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We study the thermodynamics of massive Gross-Neveu models with explicitly broken discrete
or continuous chiral symmetries for 6nite temperature and fermion densities. The large N limit is

discussed, paying attention to the no-go theorems for symmetry breaking in two dimensions which

apply to the massless cases. The main purpose of the study is to serve as an analytical orientation
for the more complex problem of the chiral transition in four-dimensional QCD with quarks. For

any nonvanishing fermion mass, we find, at finite densities, lines of 6rst-order phase transitions. For
small mass values, traces of would-be second-order transitions and a tricritical point are recognizable.
We study the thermodynamics of these models, and in the model with broken continuous chiral

symmetry we examine the properties of the pionlike state.

PACS number(s): 11.30.Rd, 12.38.Aw

I. INTRODUCTION

We have examined the massive Gross-Neveu model [1]
at finite temperature and density within the mean field
approximation. In spite of the problems related to the
low dimensionality of the model, this may represent in
our opinion a guide to the thermodynamics of chiral sym-
metry restoration in QCD. We have studied the model
with a bare mass term included, always kept nonvanish-
ing. Because of such a choice, no chiral phase transi-
tion is present, since chiral symmetry is explicitly bro-
ken &om the beginning and thus, strictly speaking, the
Mermiii-Wagner-Coleman theorem [2,3] does not apply.
Although the symmetry is explicitly broken, we find, as
in our previous study for a QCD model [4], that some
first-order phase transition still survives. The critical
line obviously moves in the phase of temperature and
chemical potential for growing masses, but it survives
even for large mass values. We derive the equation of
state apd study the phase diagram for different choices
of thermodynamical variables. We discuss the isotherms
in the pressure-inverse density plane, which resemble the
van der Waals isotherms for the vapor-liquid transition
in water. The construction is made through the study
of the effective potential, which contains all the physical
information about the stable and metastable phases of a
given model. We can define a critical point as the ending
point of the coexistence region. There are, below this
point, two regions of very low and very high compress-
ibility, separated by the coexistence region, which ends
at the critical point.

We have also considered the explicit (small) breaking of
a continuous symmetry in order to implement the study
of soft-pion-type properties in the model. It is evident
that (differently &om four-dimensional QCD) in two di-
mensions the pionlike particle cannot be considered as a
Goldstone particle as a result of the Coleman theorem.

Thus one principal difference between previous studies
[4] and the present work is that here the zero mass limit
cannot be taken without a complete change of the pic-
ture.

To further comment on how no-go theorems work in
a finite-temperature field theory and to better motivate
our presentation, we start by summarizing in a very
schematic way known results in Sec. II.

Section III is devoted to the results for the phase dia-
gram and the equation of state of the model with a bro-
ken discrete symmetry. Here also naive zero-mass-limit
results will be presented to better clarify those for the
massive case in which we are indeed interested and at
the same time to show what would be reasonable to ex-
pect in analogous studies in 3+1 dimensions. In Sec. IV
we attempt a description of pion properties in the model
with a broken continuous symmetry. As the effective po-
tential in the mean field approximation can be put in the
same form as that of Sec. III, the results concerning the
equation of state and the phase diagram are the same.
Finally, some useful calculations are summarized in the
Appendix.

II. GENERAL REVIEW

The Gross-Neveu model [1] is a well known two-
dimensional theory with four-fermion interactions which
is asymptotically &ee. The fermion field has N compo-
nents. The model was originally considered in the 1/N
expansion. The massless formulations, with discrete or
continuous symmetry, have been extensively studied for
zero or finite temperatures and densities [5—12], giving
rise to several discussions related to the low dimension-
ality of the model, with its implications for symmetry
breaking and phase transitions, and to the validity of
the 1/N expansion (many aspects have been already dis-
cussed in Ref. [12]).
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A. Discrete symmetry

& = @'~@+—,'g'(4 @)' (2 1)

Let us summarize in every schematic way the main
known results. The Lagrangian is

the thermodynamical limit (even in presence of a finite
chemical potentiali).

The model has been considered in the N ~ oo limit
and we believe that a 1/N expansion would not destroy
the qualitative picture provided the mass is always kept
different from zero.

(for studies of the limit N ~ oo one will also define
g2N = A). It is invariant under the discrete chiral sym-
metry

(2.2)

The four-fermion interaction can be conveniently studied
[1] by introducing a 0 field in the generating functional
which satisfies the classical equation of motion o = gg@
and transforming as 0 ~ —0 under chiral symmetry. The
Lagrangian becomes

B. Continuous symmetry

We summarize now the main results for the model with
continuous symmetry. One starts from the Lagrangian

(2.4)

which is invariant under the continuous chiral transfor-
mation

8 = QiOQ —2o + gcrQg, (2.3) @me* ~'@ (2.5)

and by integrating over the fermion field @ one can study
the effective action as a functional of 0..

(a) T=O, p=O. At zero temperature T and chemical
potential p, the calculations indicate the vacuum expec-
tation value (0) g 0, and therefore the discrete chiral
symmetry is spontaneously broken. This happens for any
value of the coupling constant. There is no contradiction
with the no-go theorems [2,3].

(b) T g 0, p = 0. In this case the time dimension is
bounded by P = 1/T. The thermodynamical limit can be
taken only on the space dimension [unless P -+ oo, which
goes back to case (a)]. Thus, as far as the occurrence of
spontaneous symmetry breaking is concerned, the model
behaves as one dimensional and the discrete chiral sym-
metry is immediately restored at T = 0+. This is a
manifestation of the Mermin-Wagner theorem [2]. The
restoration of chiral symmetry at Gnite temperature is
driven by the presence of kinks and antikinks. These are
nonconstant Geld configurations connecting the two de-
generate minima, whose number grows with the volume
[6]. This happens for any large, finite N. If, however,
the limit N ~ oo is taken before the thermodynamical
limit, these configurations are suppressed, and one is left
within the mean Geld theory, where the model exhibits
a second-order phase transition at a critical temperature
T. f 0 [5].

(c) T g 0, p g 0. By considering the model in the
N + oo limit, one can derive analytically the phase dia-
gram in the plane of chemical potential and temperature
(p, T). It turns out that there exists a tricritical point
separating second-order phase transitions &om first-order
ones [9]. This result has been criticized by a lattice study
[10] where the authors find that at any p g 0 the phase
transition is Grst order. They claim that this is due to
the formation of kink-antikink configurations which are
now not suppressed and trigger the phase transition in
this case.

