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We apply the gradient approach to obtain a path over the sphaleron barrier and to demonstrate
the fermionic level crossing phenomenon. Neglecting the mixing angle dependence and assuming
that the fermions of a doublet are degenerate in mass we employ spherically symmetric Ansatze for
the Gelds. The gradient path over the barrier is smooth, even for large values of the Higgs boson
mass or of the fermion mass, where the extremal energy path bifurcates.
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I. INTRODUCTION

In 1976 't Hooft [1] observed that the standard model
does not absolutely conserve baryon and lepton number
due to the Adler-Bell-Jackiw anomaly. The process 't
Hooft considered was spontaneous fermion number vi-
olation due to instanton-induced transitions. Fermion-
number-violating tunneling transitions between topolog-
ically distinct vacua might indeed be observable at high
energies at future accelerators [2,3].

Manton considered the possibility of fermion number
violation in the standard model from another point of
view [4]. Investigating the topological structure of the
configuration space of the Weinberg-Salam theory, Man-
ton showed that there are noncontractible loops in con-
figuration space, and predicted the existence of a static,
unstable solution of the field equations, a sphaleron [5],
representing the top of the energy barrier between topo-
logically distinct vacua.

At finite temperature this energy barrier between
topologically distinct vacua can be overcome due
to thermal fluctuations of the fields, and fermion-
number-violating vacuum-to-vacuum transitions involv-
ing changes of baryon and lepton number can occur. The
rate for such baryon-number-violating processes is largely
determined by a Boltzmann factor, containing the height
of the barrier at a given temperature and thus the energy
of the sphaleron. Baryon number violation in the stan-
dard model due to such transitions over the barrier may
be relevant for the generation of the baryon asymmetry
of the Universe [6—10].

While the barrier between topologically distinct vacua
is traversed, the Chem-Simons number changes contin-
uously from Ngs ——0 in one vacuum sector to Ncs + 1
in the neighboring vacuum sectors, passing through the
sphaleron at N~s = + 2 [11,12]. However, for large values
of the Higgs boson mass, energetically lower, asymmet-
ric sphaleron solutions appear, the bisphalerons [13,14].
The minimum energy path over the barrier [11]then de-

velops bifurcations [12], indicating the need for another
approach to the sphaleron barrier, which yields smooth
paths.

As the barrier is traversed one occupied fermion level
crosses from the positive continuum to the negative con-
tinuum or vice versa, leading to the change in fermion
number. When considered in the background field ap-
proximation this level crossing phenomenon predicts the
existence of a fermion zero mode precisely at the top
of the barrier, at the sphaleron [15—17]. For massless
fermions this zero mode is known analytically [15,16].

Considering the minimum energy path over the barrier
[11,12] the fermionic level crossing was demonstrated re-
cently in the background field approximation under the
assumption that the fermions of a doublet are degenerate
in mass [18—20]. This assumption, violated in the stan-
dard model, allows for spherically symmetric Ansotze for
all of the fields, when the mixing angle dependence is ne-
glected (which is an excellent approximation [21,22]). An
analogous, but self-consistent calculation [23] led to simi-
lar results. However, for heavy fermions it led to strongly
deformed barriers, eventually giving rise to bifurcations
and to new sphalerons [23].

Motivated by the catastrophes encountered along the
energy barrier in the extremal energy path approach for
large Higgs boson or fermion masses we here consider the
gradient approach to the sphaleron barrier. In Sec. II we
briefIy review the Weinberg-Salam Lagrangian and the
anomalous currents for vanishing mixing angle and for
degenerate fermion doublets. In Sec. III we discuss the
sphaleron barriers. We present the radially symmetric
Ansatz for the boson fields and obtain the energy func-
tional. We discuss the gradient approach, putting special
emphasis on the question of the underlying metric. We
compare the barriers obtained with gradient approach
with those of the extremal energy path approach. In Sec.
IV we discuss the fermionic level crossing along the gra-
dient path over the barrier. We present our conclusions
in Sec. V.
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II. WEINBERG-SALAM LAGRANGIAN

We consider the bosonic sector of the Weinberg-Salam
theory in the limit of vanishing mixing angle. In this
limit the U(1) field decouples and can consistently be set
to zero:

gauge the topological baryon number QR, carried by a
configuration, is determined by its Chem-Simons number
&as.

es = d'~X

For the vacua the Chem-Simons number is identical to
the integer winding number, while the sphaleron at the
top of the barrier carries half-integer Chem-Simons num-
ber [5].

with the SU(2)L, field strength tensor

F„„=O„V —0 V„+ge V„V„' (2)
III. BARRIERS

and the covariant derivative for the Higgs field

D„C = 0„——ig7. V„

(ol
(4)

leading to the boson masses

The SU(2)& gauge symmetry is spontaneously broken
due to the nonvanishing vacuum expectation value v of
the Higgs field,

Approximations to the sphaleron 'barrier can be ob-
tained by constructing families of Beld configurations
for the gauge and Higgs boson Belds, which interpo-
late smoothly &om one vacuum sector to a neighboring
one. The minimum of all maximum energy configura-
tions encountered along such vacuum-to-vacuum paths
represents the sphaleron [5] or, for large Higgs boson
masses, the bisphaleron [13,14]. Applying the gradient
approach, we construct the sphaleron barrier for various
Higgs boson masses. We compare these barriers to the
ones obtained by constructing the extremal energy path
[11,12].

