (55)

Gas(r,r') = —%iK(KT<)];K(KT>) below threshold ,

Gas(r,7') = —qin(qar<)ﬁK(q,,r>) above threshold ,
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where j;, 1; are spherical Ricatti-Bessel functions [42]
and 7, 151 are modified spherical Ricatti-Bessel functions
[43], regular at the origin and exponentially decaying, re-
spectively. By design, the multichannel Green’s function
assures regularity of the wave functions at the origin and
the asymptotic exponential falloff of the ¢x below the
o threshold. Note that G33 is continuous through the
threshold.

The S matrix for the uncoupled pion scattering,
Eq. (45), will be denoted here as the single-subscript
quantity Sk, where the orbital angular momentum quan-
tum numbers L = L' = K are suppressed. It is derived
from the asymptotic analysis of the wave function in the
usual way. The corresponding phase shift 6k, defined as

Sk = e?x | (56)

is plotted against pion momentum % in Fig. 14 for K < 5.
For each K the corresponding phase shift is attractive,
if numerically small apart from the case K = 1, and
comparatively much less significant than in the Skyrme
model (cf. Fig. 1, Ref. [27]). As always in scattering
problems, the centrifugal barrier term in the scattering
equations delays the onset of the rise in the phase shift
for the higher-L partial waves.

The coupled-channel 3 x 3 (above threshold) or 2 x 2
(below threshold) part of the S matrix will be denoted
Sf](-, i, = 1,2, and/or 3, according to L=K —1,K + 1,
and/or K. It is obtained as follows. First, the KX matrix
is formed according to

KK = —(1/g;) / drjn(grVEEO @), (57)

where L =K —1, K +1, and/or K for j =1, 2, and/or
3, respectively, and also ¢; = g2 = ¢r, g3 = ¢». From the
KX matrix, the S matrix is formed in the usual way:

SK = (/@) *[(1 —iKF) (1 +KF) M5, (58)

where for an explanation of the square-root flux fac-

[N ]
[LFNATAE

degrees

kK (1/m)

FIG. 14. The phase shifts dx plotted against meson mo-
mentum k in the baryon rest frame (recall that baryon recoil
is subleading in 1/N,).
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tors (needed only for multichannel scattering) we refer
the reader to Ref. [44]. Time-reversal invariance im-
plies SK = (SK )T, which we have found to be a strin-
gent check on our numerics. We will parametrize Sg as
775 exp (2i6{§ ) subject to this symmetry property as well
as to unitarity.

The phase shifts corresponding to the specific S-matrix
elements S¥ and S are plotted in Figs. 15 and 16. Re-
call that, with our notation, these are the S-matrix el-
ements that describe pion-baryon scattering (no “in” or
“out” ¢’s, only intermediate ¢’s) in which the orbital an-
gular momentum quantum number is preserved (L = L’),
as opposed to changing up or down by two units (as
it can for 1N — wA). The bulk of the attraction in
the present model, due primarily to the intermediate o-
meson states, shows up in the phase shifts of Fig. 16,
with L = L' = K + 1. Here one sees resonances (phase
shifts rising rapidly through 90°) in each partial wave.
In the L = L' = K — 1 partial waves (Fig. 15), one also
sees attraction, although not so strong as to produce res-
onances.

The surprise here is in the channel K =1, L = L' =0,
which reveals the presence of a bound state (Levinson’s
theorem). Once one folds in the appropriate group the-
ory in the following section to project the hedgehog onto
physical baryons, the existence of such a bound state
manifests itself as a parity conjugate to the nucleon. This
feature is, unfortunately, not found in nature, or in the
Skyrme model, and is an unwanted, unphysical artifact
of the present strongly coupled o-m model. We remind
the reader that the Skyrme model has three translational
zero modes which live in a superposition of the S and
D waves (also with K = 1). These arise because the
presence of the Skyrmion spontaneously breaks transla-
tional invariance. In contrast, in the present class of non-
soliton models, with ezxplicit frozen-out nucleon sources,
translational invariance is explicitly broken, and there
are neither translational nor (iso)rotational zero modes.
Whether the energies of these states are pushed up into
the continuum or down below threshold (where they ap-

180 -
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FIG. 15. The phase shifts 67 plotted against meson mo-
mentum k in the baryon rest frame.
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degrees

K (1/im)

FIG. 16. The phase shifts 6%, plotted against meson mo-
mentum k in the baryon rest frame.

pear as bound states, as in the channel under present
discussion) is presumably a model-dependent question.

