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Unitarization of instanton amplitudes
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We extend an earlier numerical model of S-wave unitarization of perturbation processes to
include instanton contributions in a way that bears resemblance to multi-instanton expansions. The
results indicate that there is an initial growth of the unitarized cross section with the center-of-mass
energy but it always remains small. Beyond a critical energy it decreases exponentially. When no
perturbation processes are included, so-called half-suppression is seen; when such processes are also
included, the suppression of the instanton amplitudes depends on the strength of the perturbative
e6ects and can rise above half-suppression bounds, but not close to the unitarity limit.

PACS number(s): 11.10.3j, 11.15.Kc, 11.80.—m

A few years ago, Ringwald and Espinosa [1,2] calcu-
lated the amplitudes for multiboson production using in-
stanton methods in the (B + L)-violating sector of the
standard model. Their calculations showed an exponen-
tial growth of the cross section with the center of the mass
energy of the colliding fermions, a behavior that quickly
violates unitarity. Since then, a huge literature has been
built on the subject (for reviews, see [3,4]). The cross sec-
tion is assumed to be o exp[ —16vr /g E(E/Eo)] and
the main efFort has been focused on a more accurate de-
termination of the behavior of the so-called "holy grail"
function F(E/Eo) by including refinements on the initial
model, such as modifications of the incoming or outgoing
states [5,6] or multi-instanton corrections [7].

It is also well known that instanton calculations are
not the only ones that exhibit a violation of unitarity ~n

multiparticle production. Tree-graph (B+L)-conserving
calculations in perturbation theory for the P4 model re-
sult in a factorial growth [8—10] of the amplitude with the
number of external particles and a violation of unitarity
at the same range of number of outgoing particles and.
center of the mass energy. Both perturbation theory and
instanton amplitudes violate unitarity at energies near
the sphaleron energy (Miv/o. gr 10 TeV) and multi-
plicities of about W 1/a~ external particles.

Since the problem of a direct nonperturbative calcu-
lation of either (B + L)-violating or (B + L)-conserving
amplitudes is at present too formidable to be solved di-
rectly, it is natural to look at an easier problem such
as the (K~x~0) amplitude of the quantum-mechanical
(QM) one-dimensional double-well potential. For this
problem it was shown [ll] that the well-to-well transi-
tion amplitude is suppressed but only by half of the 't
Hooft suppression factor when the energy is at the top
of the barrier. Furthermore, the same kind of behav-
ior has been seen in 2 ~ N cross sections using the
functional Schrodinger equation, while application of the
same method in the P model gives multiparticle ampli-
tudes that behave like exp( —PN) [12,13]. Considerations
of this kind, together with a combination of a variety of
quantitative and qualitative arguments have led to the
notion of "half-suppression. " If this is correct then a
"premature unitarization" takes place and the holy grail
function becomes approximately 2 even for energies near

the sphaleron energy E,~h (although, of course, one can-
not expect instanton calculations to be valid above the
sphaleron energy).

In the following we will investigate an S-wave unita-
rization method first proposed by Cornwall [8]. In an
earlier work [14] this method was studied for perturba
tive processes, where tree-level multiparticle cross sec-
tions diverge factorically. After S-wave unitarization the
tree-level cross section for multiparticle production re-
mains suppressed. by a factor similar to the predictions
of the quantum mechanical models, that is by

o = exp( —p%),

where P is a constant of order 1.
A natural question arises: If the above method gives

the "expected" results for the tree amplitudes, is there
a way to extend it to instanton calculations? And if so,
what is the behavior of the cross section near the criti-
cal domain? In the following we will try to answer these
questions. As we will see, instanton-only unitarization
leads to a behavior that suggests half-suppression. How-
ever, the addition of the tree graphs gives an additional
contribution not considered in the multi-instanton dis-
cussions. This modification leads again to unitary ampli-
tudes but the resulting cross section depends not only on
the instanton (i.e. , gauge theory) coupling g, but also on
the perturbation coupling A. When A &) g the suppres-
sion of processes with a nonzero winding number depends
rather strongly on A. With smaller A couplings this ef-
fect becomes weaker, but it always remains substantially
larger than the half-suppression predictions. In all cases,
the unitarized cross sections do not approach the unitar-
ity bound.