1
Mw ——Mz ———gv

2
MJr ——vv 2A . A. Energy functional

We employ the values Mw ——80 GeV, g = 0.65.
For a vanishing mixing angle, considering only fermion

doublets degenerate in mass, the fermion Lagrangian
reads

In the limit of vanishing mixing angle the gauge and
Higgs boson fields can be parametrized by a spherically
symmetric Ansatz given by [24]

2y
= QI,ig Dp QI, + /Rip Op QR

f"Vl. (@uR—+@dR) —f"(dRC'+ uR@')e, , (6)

where qL, denotes the left-handed doublet (ul„dl. ), while
qR abbreviates the right-handed singlets (uR, dR), with
covariant derivative

Vo ——0,

C = H(r) + ir . rK(r) f o't
2-

(12)

(14)

and with 4 = i~2@*. The fermion mass is given by

1
MR = f~q~v .

2

which involves the five radial functions f~(r), fR(r),
f~(r), H(r), and K(r).

This Ansatz is form invariant under spherically sym-
metric gauge transformations with the SU(2) matrix,

Because of the U(1) anomaly, baryon number and lep-
ton number are not conserved, The functions then transform as

where

f~ + ifR', exp(iO)(f~ + i fR),
: f~+ rO',

K„= E;„p Tr ~ ~V + —igVV~V (10) H+ iK (.0): exp
~

i—
~ (H + iK) .

E 2) (16)

(P„~ = zr'F„', V = zr'V') is the Chem-Simons cur-
rent and f~ is the number of generations. In the unitary

The Ansatz, Eqs. (12)—(14), leads to the bosonic energy
functional
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"* 2, (f~+ fa —1)'+ f~+ y~fcl+ a
)

2

+(K +H ) 1+ f~+ fa+ +2f~(K —H ) —4faHK

2x—fc(K'H —KH') + 2x (H' + K' ) + ex (H + K —1) (17)

where

Mw~

is a dimensionless coordinate, the prime denotes difFer-
entiation with respect to x, and

4A X M~

1, , (fc&cs = — dx (fx + fa) I

27l Q )

(f&~ + fa2) sin(0 —0) (20)

where

This energy functional has a residual U(1) gauge invari-
ance with respect to the gauge transformation, Eq. (16).

The Chem-Simons number of a given con6guration is

over the sphaleron barrier is obtained from the functional

87r2M

g2
(23)

where ( is a dimensionless Lagrange multiplier [11].This
path is satisfactory for small Higgs boson masses [11].
For large Higgs boson masses, however, variation of the
functional, Eq. (23), leads to an extremal energy path,
which does not culminate at the bisphaleron, but has a
spike in the vicinity of the bisphaleron and culminates at
the sphaleron [12]. This is in clear contrast to expectation
and to other paths constructed in more or less ad hoc
fashion [25,20]. Similarly, when the path is constructed in
the presence of fermions with large masses, bifurcations
arise along the path in the vicinity of the sphaleron [23].

These catastrophic features of the extremal energy
path are artifacts of this approach, indicating the need
for another systematic approach to obtain the sphaleron
barrier.

0(x) = arctan[fa(x)/f~(x)] . Explicit gradi ent formaliem

1 , , 0(oo)~cs = — dx(faf~ —fifa) +2' Q 2' (22)

The energy functional, Eq. (17), possesses nontrivial
extrema. The sphaleron [5] with Ncs = 1/2 exists for
all Higgs boson masses. For large Higgs boson masses
the energetically lower, asymmetric bisphalerons bifur-
cate from the sphaleron [13,14].

The function 8(x) is an arbitrary radial function, associ-
ated with the U(l) gauge transformation, Eq. (16). From
the expression (20) the Chem-Simons number is readily
obtained in an arbitrary gauge.

In the radial gauge, where fc = 0, the spatial part of
the Chem-Simons current contributes to the topological
baryon number. One therefore has to rotate to the uni-
tary gauge, where only the Chem-Simons number deter-
mines the topological baryon number. The corresponding
gauge transformation involves the function 8(x), which
satisfies 8(0) = 0 and 8(oo) = 0(oo). This leads to the
Chem-Simons number

with

O~(f, f')
Of; (x) f=f f'=f'

(24)

Let us therefore consider the gradient approach as an
alternative approach to the sphaleron barrier. Starting
at the sphaleron or bisphaleron we are looking for the
steepest path, connecting the top of the barrier with the
vacua on both sides.