On the other hand, an improvement over the Skyrme
model is the fact that all these phase shifts (as well as
those not plotted) eventually return to zero for suffi-
ciently high energies. In contrast, in the “naive” Skyrme
model they grow without bound, eventually violating the
unitarity constraints of quantum field theory, although
admittedly at energies where several key approximations
made in Refs. [22-27], such as the neglect of Skyrmion
recoil, are clearly unwarranted. (A well-known fix of
this behavior in the Skyrme model is to enlarge the La-
grangian to include vector mesons; see Ref. [23].)

Another point to note about Fig. 15 are the cusp effects
due to the opening of the o threshold at w = 5 fm~*. This
is most apparent in the K = 1,L = 0 phase shift, but
the effect is present in higher partial waves as well.

VI. N ELASTIC SCATTERING
A. Group theoretics for meson-nucleon scattering

In the previous section we derived an S matrix for
the scattering of pions and o’s off hedgehogs. The scat-
tering information is encoded in partial-wave amplitudes
we called Sk and SX where SK is a 2 x 2 matrix be-
low the o threshold and a 3 x 3 matrix above it (except
when K = 0, in which case S¥ is 1 x 1 or 2 x 2, respec-
tively). The integer index K labels the vectorial sum
of the incoming or outgoing meson’s isospin and angular
momentum. K is conserved when the meson scatters off
an object with hedgehog symmetry, in the same way that
orbital angular momentum L is conserved in scattering
from a spherically symmetric potential.

Of course, what we are really interested in is scatter-
ing, not from a hedgehog, but rather from a nucleon or
A. The relationship between the two problems, “physical
scattering” versus “hedgehog scattering,” is contained in
the following group-theoretic expression [22-27]:



3282

MICHAEL P. MATTIS AND RICHARD R. SILBAR 51

. K Lo Jio K I Jio
SLL RR Lot (@) = Y, Skrp(@)(—)F "FI(2R+1)(2R' + 1)]V/?(2K +1) { r } { fot Tt *} )
K

Here w is the meson energy in the baryon rest frame
(baryon recoil being subleading in 1/N.), L (L) is the
initial (final) orbital angular momentum, I (I') is the
isospin of the incoming (outgoing) meson, and R (R')
is the spin/isospin of the initial (final) I = J baryon
(e.g., R = 1/2 for a nucleon, R = 3/2 for a A, etc.).
For physical scattering, K is no longer conserved; it is
just a dummy of summation, constrained by the trian-
gle inequalities implicit in the 65 symbols.!! Instead,
the conserved quantities are, as they must be, the to-
tal meson+baryon isospin and angular momentum, ;¢
and Jio;. The S-matrix element on the left-hand side
is a physical partial-wave amplitude that can be com-
pared directly with experiment. The “reduced S ma-
trix” under the summation is a meson-hedgehog ampli-
tude, in slightly different notation than that of the pre-
vious section. The relation between the two notations is
the following: When the incoming and outgoing mesons
are each pions, then Sxxx = Sk, Sk,Kk—1,k-1 = Sﬁ,
SK,K+1,K+1 = S35, Sk, k—1,Kk+1 = SK,K+1,K—1 = Si5;
when they are both o’s, then Sxxx = SL; and when
the incoming meson is a pion and the outgoing meson is
a o, then Sk x_1.x = SK and Sk, K+1,K = SK ., with all
other elements vanishing.

B. Big-small-small-big pattern

For the remainder of this paper we specialize to the
elastic case TN — wN. For each value of L = L/, there
are then four a priori independent partial-wave ampli-
tudes, traditionally denoted L,j, , ,;, .- For example, in
the case of F-wave scattering (L = 3) the four physical
amplitudes are Fys, Fi7, F35, and F37. But to leading
order in large N, only two out of these four are indepen-
dent. One can, for instance, solve for the two isospin-3/2
amplitudes as energy-independent linear combinations of
the two isospin-1/2 amplitudes [22,24]; this is an exam-
ple of the I; = J; rule [29,30]. This holds in the Skyrme
model and, because the group-theoretic expression (59)
is the same, necessarily in the present o-m model as well.
These relations are reasonably well obeyed by the ex-
perimental 7N partial-wave data [24], and are model-
independent tests of large N..

Another interesting fact about the experimental data

' Note that if either the incoming or the outgoing meson is a
o, then the associated 6j symbol has a zero in it and collapses
to a product of Kronecker §’s. Conversely, the generalization
of this expression to mesons that carry both isospin and spin,
such as p’s, involves 95 symbols, and is given in Ref. [26].