In our study of the discrete symmetry model at Gnite
temperature and density, a bare mass is included, always
taken different &om zero. This ensures the elimination
of kink-antikink configurations, which are suppressed in

In this case one also introduces in the generating func-
tional, in addition to the scalar field o., a pseudoscalar
field satisfying the classical equation of motion vr

iggpsg [1]. The 0 and m fields transform under the con-
tinuous chiral transformation as

~ o ~ ( cos20 sin28 ~ t o 4

q
vr

y q
—siii20 cos 28

p
(2.6)

o. +i+ = pe' (2.7)

one Gnds that the system still allows for an "almost long-
range order, " since the two-point correlation function de-
creases with a power law for large distances, the exponent
being 1/N [13,7]. Indeed, this behavior, which was origi-
nally found in the low-temperature phase of the continu-
ous symmetry X-Y spin model by Kosterlitz and Thou-
less [13], is simply dictated by dimensional arguments.
Actually, it comes out &om the fact that one is consid-

One can convince oneself about this fact by looking in
Ref. [6] at the procedure leading to the expression for the num-
ber of kinks, which is independent of the chemical potential

Integrating over the fermion fields, one gets the effective
action as a functional of the two fields o and m.

(a) T = p = 0. Because of chiral invariance, the effec-
tive potential is a functional of p = 0 + 7r only. Thus
one easily realizes that in the mean field approximation
its analytical expression is equivalent to that of the dis-
crete symmetry model. Then chiral symmetry appears
to be spontaneously broken. This is also the result at
leading order in 1/N since there is no kinetic term for
the collective Gelds. Anyway, rigorously speaking, con-
tinuous chiral symmetry cannot be broken since there are
no Goldstone bosons in two dimensions [3]. This shows
up at the next-to-leading order in 1/N, as a result of IR
divergences in the vr correlation function. Nonetheless, as
shown in Refs. [7,12], by choosing a polar representation
for the physical fields, longitudinal and transverse,
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ering the transverse fluctuations of the order parameter,
which in the IR are dominated by the &ee propagator
of the vr field, which is I/I" [1,12]. Thus the Fourier
transform in two dimensions diverges logarithmically for
large distances (the same holds for the 0 propagator).
Anyway, by using the physical representation (2.7), this
behavior has to be exponentiated. As the hypotheses are
general, the Kosterlitz-Thouless phase appears simply as
the "two-dimensional version of long-range order" in a
class of models [14].

A similar phenomenon occurs in 2+1 dimensions for
massless bosonic theories at finite temperature, as it ap-
pears from the behavior of the free two-point correlation
function (see Appendix D).

(b) T g 0. Again, for large but finite N, at T g 0,
one can easily find that the system behaves as in one
dimension and that even this "almost long-range order"
disappears (see Appendix D). Anyway, even in this case,
the N ~ oo limit can be formally taken in a way to
eliminate any space-time dependence of the correlation
function. Thus one is left within the mean Geld descrip-
tion, which gives the same critical temperature as in the
discrete symmetry model. This solution seems to con-
tradict the Mermin-Wagner-Coleman theorems. We are
going to comment on this point in the following.

It is evident that whenever nonconstant field config-
urations change the picture provided by the mean field
approach, the 1/N expansion fails. In fact, the fluctua-
tions can be suppressed only if N is taken strictly infinite,
rather than approximating with its leading term a 1/N
expansion. Thus, if N is large but firiite, the final result is
simply that the symmetry can be broken spontaneously
only if 17 & 1 (discrete symmetry) or 17 & 2 (continuous
symmetry), 17 being the number of dimensions for which
one takes the thermodynamical limit. It is clear that go-
ing &om a zero-temperature to a finite-temperature field
theory, 17 decreases by 1 (this will be further evidenced
in the following and in Appendix D).

To specify something more about the infinite N, let
us recall some qualitative arguments which lead to the
Mermin-Wagner-Coleman results [15] for a continuous
symmetry. A criterion to establish the possibility of spon-
taneous symmetry breaking is to consider the ratio

Z(n)
z(0) (2 8)

aI - O ~ 'd~~-L~-' (2.9)

(I' is the Euclidean action) between the partition function
infinitesimally rotated after an operation of the symme-
try group and the unrotated one. To allow for sponta-
neous symmetry breaking, this ratio has to vanish in the
thermodynamical limit [15], and thus AI' = I'(n) —I'(0)
has to diverge in the thermodynamical limit. The op-
posite (i.e. , a finite AI') would imply that, the system
being initially at one minimum, it would have a nonzero
probability to make a transition to another degenerate
minimum. This would ensure the order parameter to be
zero [15]. Actually, only the kinetic term contributes to
Lt', which at zero temperature implies, in D dimensions,

which shows that, if D & 2, no spontaneous symmetry
breaking occurs. At finite temperature the time dimen-
sion is bounded and the difFerence in the actions becomes

P
LI'p dx 0 o. d x L

(2.1o)

where d is the number of spatial dimensions. This phe-
nomenon is much the same as the dimensional reduction
at high temperatures. There, one is considering the high-
temperature limit with the spatial dimensions bounded,
here the large spatial dimension limit at fixed tempera-
ture. Thus a dimensional reduction occurs whenever the
ratio z'/P ~ oo [i = 1, 2, ..., (D —1)].

Finally, if the theory has an internal symmetry group
O(N), an N factorizes in the previous expressions

AI' NPL" (2.11)

and one is led to discuss in addition the implication of a
N —+ oo limit. For instance, by allowing N ~ oo as L~,
to make AI' divergent for L ~ oo it would be enough to
take ( & 2 —d. Thus, if d=l, the necessary condition is

( & 1, namely, that N goes to infinity faster than L.
The large-distance behavior of the free propagator for

massless bosons in D = d + 1 dimensions at Gnite tem-
perature is dominated by T x (&ee massless propagator in
d dimensions at zero temperature) (see Appendix D):

dd k ik.x
Dp(x) -T, for ~x~ -+ oo .

2~ ' k' (2.12)

Thus, as the IR leading term of the action for transverse
fluctuations has the general form (2.9), the expression
(2.12) leads to the same statement of Eq. (2.10). In
presence of an internal symmetry group O(N), a factor
1/N appears in (2.12), and then, by putting an IR cutoff

1/L, one finds that in the IR limit the fluctuations go

T
D „ for km0, (2.13)

which gives the same information as (2.11).
The considerations about the N —+ oo limit are, of

course, not completely satisfactory, as the limit appears a
bit tricky and not physically clear. However, as the 1/N
expansion is nonanalytic [12], to consider the N ~ oo
limit looks rather as moving to a new distinct model.

To summarize, several authors [5,9—11] have consid-
ered the massless Gross-Neveu model in view of its pos-
sible similarity to (3+1)-dimensional @CD taken in the
chiral limit. Consequently, they have neglected the role
played by fluctuations, which can destroy the order at
low dimensionality, but should not be so crucial in 3+1.
We also believe that the study of the model in the mean
field approximation may represent a good guide to the
thermodynamics of chiral symmetry restoration in 3+1
@CD models. However, both for the discrete and contin-
uous symmetry models, we consider it important to add
a nonvanishing bare mass term. This allows us to escape



THERMODYNAMICS OF THE MASSIVE GROSS-NEVEU MODEL 3045

the Mermin-Wagner-Coleman theorem, and in addition it
should represent a more realistic simulation of the /CD
phase transition. We have already studied the behavior
of the condensate at finite temperature and density in a
massive @CD-like theory in the mean field approach [4],
with results qualitatively equivalent to those presented
here. In this context it is interesting to study further
properties of the Gross-Neveu model, where the techni-
cal complexity is largely reduced.