The direction of steepest descent at the top of the bar-
rier is determined by the negative mode of the sphalez-on
or bisphaleron [14,26]. Away from the top of the bar-
rier, the gradient of the energy functional determines the
direction of steepest descent. Thus for a given configu-
ration f the neighboring configuration f = f + bf along
the path of steepest descent is obtained by choosing 8f
proportional to the gradient of the energy functional. Ex-
plicitly, when f denotes a set of functions f;, we obtain
bf from the functional derivative of the bosonic energy
functional Eb according to

B. Gradient approach Eb —— dxF (25)

Let us now consider the energy barriers, associated
with the sphaleron and, for large Higgs boson masses,
the bisphalerons. For instance, the minimum energy path

and o. is a small negative number.
a. Metric. The notion "steep" always refers to a met-

ric on the configuration space. Therefore, to unambigu-
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ously define the gradient approach, we need to specify a
metric on the configuration space. A natural choice for
this metric is provided by the kinetic energy term of the
Lagrangian [27]. For th. e spherically symmetric Ansatz,
Eqs. (12)—(14), the eB'ective mass [28—33] of the gauge-
Higgs system reads

—2HK (30)

mfa = 2n
2 (f~+ f~ —1) —f~+ f~(K + H )

m(A) =

(26)

8~ „(df l' (df~l 1 (dfc&
g2Mw (dA) (dA) 2 (dA)

+2z
I

I
+2z, (dH), (dKI'

f~f~ —
fry f~ —x (K'H —H'K), (31)

X

bH = —,H(l+ f„'+ fIi) —2f~H —2f~K

where A is an arbitrary path parameter.
Accordingly we de6ne a distance d of two configura-

tions f = (f~, f~, fc, H, K) and f = (f~, f~, fc, H, K),
taken at the "times" A and A, as

+2Hex (H + K —1) —(2x H')'

bK = —K(l+ f~+ f~) + 2f~K —2f~H

(32)

d'(f, f) =
+2Kex (H + K —1) —(2x K')'

+2x'(K —K)'

To obtain the new configuration in the radial gauge,
f = (f~, f~, fc, H, K), we perform a gauge transforma-
tion, Eq. (16), of f = (f~, f~, fc, H, K) with the gauge
function 4' determined by fc = 0 = fc + z4'.

Since the gradient formalism assumes a Euclidean metric
with equal weight for all indices (i.e. , space points and
function indices), corresponding to a distance d,

dX 2 2 ) (28)

bf~ = 2a
2 (f~+ f~ —1) —fA+ fx(K +H )

+%2 —H' (29)

we have the relations fi(x) = f~(x), f2(z) = f~(z),
fs(z) = ~f~(x), f4(x) = ~2xH(x), and fs(x)
~2xK(x).

b Equatio. ns Assumi. ng the old configuration f
(f~, f~, fc, H, K) is in the radial gauge, fc = 0, the
new configuration f = (f~, f~, fc, H, K) will in general
not be in the radial gauge, fc g 0. Denoting bf = f —f,
we find the set of equations

2. Gi adient for'malism upwith cons& aint

Let us now consider a modified gradient formalism,
which is equivalent to the explicit gradient approach in
the limit d(f, f) -+ 0. In the explicit gradient forinalism
the gradient is taken at the "old" configuration f In the.
modified gradient formalism we take the gradient at the
"new" configuration f = f + bf Then 'E.q. (24) is a set
of di8'erential equations for the functions f;, which can
also be obtained by variation of the functional R',

W(f) = Ei,(f) + FMwd (f, f)—, (34)

where a constraint is imposed on the distance d(f, f) and
( is a Lagrange multiplier inversely proportional to n.

a. Choice of gauge As befo. re, starting &om a con-
figuration in the radial gauge, fc = 0, the neighboring
configuration will in general not be in the radial gauge,
fc g 0. To be able to keep the radial gauge throughout,
we define a new distance d( f, f):

d(f, f) = mind(f, f q, )

16m 2 2
min dx g — icos 4 + ~sin 4 + ~ — icos 4 — csin 4

2 2
+2x H —Hcos 4 2 + Ksin 4 2 + 2x K —icos 4 2 —Hsin C 2

i./2
1 2

+— e — c+
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where fIf, is obtained by gauge transforming f with the gauge function C, which minimizes the distance (35). In
contrast with the distance, Eq. (27), the new distance is gauge invariant under independent gauge transformations
of f and f. (Denoting the configuration space by C, this is a proper metric on the projective space of gauge orbits
C/, where the equivalence relation identifies configurations which are connected by radially symmetric gauge
transformations, Eq. (16) [34].)

b. Equations. Variation of the functional W, Eq. (34), with distance d(f, f) replaced by d(f, f) leads in the gauge
fc, = fc = 0 for the gauge and Higgs field functions to the set of equations

fn = s(fn+fn —I)+fs(» +H )+IC —H + (sf n—]fncos(s2)+f niso(s2)])

fn —
s (fn + fn —I) + fn(K + H )

—2HK+ s f(fn —Ifn coo(@) —fn sin(2)]),

(36)

(37)

II" = ——II'+ ](1 —fn) + fn] ——fn+ (H + IC —1)H+ ( (H —]Hens(s2/2) + ICsin(s2/2)])x 2x2 B (38)