I R L I

(59)

r

(see Fig. 4, Ref. [24]) is that if for each L one juxta-
poses the four amplitudes in the above order, namely,
Li2r-1, Li2r41, L32r—1, and L3 r41, then they re-
veal a striking pattern termed the “big-small-small-big”
pattern. Namely, the outer two amplitudes L; 21 and
L3 >p+1 are characterized by relatively large excursions
of the S-matrix element through the Argand circle, while
the inner two amplitudes Ly 21+1 and L3 211 show rela-
tively much less motion. The big-small-small-big pattern
is the single most consistent pattern characterizing the
partial-wave S matrix as a whole (the only clear excep-
tion to it being the Dss).

Reproducing the big-small-small-big pattern is one of
the noteworthy successes of the Skyrme model [27]. It is
equally well reproduced by the present o-m model, as we
illustrate in Fig. 17. In fact, the pattern emerges for the
same dynamical reason [24]: the fact that, for K > 1, in
both the Skyrme model and in the o-m model, the phase
shifts associated with Sf1+ ! are much smaller than those
of SL™1 (cf. Figs. 15 and 16). We therefore view it as
a model-independent success of the large-N. approach,

whether one chooses to use Skyrmions or explicit baryon
fields.

C. Baryon spectrum of the large-N, o-n model

From the partial-wave amplitudes it is easy to ex-
tract the baryon resonance spectrum of the large-N. o-m
model. Rather than record when the phase shifts cross
90° (a crude criterion sensitive to background potentials),
a more robust definition of a resonance, adopted by ex-
perimentalists, is' to look for Lorentzian peaks in the
“speed plots,” i.e., the plots of |dTyy,,, .., /dw| versus w.
The speed plots for a few selected partial waves are de-
picted in Fig. 18. Some peaks are unambiguous, whereas

F15 F17
F35 F37
FIG. 17. Argand plots for the four F-wave elastic 7 N par-

tial wave amplitudes, illustrating the “big-small-small-big”
pattern (the Fijs and F37 are big; the others small).
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FIG. 18. Examples of speed plots for selected 7N ampli-
tudes, from which resonance positions are extracted.

others are admittedly “in the eye of the beholder,” but
the same can be said about the corresponding experimen-
tal data.

Figure 19 displays the full resonance spectrum ob-
tained in this fashion, through the H waves (L = 5),
limited to what we subjectively consider to be “two-star”
resonances or better. The steplike structure, in blocks of
alternating parity, is much more pronounced than in the
Skyrme model, and certainly than in nature. It can be
partially accounted for by noting that, for L > 1, the
reduced amplitudes of Fig. 16 dominate those of Figs. 14
and 15, so that for any fixed value of L, the resonance
location in the four physical partial-wave amplitudes can
be approximated by the resonance location in the sin-
gle underlying reduced amplitude Sé’z_l. But this does

800 | sl
/
/
/
r-"""
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/
/
[
/
400 /
» »-a—d
/’
o
200 Bl
- .../.

FIG. 19. The baryon spectrum of the o-m model. The ver-
tical axis measures excitation energy in MeV above the nu-
cleon and/or hedgehog mass. Not pictured are the two spu-
rious bound states in the S;1 and S3; channels.
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FIG. 20. Dependence of the P;; amplitude on the nucleon
size parameter ay, for 0.52 and 0.60 fm (solid and dashed
lines, respectively).

not explain why the steps arrange themselves by definite
parity (as we have indicated by the black bars below the
horizontal axis), a feature for which we have no good
understanding.

In general, the resonances in the o-m model occur at
substantially lower energies than in the Skyrme model,
and in nature. We have not explored the parameter space
of our model [see Eq. (38)] in an attempt to rectify this
disparity (as we are confident could be done), not just be-
cause of the computationally intensive character of these
multistage calculations, but also due to the frankly “toy”
intent of this model, which we have constructed for illus-
trative purposes. We are optimistic that a more realis-
tic model, incorporating the vector mesons and properly
implementing chiral symmetry, would be in better agree-
ment with the observed baryon spectrum, while posing
no significant additional conceptual or numerical difficul-
ties beyond those we have already confronted herein.

The one parameter that we have experimented with
is the nucleon size parameter ay, defined in Eq. (19),
which acts as an ultraviolet cutoff. A variation from our
nominal value ay = 0.52 fm to ay = 0.60 fm shows no
discernible effect on the resonance positions, and only
slight changes in the Argand plots themselves, primarily
in the P waves, one of which is shown in Fig. 20.