We stress again that, differently from @CD, where the
zero-mass limit can be safely taken, in the present case
the mass has to be kept finite. In the continuous sym-
metry model, for instance, the singular behavior of the
zero-mass limit is evident by the drastic change in the
long-distance behavior of the &ee correlation function,
which passes &om an exponential decay to a logarithmic
(or linear) divergence. We remark that a four-fermion
model in 2+1 dimensions would a priori not be a good
candidate to simulate @CD, as chiral symmetry can be
properly defined only in an even number of space-time
dimensions. Thus it is not surprising that the phase di-
agram for symmetry restoration is very different in that
case [12].

In the following we will refer to the mean field results
for the massless case only to better clarify the results of
the massive case.

As already mentioned for the massless case, the model is
studied by introducing in the Lagrangian a u field sat-
isfying the classical equation of motion cr = gQ@. In
presence of a mass term, it is more convenient to rede-
fine the o field by shifting it by a constant o ~ 0 + M/g.
Then the Lagrangian (apart from constant terms) reads

2 = @iOQ — rr +-go gg —M —.1 2 o
2

g
(3.2)

V(0) = —0 +iN ln(g 0 —k ) + M —. (3 3)
2 (2vr)2 g

The renormalization can be carried out by adding a coun-
terterm hZcr /2 and by imposing the condition

d2V

do o =cro
(3.4)

Let us first consider the model at vanishing tempera-
ture and density. To study the problem of spontaneous
symmetry breaking (SSB), a suitable tool is the effective
potential V(o), which has to be minimized with respect
to o in order to extract the physically relevant quanti-
ties. As anticipated in the previous section, we consider
the model in the infinite-N limit. Following Ref. [16], the
effective potential is obtained as

III. MASSIVE GROSS-NEVEU MODEL:
DISCRETE SYMMETRY

l: = g(iB —M)g+ 2g (QQ) (3.1)

In this section we examine the Gross-Neveu model
when the discrete chiral symmetry is explicitly broken
by adding a fermion mass term to the Langrangian (2.1):

Then we have

1, Ao' (o'l o
V(0) = rr + —ln~ —

2 ~

—3 +M —.
2 470 i 0'pr g

(3.5)

The subtraction parameter oo is arbitrary. A change in
oo is equivalent to a change in g, to scaling the o. field,
and to rescaling the bare mass M. Thus the effective
potential must obey the renormalization group equations

8 8 8
~

o.p +P(g) ——op (g) +MpNr(g) ~
V(o, op, g, M) = 0.

Ocr p Bg Brr
(3 6)

If the potential in Eq. (3.5) is inserted into Eq. (3.6), we find

Ngs/(2vr) P(g)
1+Ng /(2

(3.7)

The proportionality between P(g), p (g), and p~(g) arises from the fact that to order 1/N there is no renormalization
of the wave function for the @ field at the one-loop level. Therefore the renormalization of cr is determined by the
term go.@vP, that is, &om the renormalization of g.

Let us recall that for M = 0 the symmetry is spontaneously broken and the fermion acquires a dynamical mass

i-~/Amo ———go = gooe (3.8)

where o is the absolute minimum of the effective potential. Eliminating the dependence of the effective potential on
op by using the relation (3.8) between crp and mp, the expression (3.5) can be put in a manifestly invariant form

N 2 2 /'ga 5 M
V(o) = —g 0. ln ~.

~

—1 +gcr-
47I (mp ) g

(3.9)

We now consider the generalization to finite temperature T and chemical potential p. By using standard techniques,
one can derive the effective potential
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I'(~ » / ) = I'0(~) + &i (~ » / )
/'g~) ' M—g cr ln~

~

—1 +B+go ——
4ir (mp) g

N
dk[ln(1+ e ~~')/" + +"l) + (/i —i —/i)] .

vrP ()
(3.io)

As the pressure equals the negative of the efFective potential evaluated at the physical points, the equation of state
for the system is given by

P = V(T—, /i, o(T, p. , M)) . (3.11)

To normalize to vanishing pressure (and energy density, in the limit M ~ 0) at zero temperature and cheinical
potential, we have inserted in the expression for the effective potential (3.10) the "bag term' B = Ng2o2(0, 0, 0)/4vr
[(7(0,0, 0) = 0 = —mo/g]. Finally, it is convenient to introduce dimensionless quantities

gO 7C AM(d=, V—: 2V, a=
mp Nmp Amp

(3.12)

r = T/m0, r/ = p/m0, i/ = k/mo, (3.13)

V(0)) = Vp(0)) + Vp(~, r, g)

= 4~ (la~ —1)+ 4+ a~ —F dy ln 1+exp
~

——(gy*+ ~~ yq)
~

y (g-+ —g))
1 2 2 1 ( 1

0 r (3.14)

which, at the absolute minimum u, gives the dimensionless pressure

p= P=-V(~) .
Nm02

(3.i5)

At zero temperature the efFective potential (3.14) becomes

V(-).=. = V.(-)+V.(-, = o,.)
= -'0) (in~' —1) + —'+ n0)+ —,'0(g' —0)')[—ggrl2 —0)2+ ~ in(gg' —(d'+)7) —-'0)21n0)2] . (3.16)

In the following we shall consider the phase dia-
gram and the equation of state for small values of the
symmetry-breaking parameter o..

A. Phase diagram and thermodynamics

of second-order phase transitions Iyy starting &om the
point (O,r, ) = (0, 0.567) and ending at Pi, Rom a first-
order line Ly starting &om Pq and ending at the point
(r/„0) = (i/2/2, 0). In the present case, with n g 0, by
moving along vertical lines in the (r/, r) plane, we find the
following behavior: For chemical potentials higher than a

At r = g = 0 the symmetry is explicitly broken, and
the absolute minimum of the efFective potential is on the
negative u axis. It appears in correspondence to the point

—(1 + cx), and it becomes deeper and deeper for
increasing o., as shown in Fig. 1.

At finite r and g, the symmetry still remains broken
as a result of the presence of the breaking term nu. Nev-
ertheless, if the mass parameter is small (a «1, but dif-
ferent from zero), the system at finite temperature and
density exhibits a line of transitions. To be more specific,
let us start by looking at the behavior of the condensate
in the plane of chemical potential and temperature (r/, r).
To describe the results, we find it convenient to first recall
the phase diagram which derives &om the study of the ab-
solute minima of the effective potential (3.14) with a=O,
already found in Ref. [9] (see Fig. 2). There is a tricriti-
cal point Pi ——(gi, i i) = (0.608, 0.318), separating a line

V(0))-1/4

3I

-2

FIG. l. Effective potential at T = p=O for various values
of n.
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FIG. 2. Phase diagram for the massless Gross-Neveu
model.

FIG. 3. Phase diagram for the massive Gross-Neveu model.