K" = ——IC'+ ](1+fn) + fn] ——fn+ s(H + K —1)IC+so (IC —]Kcos(C'/2) — His n(C /2)])x 2x2 B (39)

and to an additional equation for 4
2 ] 2 2@"= ——4" + —,»n(@)(fAfA+ fBfB) + 2 cos(c)(fBfA fAfB)

+2 sin(4/2) (HH + KK) + 2 cos(CI/2) (KH —HK) . (40)

c. Boundary t."onditions. The boundary conditions are
chosen such that both the energy density and the en-
ergy are Gnite. At the origin the gauge and Higgs Geld
functions satisfy the boundary conditions

fA(0) —1 = fB(0) = H (0) = K(0) = 0 . (41)

At infinity the gauge and Higgs Geld functions lie on a
circle:

fA(oo) + ifB (oo) = exp[i'(oo)],

H(oo) + iK(oo) = exp i(.e( )l

where 8(oo) is an unknown function of (. Therefore we
choose the boundary conditions

f. Har~ier

We Grst compare the gradient path with the minimum
energy path for small Higgs boson masses. In Fig. 1 we
show the energy as a function of the Chem-Simons num-
ber for MH ——M~ for the gradient path and the mini-
mum energy path. The minimum energy path barrier is
steeper with respect to the Chem-Simons number than
the gradient path barrier. This picture reverts when we
consider the energy as a function of the path length l,
defined by

Energy Barrier

fA(oo) = fB(oo) = H'(oo) = K'(oo) = 0 . (43)

For the gauge function 4 we choose the boundary condi-
tions

4(0) = 0, 4'(oo) = 0, (44)

consistent with the boundary conditions of the gauge and
Higgs Geld functions.

C. Results

In the calculations presented we have employed the
gradient formalism with constraint on the distance, since
it appeared numerically far more stable than the explicit
gradient approach. Let us now discuss the sphaleron-bar-
rier as obtained in the gradient approach.

0.00 0.25 0.50 0.75
Chem —Simons Number

1.00

FIG. 1. The total energy (in TeV) is shown as a function
of the Chem-Simons number Ncs along the gradient path
(solid line) and along the extremal path (dotted line) for
M~ ——Mg .
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0.00 0.25 0.50 0.75
Chem —Simons Number
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FIG. 2. The total energy (in TeV) is shown as a function
of the path parameter / along the gradient path (solid line)
and along the extremal path (dotted line) for MH = Miv.

FIG. 4. The total energy (in TeV) is shown as a func-
tion of the Chem-Simons number Ncs along the symmet-
ric sphaleron path (solid line) and along the asymmetric
bisphaleron path (dotted line) in the gradient approach for
M~ = 15M~.

acuum

(bi) sphaleron
df— df

vacuum
(45)

Note that the path length l is shifted such that the
sphaleron or bisphaleron has l = 0. In Fig. 2 we show
the energy as a function of the path parameter l for
M~ ——M~ along the gradient path and the minimum
energy path. With respect to the path parameter l the
gradient barrier is steeper.

In Fig. 3 we present two configurations with the same
Chem-Simons number, one along the gradient path and
one along the minimum energy path. For the latter con-
figuration the asymptotic values of the functions are al-
ready closer to the vacuum values.

In Fig. 4 we show the energy, obtained with the gra-

dient method, as a function of the Chem-Simons num-
ber for M~ ——15M@v. Now there are three extrema of
the energy functional, the two degenerate bisphalerons
and the symmetric sphaleron. The right bisphaleron bar-
rier is obtained &om the left one by the transformation
Ngs m 1 —Nt-s and E —+ E. All three barriers, the
lower asymmetric bisphaleron barriers and the higher
symmetric sphaleron barrier, are smooth in the gradient
approach, in contrast with the bifurcations encountered
along the extremal energy path. Note that the asymmet-
ric bisphaleron barrier culminates at the bisphaleron and
has on one side a very steep fallofF [36]. In Fig. 5 we show
these energy barriers as functions of the path parameter
l.

Q

N„=0.25

llllli llllllllll'IIIIIIIIIII
I ~ llllli

~ I ill II

O
Energy Barrier

O

M
& Q0 Q
0

I I I I I I I I I I ~ I I I I I I I llllill
111111~ IIIIIIIII

O
Q

~l—

0) O~e-

M„=15M

O

III III II III III I extre rn a l

gradient O
O

0.0 1.0 2.0 3.0 4.0 5.0 -25.0 0.0
Pathparameter I

25.0

FIG. 3. The gauge field functions f~ and f~ are shown with
respect to the dimensionless variable x for the configurations
with Nos = 1/2 along the gradient path (solid line) and along
the extremal path (dotted line) for M~ = Mw. .