I. UNITARIZATIGN FOR TREE AMPI ITUDES

It has been shown [8,9] that in the —(A/4!)P theory
the amplitude for the decay of a particle of energy E to
N particles grows with the number N of final particles
as

0556-2821/95/51(6)/3090(6)/$06. 00 51 3090 1995 The American Physical Society



UNITARIZATION OF INSTANTON AMPLITUDES 3091

(
1N &N) & ') (2)

PN
d3

6(E —) ~ )h() p)

1 t'Ei
(N!)2 q4~)

This leads to a cross section
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which grows after a "critical" number of final particles:

16' o.
C e A

(5)

where o. = 2.92. Although this refers to massless parti-
cles, the same behavior is seen in the massive P theory,
and we will continue to use this loner bound, since we do
not want at this stage to complicate the model with an
additional mass scale, which would not affect any of our
final qualitative results.

In a separate paper [14],we have dealt with the S-wave
unitarization of this model. Divergences occur when we
combine the amplitudes given above with the relativistic
massless phase space:

effects of the finite matrix size N, and we found that
they are important for N & 2Ni but as we get to larger
sizes the behavior of the unitarized amplitude stabilizes.
We also saw that the value of the coupling constant does
not change the general behavior of the unitarized cross
section, although it does affect the constant P, which
roughly follows a scaling according to P a2~2, at least
in the quartic oscillator [12].

II. INSTANTON-ONLY UNITARIZATION

There is a qualitative difference between the diver-
gences leading to violation of unitarity in the tree cal-
culations and the instanton calculations. The former is
caused by the number of final particles N, while the lat-
ter is a result of the "wrong" scaling of the amplitude
with the energy E. Specifically, the instanton amplitude
with Higgs bosons as well as W and Z bosons in the final
states is

N
1

N
T' =Nt

~

—
~(N) (v2g) (10)

where Ep ——~Germ~/n~ = 2~6m v/g is roughly the
sphaleron mass. Integrating over the phase space and
summing over the number N of final particles leads [5,6]
to an exponential growth of the cross section with the
total initial energy E:

The cross section becomes of order 1 when the number
of external legs is approximately equal to 16m

0 exp
g2

s(Ei"
)

-1+-
I9 (Ep)

For the S-wave unitarization of this model, we need
the full T matrix that contains transitions with arbi-
trary numbers of initial and final particles. Since the
factorial in Eq. (2) arises &om the number of the Feyn-
man diagrams, a reasonable expression for the amplitude
of J -+ K transitions is [14]

PE~
Tg ~ J!K!

/

—
/Pr ~ 'r

where we have dropped an unimportant constant mul-
tiplication factor. The T matrix can contain any num-
ber of external particles. For the numerical unitarization
we limit ourselves to an N x N square matrix, with

& 2Ni. We define a matrix B as

1/2TH 1/2
7

where the phase space matrix p is an N x N diagonal
matrix with elements given by Eq. (3). The unitarized
amplitude takes the form

-i/2 —&/2B

which trivially satisfies the unitarity condition and
gives a cross section that for large N behaves like
exp( —PN), P 1, in agreement with results &om quan-
tum mechanical models. In Ref. [14] we discussed the

and the above expression becomes of order 1 when E
Eo 22 TeV.

In the present paper, we will never sum over all the
possible final states as is the common procedure in the
instanton literature. This is necessary for our numerical
model to work. In a sense it is also more physically rele-
vant, since what we really want is to find out whether a
B+I violating scattering process of two particles to some
definite number of particles can be observable in an ac-
celerator. The trade-off is that the unitarity bounds are
reached more slowly for our partial cross sections than
for the "total" cross section given above.

Now we can use a simplification arising from the as-
sumption of energy equipartition in the final states. This
leads to instanton cross sections similar to the tree cross
sections. We write the energy as E = N~, where cu is
the average energy of the outgoing particles. With this
substitution, the amplitude takes a form that mimics the
tree amplitude and the cross section is

2N 2 2N
ps~2(g~eN! (4vrv2g )

Compared to Eq. (4) we observe that both cross sections
will have a factorial growth with the number of outgoing
particles. For small N the tree cross section is decreasing
due to the smallness of the coupling. On the other hand,
the instanton cross section grows continuously, and it is
only the 't Hooft suppression factor that keeps it small.
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In the numerical computations we will keep the ratio
ur/v fixed and equal to some constant value. For all the
results we tried diQ'erent values for this constant, and
we found that none of our qualitative conclusions de-
pends on the particular value we chose. As we observed
above, saturation of the cross section is achieved with
much greater difhculty in this model. For example, if
w/v = 1 and g = 0.627, then the cross section becomes
of order 1 only when N 190, which corresponds to an
energy of E 46 TeV.