D. Some familiar problems

We have seen that this large-N. o-m model (and, we
presume, others like it with explicit baryon fields) shares
some notable successes with the Skyrme model—the
big-small-small-big pattern, the energy-independent re-
lations between the ot = 1/2 and Ijoy = 3/2 7N ampli-
tudes, the overall richness of the baryon resonance spec-
trum, etc. Moreover, the high-energy behavior of the par-
tial wave amplitudes is much better than in the “naive”
Skyrme model (see Sec. V), although as mentioned above
the incorporation of vector mesons cures this problem in
the Skyrmion approach [23]. Not surprisingly, the o-7
model also shares some of the Skyrme model’s failings.
Figure 21 illustrates a specific partial-wave amplitude in
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FIG. 21. Comparison of Gi7 amplitude between the o-7
model (solid line) and experiment (dotted line). The pion
kinetic energy for each curve ranges from 0 to 1600 MeV.

the o-m model, juxtaposed with the experimental data.
Obviously the real-world amplitude is much more inelas-
tic than the present model. This is because, in the higher
partial waves especially, multiple pion production soon
dominates the experimental wN amplitudes. Yet, for-
mally, processes such as TN — anw N are down by pow-
ers of 1/N, compared with 7N — wNN, and are therefore
entirely absent from leading-order theoretical treatments
such as the present paper, as well as from the leading-
order Skyrmion treatments [22-27], which share the same
problem. Below the o threshold, the only source of inelas-
ticity in the present model is the 7A channel, exactly as
in the Skyrme model. A theoretical means of summing at
least some of the 1/N, corrections, namely, those associ-
ated with multiple pion production, would immeasurably
improve either approach.

Just as serious is the failure of the o-7 model to bear
even passing resemblance to experiment in the S and
P waves. As is well known, these waves have been the
“Achilles heel” of the Skyrme model too, although for
somewhat different reasons: As discussed in Sec. V, the
present class of nonsoliton models breaks translational
and (iso)rotational invariance ezplicitly and so does not
have the same spectrum of zero modes familiar from
Skyrmion physics. Interestingly, whereas the Skyrme
model shows too few resonances in these waves, the o-
7 model errs in the opposite direction: too many reso-
nances, particularly in the P;3 and Ps; waves, and includ-
ing spurious bound states in the S3; and Si; channels as
already noted in Sec. V. The interested reader is referred
to Refs. [24,45] for discussions of the problems in these
lower waves in the Skyrme model, which are related, in
part, to the failure to incorporate the translational and
(iso)rotational recoil of the hedgehog (formally 1/N. cor-
rections, but numerically important). We expect that
some of the lessons learned from Skyrmion physics on
how to fix the low partial waves [45] should apply as
well to models with explicit baryon fields. For example,
the Weinberg-Tomozawa expression for the 7N scatter-
ing lengths [46], which are predicted by current algebra,
and which dominate the experimental S-wave amplitudes
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near threshold, formally appear only at next-leading or-
der in 1/N. [24]. This suggests that if one were to start
from an improved effective hadron Lagrangian that re-
spects chiral symmetry (we remind the reader that the
present o-m toy model does not), and if one were to cal-
culate to next-leading order in 1/N,, the most glaring
disagreement with experiment in the S waves ought to
be repaired. Fixing the P waves will require, at the least,
(i) the splitting of the A from the nucleon (again, a 1/N,
effect) and (ii) the incorporation of the Compton-type
diagrams, particularly Figs. 1(a) and 1(b), the amelio-
rating effect of which has already been examined in the
Skyrme model [11-13].
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APPENDIX: NUMERICAL AND
COMPUTATIONAL DETAILS

1. Solving the coupled nonlinear equations

We describe here the method we use for solving the
nonlinear classical field equations, Eq. (41), for the full
o-7 model. (Exactly the same technique is used for the o-
only and 7-only warm-up problems discussed before that
point.) These are coupled ordinary nonlinear differential
equations. The nonlinearity implies that there is some
sensitivity in finding solutions; indeed, for some ranges
of parameters, one may not be able to find solutions at
all.

We are looking for solutions of these equations which
are regular at the origin and which fall off asymptotically
at large distances. Examining the indicial behavior of
Eq. (41) near r = 0, we find that

(A1)
G'(0)=0.

The indicial values A and B, along with asymptotic scale
parameters C and D defined below in Egs. (A2) and (A3),
are initially unknown. Their values will be fixed by the
nonlinearity when we solve the differential equations.