FIG. 5. The total energy (in TeV) is shown as a function
of the path parameter l along the symmetric sphaleron path
(solid line) and along the asymmetric bisphaleron path (dot-
ted line) in the gradient approach for M~ = 15M~.
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Effective Mass Transition Rate
Cl

M„=M„
M„=15M„(asym.)
M„=15M ( )

Sym. Sphal.
BIsphaleron

~o
~—0

IJJ

~l~ ~ ~ ' ll, II ~ IIIIIII, IIIIIII, IIIIII ' I, ~ I

0.00 0.25 0.50 0.75
Chem —Simons Number

1.00 0.0
I

5.0
I

10.0
M„/M„

l5. 0 20.0

FIG. 6. The effective mass (in units of 1/Miv) is shown as
a function of the Chem-Simons number Ncs in the gradient
approach along the symmetric sphaleron path for MH ——M~
(solid line )and MH = 15Miv (dot-dashed line), and along
the asymmetric bisphaleron path for MH = 15M' (dotted
line).

FIG. 7. The transition amplitude Ro (in units of 8vr /g )
is shown as a function of the Higgs boson mass MH (in units
of Miv) in the gradient approach for the symmetric sphaleron
path (solid line) and for the asymmetric bisphaleron path
(dotted line).

The effective mass m is shown in Fig. 6 as a function
of the Chem-Simons number for M~ ——Mw and MH ——

15Mw. For small Higgs boson masses, we find a smooth
effective mass, qualitatively similar to [30]. But for large
Higgs boson masses the effective mass develops a sharp
peak, when the Higgs field crosses zero at spatial origin.
This point coincides with the symmetric sphaleron, but
not with the bisphaleron. In the vicinity of this peak the
potential energy falls off steeply. This steep falloff occurs
only on one side (the side of the peak) of the bisphaleron,
but on both sides of the symmetric sphaleron.

By computing the distance of the (symmetric)
sphaleron to the vacuum we obtain an estimate of how
good the paths are. For M~ ——Mw the distance is 40,
while the path length of the gradient path is 46, and the
path length of the minimum energy path is 50. Thus the
minimum energy path has a longer path length than the
gradient path.

Xbnneling amplitude

As a related criterion for the quality of a path let us
now consider the associated semiclassical tunneling am-
plitude, determined by exp( —Ro) [28—33],

configuration space:

R, = 'df
Mw

(47)

where

df = lim d(f, f),f~f (48)

V(A) = Eg, and E = 0. Employing the radial gauge in
the calculations, the tunneling amplitude is determined
by Ro as given in Eq. (47) with d(f, f), Eq. (27), replaced
by d( f, f), Eq. (35), where we now interpret the sequence
of configurations along the path as gauge transforms of
those configurations for which d( f, f ) equals d( f, f).

For MH ——Mw we find Rp ——1.575 and 1.836, in units
of, , for the gradient path and the minimum energy
path, respectively. For MH ——15Mw we find Rp = 1.525

2

(1.533), in units of, , for the bisphaleron barrier (sym-
metric sphaleron barrier) in the gradient approach. In
Fig. 7 we show Rp as a function of the Higgs boson mass
in the gradient approach. We observe that Rp 1.5,
in units of 8vr2/g2, fairly independent of the Higgs bo-
son mass, and the bisphaleron transition rate is slightly
higher than the sphaleron transition rate.

Rp —— dA +2m(A) [V(A) —E],
a

(46)
IV. LEVEL CROSSING

where V(A) is the potential energy and E is the energy
of the classical turning points a and b [30,31]. (Note
that the integral is independent of a reparametrization. )
Considering vacuum-to-vacuum transitions [with respect
to the above metric, Eq. (27)], the exponent Ro of the
tunneling amplitude is a line integral along the path in

Let us now consider the fermionic level crossing phe-
nomenon along the sphaleron barrier. We study the
fermion mode in the background field of the barrier as
well as self-consistently, and compare the gradient path
to the extremal energy path.
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A. Energy functional spin-isospin relation

To retain spherical symmetry we consider only fermion
doublets degenerate in mass. The corresponding spheri-
cally symmetric Ansatz for the fermion eigenstates is the
hedgehog Ansatz:

cryh. + vyq ——0 .

Under the residual gauge transformation, Eq. (15), the
ferrnion functions transform as

3

ql, (r, t) = e ' 'M~ Gl, (r) +icr . re, (r) yg,

3

qR (r, t) = e ' 'M~ GR (r) —i o rFR(r) yI, ,

(49)

(5o)

FL+ iGL

FR + iGR

(.el
; exp i (E—l, + iGI, ),

)

: FR+ iGR .
(52)

where the normalized hedgehog spinor yp, satisfies the The fermionic energy functional reads

Ef —4+MW dxx FRGR GRFR + —FRGR + FLGL —GLFL + —FLGI —2 GLFLI I 2 I 1 2 1 —fA

0 x x x

+ (GL, —Fl, ) + (GL, + EL, ) + 2MF H(GRGL, —FRFL, ) —2MF K(FRGI. + FI.GR)x 2X

where the fermion mass MF is expressed in units of Mw.

MF = MF/Mg (54)

The fermion functions need to be normalized. When
N fermions occupy the eigenstate the normalization con-
dition is

Cd
Cd =

Mw
(6o)

FR(0) = Fg(0) = 0,

At the origin the fe-mion functions satisfy the bound-
ary conditions

4vr dzz (GR+ER+GL +F1) = N .
0

(55)
GR(0) = cR, GL, (0) = cl. , (62)

B. Background Beld calculation

2
cdGL —FL ——FL +x

1 —fAF fBG
L L

+MF( —HGR+ KER) =O, (56)

cdFL + GL+ fA G fBE

+MF(HFR+ KGR) = 0, (57)

—(uGR + FR + FR + MF (HGI, ——KFI, ) = 0, (58)f 2

~FR + GR + MF (HEI, + KGI.) = 0, (59)

where cd is the fermion eigenvalue cd in units of Mw.