We need to define the general J ~ K instanton scat-
tering matrix. Since instantons are pointlike, there is
no distinction between initial and final legs. Then the
J ~ K amplitude is the same as the 1 —+ N amplitude
given above with N the sum of incoming and outgoing
particles:

We used g = 0.627, corresponding to crier =
22 and w/v =

3. For fixed ur/v the total energy scales with N, so Fig. 1
can also be viewed as an energy diagram for the first
two terms of the expansion with E = N x 738 GeV. We
see that the second term begins at a lower value, but
after some energy it actually becomes larger than the
first term, while both are still very small. This is what
the premature unitarization scenario predicts as well. Of
course, a matrix multiplication can contain intermediate
states with all possible numbers of particles, so we have
to remember to multiply only elements that are much
smaller than one, when the expansion given above is still
valid.

Since the diagonal elements of the B matrix are zero,
we can write the following expression for the instanton
sector unitarization:

Z I
i

—i/2 —i/2 'i

] + T++TP
(16)

The B matrix for the instanton-only computations has
the form

B= I i/2TA i/2 0 )I I (14)

I
TunitariZeIi —ZCl,

TI TI TA TI+. . . (15)

which is quite similar to the multi-instanton expansions.
This similarity is demonstrated further in Fig. 1, where
we have plotted the 1 + N cross sections that correspond
to the first and the second terms of the above equation.

where T is the anti-instanton amplitudes, and they have
the same values as the instanton T amplitudes. The
reason for choosing the above form for the B matrix will
be given in the next section. For now note that when we
define the unitarized amplitude as in Eq. (9) and then
expand the denominator in powers of T, the upper-right
instanton-sector of the unitarized amplitude is

where B = p
/' T p /'2. The denominator shows that

any expansion will only contain pairs of instantons and
anti-instantons and that the terms will alternate in sign.
These properties are in agreement with the Zakharov-
Maggiore- Shifman multi-instanton model.

We used this instanton-only unitarization method for
a variety of couplings and w/v ratios ranging &om 1 to 5.
Representative results are shown in Fig. 2. The coupling
is small, g = 0.7 and the ratio ttI/v is equal to 3. This
means that the x axis, shown as an N coordinate in the
figure, also corresponds to energies E+N x 0.7 TeV with
the vacuum energy being v = 246 GeV. The S-wave un-
unitarized cross section shows a growth a little faster than
an exponential for all energies (or numbers of particles. )
The unitarized cross section also grows at the beginning
but after the critical number of particles N, 27 (or
the corresponding critical energy E, = K,~ 20 TeV)
it starts to fall. It is always smaller than half of the full
't Hooft factor ( 140, i.e. , 0 e o), and thus we do
have a manifestation of half suppression. In conclusion,
all the expectations from multi-instanton methods are
satisfied in our model. In addition, we have the predic-
tion that although the cross section initially grows with
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FIG. 1. Contributions to the instanton-only unitarization
from: (a) One instanton and (b) two instantons and one
anti-instanton. Coupling is g = 0.627. Energy of outgoing
particles is u = 3v.
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FIG. 2. The instanton cross section before and after in-
stanton-only unitarization with g = 0.7, ur/v = 3. The x axis
is also an energy axis with values 8 = N x 0.7 TeV.



UNITARIZATION OF INSTANTON AMPLITUDES 3093

energy, it will eventually decrease exponentially with the
energy. It can never become observable.

III. IN S TAN TON S AND TREES

T = Hp @H, @H, g. -. .

The S operator connects the Fock space of the "outgo-
ing" states to the Fock space of the "incoming" states.
The above equation leads to the representation of the S
operator as a matrix, and the transition amplitude of J
initial particles to K final particles can be treated as in
our tree unitarization.