As r — o0, the pion profile function is required to have
the usual Yukawa-like falloff:

F(r) —» Cexp(—mgr)/7 . (A2)
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Things are more complicated for G(r) as r — oo be-
cause the asymptotic behavior of G(r) is governed by
the coupling term to two pions. That is, it will fall off
like exp(—2m,r)/r? rather than the faster exp(—mor)/r.
After some analysis [solving a linearized Eq. (41b) using
a Green’s function technique with the F2(r) term on the
right-hand side providing the inhomogeneity],

—MeT )\sz e—~2m,,1-

G(r) » DZ—— - Ei[~(mg + 2my)r]

2me r
(A3)

where F; is an exponential integral [43].

The solution of Eq. (41) constitutes a two-boundary-
value problem. We solve the equations using a standard
shoot and match technique [39]. Not knowing, at first,
the values for the “scale parameters” A --- D, we make an
initial guess for their values and proceed to refine them
with an iterative procedure.

The procedure is as follows. Given A---D, we inte-
grate out from the origin using a Runge-Kutta technique
to our matching radius r,,, which we choose to be ay.
We then Runge-Kutta integrate backwards to r,, from
T4, a point where the asymptotic forms shown above are
expected to hold. We typically choose r, to be 2 fm. The
values at r,, of F' and G, and their derivatives, from the
two integrations are then compared. The mismatches, or
discontinuities, give four conditions which can be used to
choose corrections to the guessed values of A---D that
would drive the discontinuities toward zero. (This is a
generalization to four variables of the Newton-Rapheson
method; it requires four more passes of Runge-Kutta in-
tegrations to compute the derivatives of the discontinu-
ities with respect to the scale parameters.) Correcting
the A---D as calculated, one can repeat this process,
hopefully getting a better, less discontinuous F'(r) and
G(r). The procedure is iterated until it converges to a
solution.

The above iterative procedure was programmed in
FORTRAN and was originally run as a batch job on a
Vax-VMS minicomputer from a terminal command line.
For small values of A (i.e., small nonlinear contributions)
the program would converge reasonably well. However,
as the nonlinearity was increased, corresponding to val-
ues of A given by Eq. (37), the convergence became more
delicate. Thus, we found it useful to make the code more
interactive, so that the user could watch plots of F' and G
at every stage of the iteration and, if the process were go-
ing astray, stop it and start again with a new set of start-
ing scale parameters. The computing was transferred to

a NeXT workstation and a NeXTSTEP front end to the
FORTRAN program was developed [47]. With this front
end to aid the user, it was much easier finding a solution
for A = 91.

2. Runge-Kutta approach to the scattering
differential equations

The quantum scattering phase shifts in, say, the o-only
model of Sec. II, are given by the asymptotic form of the
radial wave function determined by Eq. (20). This linear
differential equation (and the coupled-channel variants of
Secs. III and V) are readily solved by Runge-Kutta in-
tegration [39], simply by integrating out from the origin.
Starting values are taken from the regular solution for
the partial wave of the angular momentum K under con-
sideration, i.e., with behavior like jx (gr) o< r¥+1. (The
scale can be chosen arbitrarily because the equation is
linear.)

At a large enough distance, typically 10 fm or so, the
solution is well approximated by a linear combination
of jk(gr) and Ak (gr). Fitting the coefficients of these
functions, one can then form the S-matrix element and
thence compute the phase shift. For the coupled-channel
case, the S matrix is found using the procedure given,
for example, in Ref. [27] utilizing matrices formed from
these fitted coefficients.

3. Comments on solving the integral scattering
equations

Numerically, Eq. (53) is solved using the Nystrom
method [39]. For our three-rowed column vector, this
procedure involves the inversion of a large 3N X 3N ma-
trix, where N is the number of mesh points. The time to
do that inversion goes like N3. We found that reasonable
accuracy (1% or better) in the extracted S-matrix ele-
ments is obtained with N = 150 mesh points. These are
typically distributed as follows: 120 mesh points, evenly
spaced, from r = 0 to 3 fm and 30 points, evenly spaced,
from 3 to 10 fm.

In debugging the coding we found it very useful to ver-
ify that the S matrix is not only unitary but also sym-
metric (a consequence of time-reversal invariance). An-
other useful check on the code was to see that the scat-
tering wave functions and S are continuous through the
o threshold and agree with the prediction of the Runge-
Kutta method above the threshold.
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