Let us Grst consider the fermions in the background
Geld of the sphaleron barrier. We find the set of coupled
equations [18,20,23]

where cR and cL are unknown constants, subject to the
normalization condition (55). At infinity all fermion
functions vanish:

ER(oo) = EI,(oo) = GR(oo) = GL, (oo) = 0 .

Let us now consider the case M~ ——Mw. The fermion
eigenvalue along the gradient path is shown in Fig. 8 as
a function of the Chem-Simons number for the fermion
masses MF = 10M~, MF = M~, and MF = M~/10.
For comparison the fermion eigenvalue along the mini-
mum energy path is also shown [18]. For small fermion
masses the fermions are bound only in the vicinity of the
sphaleron. Here we Gnd qualitatively the same behav-
ior of the fermion eigenvalue. For heavier fermions the
eigenmode reaches the continua later along the gradient
path than along the minimum energy path.

For large values of the Higgs boson mass, when the
barrier culminates at the bisphaleron, the fermion eigen-
value in the gradient approach is a monotonic func-
tion of the Chem-Simons number as shown in Fig. 9
for MJI ——1.5Mw and MF ——10Mw& MF = Mw and
MF = M~/10. This is in contrast with the extremal
energy path, where the bifurcations along the path also
lead to bifurcations of the fermion eigenvalue [20]. Note
that the eigenvalue along the right bisphaleron barrier
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FIG. 8. The fermion eigenvalue (in units of M~) is shown
as a function of the Chem-Simons number %~s in the
background of the sphaleron barrier for the fermion masses
MF = Mgr/10, Mp = Mgr, and M~ = 10M~ along the gra-
dient path (solid line) and along the extremal path (dotted
line) for M~ = Miv.

FIG. 10. For the fermion zero mode the dependence of the
fermion mass (in units of Mw) on the Chem-Simons number
Nos is shown along the gradient path (solid line) and along
the extremal path (dotted line) for MH = 15Miv.

is obtained by the transformation Ngs -+ 1 —Ngs and

In Fig. 10 we show the dependence of the zero eigen-
value of the fermions on the Chem- Simons number and
on the fermion mass for the gradient path and the ex-
tremal energy path for MH ——15M~ . Depending on
the Higgs boson mass, the zero mode approaches a lim-
iting value for large fermion masses in the gradient ap-
proach. In contrast, along the extremal energy path the
zero Inode occurs for large fermion masses only at the
sphaleron, i.e. , at Ncs = I/2. For small fermion masses

the level crossing occurs for both methods in the vicinity
of Ncs = I/2 [20,36].

C. Self-consistent calculation

Let us now study the gradient path over the sphaleron
barrier in the presence of fermions. We proceed analo-
gously to our previous calculation [23], but compute the
barrier with the gradient method. We arrive at the same
set of equations for the fermion fields, while we have to
add the source terms

O

Eigenvalue

+g +FAN Gg

+-~'&(Gi —&r', )2

(64)

(65)

O

O
O-

4P
g)

O
I

O

I

0.00 0 ~ 25 0 ~ 50 0 ~ 75
Chem —Simons Number

1 .00

FIG. 9. The fermion eigenvalue (in units of M~) is shown
as a function of the Chem-Simons number N~s in the back-
ground of the bisphaleron barrier for the fermion masses
M~ = Miv/10, M~ = Miv, and Mp = 10Miv along the
gradient path (solid line) for M~ = 15M~.

+ (GR&L, —+a+I,),g2 Mp
2

(66)

g2 M~
2

(ERG' + &L,&z), (67)

to the right hand side of the boson field equations for f~,
f~, H, and K, respectively

Let us erst consider small Higgs boson masses, where
only the sphaleron barrier exists. As before, when study-
ing the fermion eigenmode along the minimum energy
path [23], we observe that fermions with small masses
have little influence on the shape of the barrier, while
heavy fermions deform the barrier considerably. How-
ever, for very large fermion masses, the bifurcations,
which we observed previously along the extremal energy
path, are no longer present along the gradient path. In
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the gradient approach the barrier decreases monotoni-
cally to both sides of the sphaleron, as shown in I ig. 11
for Ma = Mw and M~ ——75Mw.

As before [23] we observe that the fermion eigenvalue
deviates little &om the eigenvalue of the background Geld
calculation for small fermion masses; also for heavier
fermions the path does not lead to a kee fermion solution
but to a bound state, a nontopological soliton. The self-
consistent ferrnion eigenvalue along the gradient barrier
is shown in Fig. 12 for a heavy fermion with M~ ——10Mw
for the Higgs boson mass M~ ——Mw, and compared to
the eigenvalue of the background Geld calculation. In the
self-consistent calculation the soliton is approached for
Kcs m 0.