Now in the standard model the vacuum is "degener-
ate." Each sector is characterized by a winding number
v, with v being an integer (v C Z). Then, within the
perturbation theory, we can build a different Fock space

in each sector in a manner similar to Eq. (17). The
complete Fock space is then a direct sum of the T Fock
spaces. Therefore, the S matrix has a Z x Z structure
like

Sp Sg
S g Sp
S 2 S

Sg ~ ~ ~

Sg )

Sp ~ ~ ~

~ ~ ~

where Sp represents transitions within the same sector
(the usual tree level perturbative S matrix), and S rep-
resents transitions with total change of the winding num-
ber equal to v. Since we do not consider v ) 1 instanton
amplitudes, it is sufficient to work with a 2 x 2 submatrix
of the above matrix.

Thus, the correct way to write the total B matrix in
our method is

& =
I( ~A ~a )I

with R,R, R the tree, instanton, and anti-instanton
B matrices defined as before.

At sphaleron energies, both the perturbative tree di-
agram amplitudes that involve many outgoing gauge
bosons and scalars and the instanton-configuration am-
plitudes become unsuppressed [10]. A highly energetic
particle can decay either through nonzero winding num-
ber processes or by zero winding number perturbative
processes. Also, corrections arising from inclusion of
intermediate states can involve either combinations of
multi-instanton configurations or tree and loop correc-
tions. Our main objective is to combine amplitudes from
tree level diagrams and instanton amplitudes within our
numerical &amework. To this end we first have to review
some elementary definitions of the S matrix.

In field theory we define Hilbert spaces of a definite
number of particles. If Hp is the Hilbert space for no
particles present (the vacuum) and IIq, II2, . . . are the
Hilbert spaces for one, two, . . ~ particle states, then we d.e-
fine a Fock space as a direct sum of those Hilbert spaces:

If we ignore the effects of the perturbative tree d.ia-
grams, then the diagonal of the above matrix is zero and
the result is the instanton-only unitarization scheme of
the last section. If the tree level amplitudes lead them-
selves to divergent cross sections, we cannot justify their
omission. Since the essence of this method is to include
all the possible intermediate states, we need both trees
and. instantons.

Expanding the denominator of the instanton sector of
the unitarized T matrix, we see that the instanton cross
section arising from Eq. (19) contains

(20)

The first term of the right-hand side depends only on odd.
powers of R and it is the same as in Eq. (15). However,
the second term with the odd powers of R is zero when
there are no tree contributions present and positive oth-
erwise. Then we expect that with the addition of the
trees in the model we will get cross sections larger than
those from the instanton-only unitarization.

We are ready to proceed with the numerical unitariza-
tion of this model. There are three parameters that have
to be specified: the two couplings and the ratio w/v.
The value for the weak coupling in the standard model
is n~ = g /4vr 22. This leads to an exponential sup-
pression factor of the order of 10 for the cross section.
As we explained, in our formulation of the problem we
do not have a summation over the final states, and, as a
result, we need. very large numbers of outgoing particles,
N ) 190, if we are going to see any explicit effects of the
unitariz ation.

This would mean that we have to compute the inverse
of a 200 x 200 matrix or of an even larger matrix if we
want to avoid spurious effects from the finite size of the
matrix. And this might be possible if we did not have
the additional problem that the matrix contains complex
numbers spread in a range of more than a hundred or-
ders of magnitude. This last problem can be successfully
solved, as we explained in [14], by using the MApLE soft-
ware package with a setting of high precision (300 dig-
its for the tree-only unitarization). However, computer
memory availability and processor power forbid us from
working with extremely large matrices. Using the time-
honored trial-and-error method, we found out that the
computational errors become negligible (or order 10 )
when we use Eq. (19) with 60 elements for each of the
tree and instanton matrices (i.e. , a 120 x 120 matrix)
and precision set to 400 digits. The completion of the
computation of the inverse requires more than 10 sec of
processor time in a Sparcl0 workstation.

For the unitarization to be apparent in the results, we
must have Ni ( N 60. For the instanton sector we
can do this by increasing either the value of the coupling
or the ratio w/v or both. We tried a variety of values for
both constants, and we found that their fluctuations have
little effect on the general behavior of the cross section.

For the tree sector, if the tree coupling A is taken to be
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cross sections with divergences occurring at similar ener-
gies and numbers of external particles, then half suppres-
sion can be overcome within the unitarity bounds. In our
numerical model, the maximum value of the cross section
depends on the exact relation of the two couplings.
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