(mass-dependent) value gq(n), the condensate undergoes
a finite discontinuity at some (mass-dependent) critical
temperature and drops to a value proportional to the
bare mass a. Furthermore, these critical temperatures
decrease for increasing chemical potentials. Thus the sys-
tem still allows for "first-order lines" Li(n) starting from
points (g|,(o'), rq(o)) and ending at points (ik(n), 0). On
the other hand, for g ( qq(n), the condensate decreases
continuously for growing temperatures and thus it is no
longer possible to extract a line of second-order critical
points. Nevertheless, there still exists a sharp interval of
temperatures in which the condensate decreases steeply
to a small value (proportional to o.). This simple result
can be summed up by saying that by taking into account
a small bare fermion mass, the phase diagram of the dis-
crete chiral Gross-Neveu model at Rnite temperature and
density is a perturbation of the naive mean 6eld solution
of Ref. [9], found in the chiral limit. Although the last
one can suffer for the presence of nonconstant Geld config-
urations which dominate in the thermodynamical limit,
the addition of a bare mass is suKcient to eliminate these
complications. The 1/N corrections should not destroy
the qualitative picture in this case. In Fig. 3 we show the
comparison between the phase diagram for a=0, 0.01,
and 0.1.

In Fig. 4 we show the condensate behavior versus tem-
perature at zero chemical potential for m=0, 0.01, and
0.1. We see that for n (&1 the condensate behavior is
still reminiscent of a second-order phase transition. The
same holds for any g ( qq(n). The low-temperature be-
havior can be derived analytically and it is approximately
given by

1.0

0.8

0.6

0.4

0.2

05 1.0 15 2.0

0.8

0.6

0.4

02

FIG. 4. Condensate behavior in r at g= 0 for n=O, 0.01,
and 0.1.

05 1.0 2.0

In Fig. 5 we plot the condensate behavior versus chemical
potential at zero temperature for m=0, 0.01, and 0.1, as
derived from the effective potential given by Eq. (3.16).
In this case the critical chemical potential can be evalu-

FIG. 5. Condensate behavior in g at r = 0 for n=O, 0.01,
and 0.1.
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ated analytically for o. &&1. It turns out to be
(3.24)

rk(n) - (1+ 2o.) .
2

(3.is)
(3.25)

I et us now discuss the equation of state. Prom Eqs.
(3.15) and (3.14), we have

(d -2 1
p(r, q) = —(1 —in~ ) ———n~

4 4

+r dy in[i + e ~"'+ '+"~/
]

0

+(g m —q) (3.i9)

(we recall that the minimum w depends on r, rI, and o.).
The fermion number and entropy densities are ob-

tained by the derivatives of the pressure P with respect
to the chemical potential and temperature, respectively.
However, it is convenient to define dimensionless number
and entropy densities

p sr 2 g2 b—= —+ (3.27)

sr 2 g2 b+ + ) (3.2s)

(3.26)

(where 6 = 1/4 is the dimensionless bag term).
In Fig. 6 we show the curves e/r and p/r2 vs r, for

g = 0 and o, = 0. Note that for r ) r 0.57 the
two curves approach asymptotically the constant value
K = m /6. In fact, their expression in this region is
given by

OO
dg —(rj + —i))-

1 + e[Qv'+~' n]/~— (3.20)

ps =
|9p

(1) Qy'+ ~' -' rj

(r) 1+,[i/i'+ '+nj/

+»(1+.-~~"+-'+ j/.
) + (& ~ -&), (3.21)

p p
e = —p+r +g

OP |97/
= —p+ rs+ gn

4J 1= —(in~ —1) + —+ n~
4 4

y2 + ~2
+ +(ii-+ —q) .

1+ei4"+= +.j/. (3.22)

which are the true quantities rescaled by a factor
m/(Nrno) Consistent. ly, the dimensionless energy den-
sity is given by the expression

and thus for g = 0 the two curves in this "Stefan-
Boltzmann regime" are symmetrical with respect to the
dashed line depicted in Fig. 6. Note also that since both
c and p are exponentially vanishing for r ~0, their ratio
to r is vanishing too.

In Fig. 7 are shown the same quantities as in Fig. 6,
for i) = 0.63 & gi(a = 0) 0.60S. Note that in this case
the curve of the energy density shows a latent heat as the
phase transition is first order and that the two curves are
no longer symmetrical with respect to the asymptotic
value K.

For n g 0, the pressure and energy density at r =
g = 0 are corrected to p ~ and e —o, . This is
expected because the energy density has to be propor-
tional to the condensate, which means c = o.Cu —o,
since ~ —(1+a) at r = rI=O. A consequence is that
at low teznperatures the ratios p/r and e/r are now
divergent. Thus, to construct curves analogous to those
in Figs. 6 and 7 (where a=0) for the massive case, we
have to subtract the divergence. Actually, in Figs. 8
and 9 we show [e + a]/r and [p —n]//r vs r at fixed g

2.8

2.4

As we have previously done for the phase diagram, it
is useful first to refer to the results deriving &om (3.14)
with o.=0. In this case the exact values of p, n, s, r can be
derived analytically at r = g = 0 and for r & r, (rl) [where
r (rI) is a point of the curve Lii(n = 0) or Li(a = 0)].
In fact, for o. = 0 and r = g = 0, &om (3.14), one has
m=1, and thus, &om Eqs. (3.19)—(3.22), p = s = n =
e=0, whereas for r & r, (rI), one has m=0, and thus the
integrals in Eqs. (3.19)—(3.22) can be exactly evaluated,
giving

2.0

1.6

1.2

0.8

0.4

0.3 0.6 0.9 1.2 1,5

p= + ——b
6 2

(3.23) Fic. 6. Plot of e/r and p/r vs r for g = 0 at n=O
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9

0.2 0.4 0.6 0.8 1.0

FIG. 7. Plot of s/r and p/r vs r for r1=0.6&) rI, at n=O.

2.8

2.4

2.0

1.6

1.2

0.4

0.3 0.6 0.9 1.2 1.5

FIG. 8. Plot of [s+ a]//r and [p+ a]/r vs r for ri = 0 at
a.=0.01. Remember that s(r = 0, q = 0) n for o—. «1.

with rI = 0 ( rlq(n) and rI = 0.65 ) qq(n), respectively,
for o;=0.01. Note that the latent heat is slightly reduced
with respect to the massless case.

We now come to alternative representations of the
phase diagram, difFerent &om those of Figs. 2 and 3. We
consider the planes (I/n, p) and (n, , c) of inverse fermion
density-pressure and of fermion density-energy density,
which are quantities of more direct physical interpreta-
tion than r and g.