Let us now turn to large values of the Higgs boson
mass, where we expect two bisphaleron barriers beside
the sphaleron barrier. The presence of the fermions lifts
the degeneracy of the two bisphalerons for finite fermion
masses. Considering now the total energy, consisting of
the bosonic energy and the fermion eigenvalue as en-
countered along the path over the barrier, we expect [38]
that the energy of the left bisphaleron first increases as
E = Eb + M~, while the energy of the right bisphaleron
decreases as E = Eg —M~. (The left sphaleron is encoun-
tered along the barrier before the level crossing; i.e. , the
fermion is still in the positive continuum, while the right
sphaleron is encountered after the level crossing; i.e. , the
fermion is in the negative continuum [20].) At a critical
value of the fermion mass the fermion becomes bound,
MP 4+M~/M~ —12 GeV [37]. Then the energy of
the left bisphaleron decreases, while the energy of the
right bisphaleron increases. Interestingly, a bifurcation
occurs at a moderate value of the fermion mass. The
right bisphaleron merges with the sphaleron at a critical
value, beyond which only the left bisphaleron solution
exists. This curious feature of the self-consistent treat-

Eigenvalue
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C3~o-
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LaJ n

I

o
I

0.00 0.25 0.50 0.75
ahern —Stmons Number
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FIG. 12. The fermion eigenvalue (in units of M~) is shown
as a function of the Chem-Simons number Ncs in the gradient
approach along the sphaleron barrier for MH ——M~ and
along the bisphaleron barrier for MH = 15M~ for the fermion
mass M~ = 10Miv in the background field calculation. (dotted
line) and in the self-consistent calculation (solid line).

ment is demonstrated in Fig. 13 for MH = 15M~ (for
one bound fermion).

The self-consistent fermion eigenvalue for a heavy
fermion with M~ ——10Mw for the Higgs boson mass
MH ——15Mw along the left gradient bisphaleron bar-
rier is shown in Fig. 12. Note that this is the only self-
consistent barrier for this fermion mass. Here, the vac-
uum is approached for les ~ 0, because the soliton
exists only for higher fermion masses [23].

Energy Barrier Sphalerons

CD

Sphaleron M„=M„

M,=75M
M„=15M„
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C4J
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0.00
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gra

0.25 0.50 0.75
Chem —Simons ~,umber

1.00 0.0 1.0 2.0

M„M„
3.0 4.0

FIG. 11. The energy (in TeV) is shown as a function
of the Chem-Simons number %~s for the fermion mass
My ——75M~ in the self-co@''stent calculation along the gra-
dient path (solid line) and along the extremal path (dotted
line) for M~ = Miv.

FIG. 13. The energy (in TeV), including the fermion eigen-
value, is shown as a function of the fermion mass M~ (in
units of Miv) in the self-consistent calculation for the left bi-
sphaleron (dotted line), for the right bisphaleron (solid line),
and for the sphaleron (dot-dashed line) for M~ = 15Mw.
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V. CONCLUSION

We have applied the gradient approach to obtain the
sphaleron barrier. The gradient approach produces a
path of steepest descent with respect to a given met-
ric. A natural metric on the space of field configurations
is implied by the kinetic energy term of the Lagrangian
[27]. We have formulated this metric in a gauge-invariant
way [34].

We have presented the formalism of the explicit gradi-
ent approach and of the gradient approach with a con-
straint on the distance. For technical reasons we have
used the latter approach in the numerical calculations.

Since the bifurcations along the extremal energy path
have largely motivated this study, we have compared the
sphaleron barrier obtained along the gradient path to
the one along the extremal energy path. For small val-
ues of the Higgs boson mass, there is only one sphaleron
solution, the symmetric sphaleron [5,13,14]. Here both
approaches lead to a smooth barrier. The gradient path
barrier is steeper with respect to the path length /, de-
fined via the metric, while the minimum energy path
is steeper with respect to the Chem-Simons number.
But the semiclassically calculated tunneling amplitude

exp( —Ro) is bigger for the gradient path; e.g. , for
M~ = M~, Ro is smaller by 10% for the gradient path.

For Higgs boson masses larger than 1 TeV new asym-
metric sphaleron solutions with lower energy appear, the
bisphalerons, [13,14]. When bisphalerons exist, the ex-
tremal energy path has bifurcations and culminates not
at the bisphaleron but at the symmetric sphaleron. In
contrast, the gradient approach leads to smooth barri-
ers, a lower asymmetric bisphaleron barrier and a higher
symmetric sphaleron barrier. The asymmetric barrier

has a steep falloff on one side. This falloff is related to
a peak in the effective mass, when the Higgs field passes
zero (at the origin). The semiclassical tunneling ampli-
tude is fairly independent of the Higgs boson mass, but
slightly bigger along the bisphaleron barrier than along
the sphaleron barrier.