Let us start from the isotherms in the (I/n, p) plane
for the massless model, shown in Fig. 10. These van der
Waals —type curves are readily obtained in the following
way: The critical line LIp is the mapping of the corre-
sponding curve in the (rl, r) plane (see Fig. 2), whereas
the line LI has split into two parts, corresponding to the
value of the density n at the two degenerate minima at
the critical chemical potential at a given temperature for
r ( rq. The region inside is the coexistence region. Note
that it is not necessary to follow the Maxwell procedure
to draw the isotherms, as all the information is natu-
rally included in the formalism. In fact, the value of the
pressure at the boundaries of the coexistence region for a
given temperature is directly the negative of the value of
the eH'ective potential at the two degenerate minima at
the critical chemical potential. The "liquid phase" cor-
responds to the region where "the symmetry is restored"
and thus where the absolute minimum is m=0, and the
"gas phase" corresponds to the region where "the sym-
metry is broken, " or u g 0. The intermediate values of n
are, of course, not accessible from the minima of the ef-
fective potential as they only give information concerning
the pure phases. They are, however, physically accessi-
ble, in analogy, for instance, with the phenomenon of the
melting of ice at zero temperature. The supercooled and
overheated parts of the isotherms can be easily obtained
by following, respectively, the histories of the minima at
the origin and out of the origin, after they cease to be
absolute minima. The unstable region is obtained by
following the maximum in between, since it appears to-

0.3

0.2

3

2
K
1

0.1
not allowed

region

0
0 0.2 0.4 0.6 0.8 1.0

FIG. 9. Plot of [s + n]/r and [p —n]/r vs r for
g = 0.65 ) qq(n) at n=0.01. Remember that s(r = 0,
g = 0) —n for n (( 1.

1/n

FIG. 10. Isotherms of the massless Gross-Neveu model in
the (1/n, p) plane.
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gether with one of the two minima until it merges with
the other. The picture obtained in this way obeys the
Maxwell construction which is simply derived from the
equality of the chemical potentials at the edge of the two
phases.

The isotherms in the symmetric phase have a simple
analytical expression for n=O. In fact, from Eqs. (3.23)
and (3.25), which is n = rI in the symmetric phase, one
has

7r2r2 1+, —6 (symmetric phase) . (3.29)21(n 2

1.0

08 ..A

0.6

0.4

0.2

chiral
symmetric

The isotherms in the "gas phase" have been obtained
numerically.

The curve p in Fig. 10 is the isotherm at zero temper-
ature, and therefore it defines the edge of the accessible
region. From the point C = (1/n„O) = (~2, 0), it coin-
cides with the horizontal axis (up to infinity as n = 0 for
rI ( ik). Thus the line p has the siinple expression

0.2 0.4 0.6 0.8 1.0

FIG. 12. Phase diagram for the massless Gross-Neveu
model in the (n, e) plane.

(3.30)

In Fig. 11 are shown the isotherms in the plane of inverse
density and pressure for o.=0.01, as derived numerically.
The change in the shape of the coexistence region, close
to the critical point It, is well understood by classical
arguments of a Landau expansion (see Appendix A) [17].

As one can see, the description for n g 0 (n (( 1) is
strictly related to that for the massless case. This is not
surprising as the model admits a Landau expansion which
does not involve problems related to long-range fluctua-
tions if n g 0. Thus the system still shows up in two
difI'erent phases below the critical pressure pq. The situ-
ation for n g 0 is much the same as for the vapor-liquid
transition for water. It is possible to obtain Clausius-
Clapeyron-like equations &om the equality of the pres-
sure at the edge of the two phases (see Ref. [18]).

Finally, we come to the phase diagram in the plane
(n, s), starting from the case n = 0 in Fig. 12. The

picture clearly indicates the difI'erent regions of chiral
symmetry breaking and restoration, and the region of
coexistence, by the mapping of the corresponding lines
in Fig. 10. Here the only isotherm drawn is the line p,
which is that for zero temperature, and thus it defines
the edge of the accessible region (as in Fig. 10). It has
the simple expression

~~2 I ~2 ~ ~2) (1 n2)s=0 —n n+0 n—)2~2)(4 2j
(3.31)

The second term on the right-hand side (RHS) is ob-
tained from Eqs. (3.23), (3.25), and (3.26) by taking
into account that n, = rk = ~2/2 and 6 = 4. As far as
the first term is concerned, let us first recall that, at zero
temperature [see also the second line of Eq. (3.22)],

0.3

As the phase transition at r = 0 is first order, the previ-
ous formula directly gives the latent heat in passing from
one phase to the other:

disc c = gcdisc n (3.33)

0.2

0.1
not allowed

region

[namely, the coordinates of the point C = (~2/2, 2)].
By allowing for the intermediate values of n (which cor-
respond to the physical values in the mixed phase) and
taking into account that p (rk, r = 0) = 0, whereas the
"pure phase" values of n are ni ——0, n2 ——~2/2, one gets
a straight line

C
(3.34)

1/n

FIG. 11. Isotherms of the massive Gross-Neveu model in
the (1/n, p) plane for n=0.01.

which is the first term on the RHS of Eq. (3.31).
In Fig. 13 there is the phase diagram in the (n, s) plane

for n=0.01. Also, from this picture (as in Fig. 11), apart
from the obvious disappearing of the line Lyy, the strong
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and thus sr=0, and the effective potential reduces to the
one obtained in Sec. III.

A. Pion decay constant

Our aim now is to analyze the pion mass and de-
cay constant behaviors in T and p in the small mass
limit. First of all, we note that the axial vector current

= gp~p g formally satisfies the PCAC (partial con-
servation of axial vector current) relation

-0.1
0.2 0.4 0.6 0.8 0"g =2—vr.P g

(4.6)

FIG. 13. Phase diagram for the massive Gross-Neveu
model in the (n, s) plane for m=0. 01.

efFect of the addition of a bare mass on the shape of the
curve in the vicinity of the point P& becomes evident.

Moreover, for dimensional reasons, m cannot be iden-
tical to the canonical pion field. Indeed, we expect that
the physical pion appears in the Lagrangian with a term
cpp, where cp has the dimension of a mass. Therefore
we impose that the renormalized propagator for y has
the canonical form

IV. CONTINUOUS SYMMETRY

In this section we consider the massive Gross-Neveu
model described by the Lagrangian

(4.1)

which for M = 0 is invariant under the continuous chi-
ral transformation (2.5). With M g 0 the symmetry is
broken &om the beginning and there is no reason for the
appearance of exact Goldstone bosons or exact massless
particles in general. Actually, as far as the phase dia-
gram and the thermodynamics is concerned, it is easy to
realize that the study of the model in the present case
leads to the same results shown in the previous section.
In fact, after having introduced scalar and pseudoscalar
fields and integrated over the fermion fields, following
the same procedure of the previous section, we obtain an
effective potential of the form

(4.7)

co = ResD (p )~p. (4.8)

The divergence of the axial vector current then becomes

2Mcp
px ~ (4.9)

Defining in the usual way the pion decay constant

we have

(4.10)

Comparing this expression with D (x) = (Tvr(x)m(0)),
we obtain that co is the residue of D (p2) at the pole
corresponding to the pion mass:

V(p, , T, p) =V (p )+9 —(p = + ),
2m f 2Mcp

(4.11)

(4.2) 8"g„=m f p (4.i2)
where V( )(p ) has the same form as (3.10) with M = 0
and o ~ p. By imposing the minimum conditions

In the soft pion limit (at T, @=0) the pion mass can be
extracted in the following way [21]:

QcT
(cr,m) =(cr,vr)

dv

(cr, 7r) =(cr,7r)

(4.3) m = -icoD (0) = c,2 ~ 2 —1 2

t97l
min

02 V
(4.i3)

it comes out that

gv(o)
2CT

P
(cr, 7r) =(o,+)

M+ —=0
g

(4 4)

where co2 is the residue of D (p2) on the pole.

=0, (4.5)
And thus geo is invariant under the renormalization group.
This is the case in which the vr propagator can be approxi-

mated as ico/(p —rn ).
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At finite T, /i, defining m2 (T, p) as the pole of the ther-
mal two-point Green function for the y Geld we obtain

f,(r)/f, (0)
1.2

.'(» ) —= —' '(» )[D-(0)jp'
02V="(»/) ~,

1.0

c2(T, p, ) 82V

CO |9P
(4.14) 0.8

min
0.6

where c2(T, p) is the residue of D (p ) at the pole. Using
the explicit form of the e6'ective potential, one has

0.4

m (T, /i) = -c (T, /i) —„
M
gO

(4.i5) 0.2

Therefore, from Eq. (4.11), we have
0.5 1.0 1.5 2.0

r
f (T, p)= —2, o. ,

C T)P
(4.16)

FIG. 15. Pion decay constant vs temperature for o, = 0,
0.01, and 0.1.

2
m (T, p)f (T, p) = —4—

2 2 g& . (4.i7)

Equation (4.17) is just the Adler-Dashen relation at finite
temperature and chemical potential. By comparing it to
the T = p=0 case

m„(r)/mo
4.0

3.5

m f = —4 grr,
M
g

(4.18) 3.0

2.5
we see that (4.18) is modified by the term co/c (T, p),
which depends explicitly on the temperature and chem-
ical potential (beside the implicit dependence contained
in go).

At this point we can obtain m (T, p) and f (T, /i) by
calculating explicitly the factor c(T, p). If we remember
that the inverse propagator is defined in general as

2.0

1.5

1.0

0.5

D '(p ) = (1+HZ) —II(p ), (4.19) 0.2 0.4 0.6 0.8 1.0
r

we can find c(T, p, ) by evaluating the self-energy for the
vr field as given by the diagram shown in Fig. 14. Carry-
ing on the calculation as done in Appendix C, we Gnally
arrive at

FIG. 16. Pion mass vs temperature for m=0. 01 and 0.1.

d1+20
4vro 2 de

1

e(T, p, )2
f.(V)/f. (0)

1.2

X
dq f 1 +

2m~ ge/( ~+&)+1 e/( ~ &)+ ij
(4.20)

1.0

0.8

where we have defined wz ——gq2 + g2o2.
We note that Eq. (4.20) can also be verified, at least in

0.2

I

2.0
Tl

0.5 1.0 1.5

p+k
FIG. 17. Pion decay constant vs chemical potential for

m=0.01.FIG. 14. Pion self-energy at one-loop order.
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m (ii)/mo

0.5 1.0 1.5
I

2.0
'q

FIG. 18. Pion mass vs chemical potential for o.=0.01.

the chiral limit, by evaluating explicitly the axial vector
current matrix element. Indeed, for m =0, we obtain

(4.2i)

V. DISCUSSION AND CONCLUSIONS

The study of QCD at finite temperature and density
is a formidable problem both for analytical methods and
for numerical simulations. It may then be of interest to
perform similar studies on simpler models to get an in-
troductory experience in view of the harder QCD prob-
lems and to have some hints at the type of phenomena

The behaviors of f and m in T and y, are shown,
respectively, in Figs. 15,16 and Figs. 17,18. Note that, if
n = 0 could be taken as physically meaningful, f could
be used as a physical signal (it is a measurable quantity)
of spontaneous symmetry breaking (for T ( T,) and of
its restoration (for T ) T,). Unfortunately, this is not
the case, because massless bosons in two dimensions are
not allowed. Anyway, we note that for small values of
n we can still distinguish the transition region where f
decreases very rapidly.

As far as the pion mass is concerned, we can say that
m grows up quickly for T & T, showing that in this case
one is outside the range of validity of the soft pion hy-
pothesis and the behavior shown in Fig. 16 keeps only a
qualitative value. Nevertheless, we expect the pion mass
to be independent of the symmetry-breaking parameter
(supposed be small) once the symmetry is restored, be-
cause in such a case the main parameter would be the
scale of the theory. On the other hand, for T & T„ in the
case o.=0, the symmetry would be spontaneously broken
and the pion would be the associated Goldstone boson;
the mass that it acquires is thus strongly dependent on
the symmetry-breaking parameter o.. Anyway, a more
precise analysis, which we are not interested in carrying
out in this paper, could be carried out by considering the
full dependence of the pion propagator on p .

that may be present. The most easily treatable prob-
lems are in dimensions lower than four, particularly in
two dimensions, one of space one of time. Unfortunately,
the lowest dimensionality brings out peculiar features in
itself, which have been known since some time and are
particularly expressed by the contents of the so-called
Merrnin-Wagner Coleman theorem.

A number of analogies, among them asymptotic &ee-
dom, suggest the Gross-Neveu model in two dimensions
as an interesting candidate in order to carry out orienta-
tion studies of what might happen to the physical QCD
problem at finite temperatures and densities. In its orig-
inal massless form, the model falls into the theoretical
problems caused by its low dimensionality, with direct
consequences on symmetry breaking and phase structure,
on the validity of an expansion in the inverse of the num-
ber of fiavors (1/1V expansion), and on the reliability of
a mean field approximation.

The simplest massless Gross-Neveu model has a dis-
crete p5 symmetry, spontaneously broken at zero tem-
perature and zero chemical potential, without contradic-
tion of the no-go theorems for one space and one time
dimension. One expects, however, symmetry restoration
as soon as T g 0, for any finite value of X, through
a kink-antikink formation mechanism. One can con-
sider using a mean field approximation only for the strict
N —+ oo limit, where kinks become suppressed and a
nominal phase transition takes place at finite T.

When the chemical potential p is also nonvanishing,
the phase diagram for N ~ oo shows a structure in-
volving a tricritical point. Our main interest is the mas-
sive case, for which chiral symmetry is never valid and
strictly the no-go theorems do not apply. The expected
suppression of kink-antikink configurations will restore
the validity of the large-N limit, and one finds that some
first-order phase transition survives in the T-p plane in
spite of the explicit breaking of chiral symmetry, with a
critical line apparently persisting also for large masses.

The phase diagram for the massive Gross-Neveu model
has been shown in Fig. 3 for difFerent values of the mass
parameter. Beyond some (mass-dependent) value of the
chemical potential p, the fermion condensate shows a dis-
continuity at a critical value of T, which becomes smaller
for higher p. One has thus lines of first-order transitions.