To exhibit the level crossing phenomenon we have cal-
culated the valence fermion mode along the gradient ap-
proach barriers. Since the barriers are smooth in the gra-
dient approach, also the fermion eigenvalue along the bar-
riers is smooth. This is in contrast with the extremal en-
ergy path, where the bifurcations of the barriers were re-
jected in bifurcations of the fermion eigenvalue [20]. The
fermion eigenvalue decreases monotonically &om the pos-
itive continuum to the negative continuum along the gra-
dient path in the background field approximation, even
for large values of the Higgs boson mass.

When fermions are coupled self-consistently to the
boson fields the fermion mass is of importance. For
small fermions masses there is hardly any change with
respect to the background field calculations, while for
heavy fermions the barriers deform considerably. No-
tably, for large Higgs boson masses, two of the three
barriers, the sphaleron barrier and the right bisphaleron
barrier, merge and disappear already for moderate values
of the fermion mass, leaving as the only barrier the left
bisphaleron barrier.

ACKNOWLEDGMENTS

We gratefully acknowledge discussions with Y. Bri-
haye, B. Kleihaus, M. Wendel, and L. Yaffe.

[1] G. 't Hooft, Phys. Rev. Lett. 37, 8 (1976).
[2] A. Ringwald, Phys. Lett. B 201, 510 (1988).
[3] Baryon Number Violation at the SSCF, edited by M.

Mattis and E. Mottola (World Scientific, Singapore,
1990).

[4] N. S. Manton, Phys. Rev. D 28, 2019 (1983).
[5] F. R. Klinkhamer and N. S. Manton, Phys. Rev. D 30,

2212 (1984).
[6] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov,

Phys. Lett. 155B, 36 (1985).
[7] P. Arnold and L. McLerran, Phys. Rev. D 36, 581 (1987).
[8] P. Arnold and L. McLerran, Phys. Rev. D 37, 1020

(1988).
[9] L. Carson, X. Li, L. McLerran, and R.-T. Wang, Phys.

Rev. D 42, 2127 (1990).
[10] E. W. Kolb and M. S. Turner, The Early Universe

(Addison-Wesley, Redwood City, 1990).
[11] T. Akiba, H. Kikuchi, and T. Yanagida, Phys. Rev. D

38, 1937 (1988).
[12] Y. Brihaye, S. Giler, P. Kosinski, and J. Kunz, Phys.

Rev. D 42, 2846 (1989).
[13] J. Kunz and Y. Brihaye, Phys. Lett. B 216, 353 (1989).
[14] L. G. Yaffe, Phys. Rev. D 40, 3463 (1989).
[15] C. R. Nohl, Phys. Rev. D 12, 1840 (1975).

[16] J. Boguta and J. Kunz, Phys. Lett. 154B, 407 (1985).
[17] A. Ringwald, Phys. Lett. B 213, 61 (1988).
[18] J. Kunz and Y. Brihaye, Phys. Lett. B 304, 141 (1993).
[19] D. Diakonov, M. Polyakov, P. Sieber, J. Schaldach, and

K. Goeke, Phys. Rev. D 49, 6864 (1994).
[20] J. Kunz and Y. Brihaye, Phys. Rev. D 50, 1051 (1994).
[21] B. Kleihaus, J. Kunz, and Y. Brihaye, Phys. Lett. B 273,

100 (1S91).
[22] J. Kunz, B. Kleihaus, and Y. Brihaye, Phys. Rev. D 46,

3587 (1992).
[23] G. Nolte and J. Kunz, Phys. Rev. D 48, 5905 (1993).
[24] R. F. Dashen, B. Hasslacher, and A. Neveu, Phys. Rev.

D 12, 4138 (1974).
[25] F. R. Klinkhamer, Phys. Lett. B 236, 187 (1990).
[26] Y. Brihaye and J. Kunz, Phys. Lett. B 249, 90 (1990).
[2?] This choice of metric is within the gradient approach con-

sistent with the requirement of a maximal tunneling rate.
[28] T. Banks, C. M. Bender, and T. T. Wu, Phys. Rev. D 8,

3346 (1973).
[29] T. Banks and C. M. Bender, Phys. Rev. D 8, 3366 (1973).
[30] K. Bitar and S.-J. Chang, Phys. Rev. D 17, 486 (1978).
[31] K. Bitar and S.-J. Chang, Phys. Rev. D 18, 435 (1978).
[32] R. J. Noble, Phys. Rev. D 20, 3179 (1979).
[33] S. Hsu, Phys. Lett. B 294, 77 (1992).



3072 GUIDO NOLTE AND JUTTA KUNZ 51

[34] This metric is a generalization of the Fubini-Study metric
[35] to local gauge theory, which is defined for quantum
mechanical vrave functions, @which are physically equiva-
lent under a global phase transformation.

[35] A. K. Pati, Phys. Lett. A 159, 105 (1991).
[36] Similar results were obtained by L. G. Yance (private com-

munication) .

[37] Y. Brihaye and J. Kunz, "Sphaleron, Ferxnions and
Level Crossing in the Electrovreak Model, " Report No.
ICHEP94, Glasgow, 1994 (unpublished).

[38] Because of the finite radius, we had numerical diKculties
in obtaining accurate (free fermion) solutions for small
fermion masses.