There are no second-order transition lines for finite-
mass values, but the condensate variation appears as very
steep for small masses.

Corresponding to the first-order transitions, one finds
a latent heat visible in the diagram for the energy den-
sity. The phase diagram can, perhaps more physically, be
regarded on the inverse-fermion-density —pressure plane
or, alternatively, on the fermion-density —energy-density
plane. The isotherms in the former plane have the aspect
of the popular van der Waals curves of water, showing a
vapor-liquid transition. These van der Waals curves are
here directly provided by the formalism, without having
to apply the Maxwell construction. The end point of the
region of phase coexistence is a critical point. The mas-
sive model admits a Landau expansion, as there are no
problems arising &om possible long-range Quctuations.
From the equality of the pressure at the borders, one
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obtains Clausius-Clapeyron-like relations.
A massless Gross-Neveu model exists also with contin-

uous chiral symmetry. For vanishing T and p, uncritical
use of the mean field approximation would lead to ana-
lytical results translating those of the corresponding dis-
crete symmetry model. One knows, however, that there
cannot be Goldstone bosons in two dimensions (Coleman
theorem). This is reflected by the appearance of infrared-
divergent pion correlations at the immediately nonlead-
ing order in the 1/N expansion. An almost long-range
order, corresponding to a power law correlation decrease
and reminiscent of the Kosterlitz-Thouless behavior of
the X-Y spin model, is, however, expected, also on sim-
ple dimensional arguments. The "almost long-range or-
der" does not survive at any finite T, even for large ¹

Only if N ~ oo is intended as a constructive definition of
a distinct new model does one obtain the mean field de-
scription. Such a constructed model, where fluctuations
have automatically been suppressed, may not be a con-
sistent approximation to a massless Lagrangian model.

The N ~ oo properties can be analyzed by a compari-
son of the partition functions after and before symmetry
rotation, illustrating the kind of dimensional reduction
occurring in a thermal system and evidencing at the same
time the role played by the infinite ¹ One can also dis-
cuss the large-N limit of the fluctuations in the in&ared
through study of the massless thermal propagator.

From the point of view of constructing some treatable
approximation to physical QCD, suppressing fluctuations
may bring us closer to the real situation. Independently
of this consideration, our interest has been centered on
massive models, which strictly escape the no-go theorems
of two dimensions. QCD itself has massive quarks, and
the general warning when passing to some massless limit
is that this is certainly more dangerous in any comparable
two-dimensional model than in QCD itself. Nevertheless,
we get &om our exercise the conviction that an overall
physical content is included in the N + oo limit. We had
previously studied the chiral phase transition in QCD at
finite temperature and density in a mean field composite
model. The analogy of those QCD results to those pro-
vided by the N ~ oo study of the massive Gross-Neveu
model is quite remarkable and tends to support the im-
pression of a possibly realistic phase space structure.

The model vrith continuous chiral symmetry, broken
by the mass term, can easily be led back to the analo-
gous discrete symmetry model to qualitatively discuss its
phase diagram and its thermodynamics at finite T and
p. A main point of the continuous symmetry study has
been to discuss the properties of the would-be Goldstone
boson, which, however, here can never actualize itself as a
Goldstone boson because of the low dimensionality. Nev-
ertheless, one can again build up for finite mass a kind of
Adler-Dashen relation at finite T and p, and derive the
behaviors of the "pion decay constant" and "pion mass. "
One cannot, of course, use the pion constant in this case
to retrace the symmetry breaking; however, we find that
traces of the transition still remain visible in the finite-
mass model. In conclusion, we can only insist on the
overall impression of the usefulness of the Gross-Neveu
model, in spite of its low dimensionality, to illustrate pos-

sible behaviors relevant to chiral phases of QCD at finite
T and p. We have carried out here a detailed study of
such behaviors.

This work was partially supported by the Swiss Na-
tional Foundation.

APPENDIX A: EXPANSION
OF THE EFFECTIVE POTENTIAL

FOR SMALL cx

V((u) = —~ (1+bZ)
2A

r) —dk ln([(2n+ 1)err —ig] + u + k )
n

+ Caid

= V(o) + ~~ (A1)

We note that at any finite r (and/or q) this expression
is analytic in the limit u ~0 (this is not true at r

0, as a result of a logarithmic divergence in the
n = 0 term). Thus we can perform a Landau expansion
to reproduce the right structure of the effective potential
near the origin. We write

V((u ) = -'a~ + 'bur + -'c-u + mu ((u = 0), (A2)

where the expansion coefFicients are given by

dy(o)
G=2 d V~ ~ d V~ ~

d((u2)2 ' d((u2)s
m=0 w=o cu =0

(A3)

By carrying out explicitly the renormalization, &om
(3.14), we obtain

+OO

[k2 + 1]3/2

1+ + —1
k 'qe~&+~i/~ + 1. ~& ~l/'" + ].

(A4)

This expression can be integrated, as shown in Appendix
B. We have

a = »~r+R (i@i ( ig l
(T7l ) (2r'll )

(A5)

We show some useful formulas to derive the results of
Ref. [9] and to approximate our results when the mass
parameter a is small. We remember that, while the ef-
fective potential we evaluate is a function which can be
safely approximated for small o., to set o. = 0 is a di8'er-
ent matter. In fact, for the latter case one should take
into account that the kinetic term of the efI'ective action
produces an ill-defined propagator. Thus every result
where o. is "physically" taken as vanishing serves only to
recover some known result or to possibly suggest what
would be expected in a (3+1)-dimensional model.

At finite r and g, the efI'ective potential is given by
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1 1 1
Re

; [n+ -', —iq/2~r]s

(
8m2r2 q

'
2 27rry

(A6)

861)'c= ——
/ f

Re
4 (2mr) [n+ 2

—ivy/2nr]s

4 (2vrr) ( 2 27rrj
(A7)

Using now relations (A5) and (A6) and referring to Fig.
2, we can easily obtain the following results.

The equation for the line APED (see Treml in Ref. [11])
solution of a = 0:

=1 firII ( irI lr = —exp —Re 2g
7r (rm) (2r7r j (A8)

The coordinates of the tricritical point Pq, determined
by the solutions of the equations a = 0, b = 0:

rq ——0.318, gg ——0.608 . (A9)

Following this procedure also for 6 and c would lead to
very complicated expressions. Anyway, by noting that
ultraviolet divergences are present only in the ~2 term,
we can evaluate the coefficients b and c directly &om Eq.
(Al). Carrying out the integration in k, after having
derived once and then deriving again, we find

F(r, s, u) = 0,

BE(r, s, u)
8&

(A1S)

and the tricritical point can be found by imposing m=0.
These equations (evaluated in ~=0) are formally equal

to the equations a = 0, b = 0. In fact, if we note that

leads to the standard mean field critical exponents for
the description of the system in the vicinity of the line
Lir (up to the tricritical point included).

We note that the equations that determine the tricrit-
ical point can be obtained by another method, based on
the analysis of the phase diagram structure, specifically
on the fact that the line PqE is the envelope of the so-
lutions outside the origin of the stationarity equation for
the potential. In other words (see Fig. 2), if we consider
such solutions, it turns out that in the region APqDO
there is one and only one curve for each point (there is
just one minimum ), while in PqDE there are two so-
lutions for each point (a maximum and a minimum).
Therefore the place where such points became coincident
defines a curve, tangent to the former, that is just the
line PqE.

Such a curve can be parametrized by the value u that
makes the potential stationary in the interval [0,1] (by
the way, we note that u is a continuous function of T
and p). In particular, if I" (r, s, u) is the equation for the
stationary points (outside the origin), the envelope curve
is given by

For g = 0 the efFective potential becomes (e—:u/r)

V(~, r, q = 0) = 4~ (lnur —1) ~ mu

BV BV BF B2V
(A14)

—2r dk ln 1+e + +' . A10

Expanding it in e2 (see Ref. [16]),we arrive at

1 1 7 g(a) ,
V((u) —(ln err —p)(u2 ~— Cd + (Md+

2 4&r2 r2

(A11)

where p = 0.577. . . is the Euler constant. In this case
it is sufficient to terminate the expansion at the order
~, because the fact that b is positive assures that the
potential is bounded &om below. For a = 0 the equation
a=0 gives us the critical temperature [5]

it comes out that the equation B&0~ = 0 deter-
mines the stationary points outside the origin, while
~[B2V/B(u2)2] = 0 is just the derivative of the former.
Moreover, the second equation must be valid for every
value of the parameter u in the range [0,1], and then it
reduces to B V/B((u ) = 0.

These two equations tell us that the envelope curve is
the place where the curvature in the minimum outside
the origin changes (the efFective potential becomes like a
parabola, and such a ininimum disappears), and in the
u = 0 limit they reduce to a = 0, b = 0.

T, = e~ 0.567mp .mp

7r
(A12)

APPENDIX B: COEFFICIENT a
OF THE LANDAU EXPANSION

It is evident that the effective potential (Al), since it
admits the expression (A2) with IR finite coefIicients,

In this appendix we show how to carry out the inte-
grations in Eq. (A4) and thus obtain Eq. (A5). The first
equation can be transformed according to the formula

By inserting such results in the expression for c, we can
verify that c(rz, sz) ) 0, assuring in this way the validity of
the previous result.

Because of the symmetry, we are just considering what hap-
pens, for example, for u &0.
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+OO 1
dx[f(x+ A) + f(x —A)]

dx (x'+ &') (e* —1)

(pl ~ r p&
2 q2ir) P q2ir)

(ReP ) 0) (B6)

A 1
dx[f(x —A) + f(A —x)]

p e~+1

dx f(x),
p

&om which we obtain
+oo 2 +oo

~
[i12 + n]3/2 ~y

f
+ 2x+P dx

x —A e +1
The first two integrations give us

(B1)

(B2)

and carrying out the limit, we obtain

2I(A) —4I(2A) = ln —+ Re 2@
~

—
~

—
vP

~

—
~

ir fiA) (iA )
) I~ ).

(B7)
from which is easy to get the wanted result.

APPENDIX C: PION SELF-ENERGY'

From Fig. 14 we have

n(p2) = N(-g)'
@+& —m k —m+-

a=in —~+ dxo) x —A e +1 (B3) =2%
m2 —k(k+ p)

„((p+k)' —m')(k' —m, ') (C1)

The remaining integral can be transformed according to By using the usual Feynman parametrization, we can
write

2x 1P dx
x2 —A2 e +1

1

II(p ) = 2A dn
p

m2 —q2 + p2n(1 —n)
[q +p n(1 —n) —m] (C2)

and

+OO (
x2 —A2 (e* —1

= 2I(A) —4I(2A)

e2~ —1)
(B4)

In the soft pion limit, we can write

rr(p') = n, + p'n, + ".
,

where

1 1
Hp ———2A, Hg ——

q2 —m2 '
(q2 —m2) 2

(C3)

(c4)
+oo 1

I(A) = P dx e* —1 (x + A)(x —A)

1 ' * ( 1= lim — dx
e~o 2 o e —1 ((x+ A)(x —A+ ie)

The inverse of the pion propagator residue on the pole
is just —iH~. This can be evaluated using the Poisson
summation

1 7r—) f (2n+ 1)—+ ip,

+ (x+ A)(x —A —ie) =) (—1)" dqpqo f ( )
inp(qo ip)—

Using now the result [20] We have

q dqp einP (90 —iP )
IIg ——iA — (—1)"

2ir -' ' 2ir (q' + q' + m2)2
~~

x& dq
+ . d dq, e'"~(~ -'&)

(c6)

The integration in dqp can be performed using the Cauchy theorem, and the sum turns out to be just a geometric
series. At the end we arrive at

e'(» u)

iN . d dq 1 f 1 1
+ 2iN +-

4ircr2 do2ir 2(uq (e~~~~+&'l + 1 e~~~~ &l + 1) (C7)
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APPENDIX D: BOSONIC FREE PROPAGATORS

1. Zero temperature

For D=l+1, performing the m -+0 limit with fixed r,
from (D8) one finds that the expression for the free mass-
less propagator in two (infinite) dimensions,

We recall some known results at zero temperature.
In D Euclidean dimensions, the free two-point function

in coordinates space,

1 1 m
Dp(r) = ——ln(r) ——ln

27r 2K 2 2'
is logarithmically divergent for large distances.

(D10)

satisfies the wave equation

(D1) 2. Finite-temperature free propagators
in D = d+ 1 dimensions

( ii —m)Dp(x, m)= — e '' = —b (x),2 2 ~ k —ikx D

(2vr) ~

By working in the imaginary time formalism, the pas-
sage from Minkowski metrics to Euclidean metrics is nat-
ural. In fact, one has

where

0 |9

@=1

(D2)

(D3)
with

Z

Dn(x) =
k

k" = (kp, k) = (2vrinT, k),

(D11)

(D12)
Lorentz invariance requires that Dp(x, m2) depend only
on r = gx„x„; therefore, (D2) becomes

d D —1 d——m Dp(r, m ) = —b (x) . (D4)
t& T

By using the identity

X = Xp) X: = —'L'T) K )

—P ( r ( P, and

(D13)

—a(k +m )
k2+ m2

in Eq. (Dl), one gets

1 KLi/2, (mr)
(2~)D/2 [r(D—2)/2m(2 —D)/2]

thus (P = 1/T),D5
+ +~ gd k

—i2~nT7. +ik.x
D t~, x& =rPi i ~ 2~ d 4~2~2y2 + g2 + m2

(D14)

where use has been made of the representation for the
modified Bessel functions,

K()= —
(

—
) t ' ' t'dt'

2 2 p

One wants to evaluate the x behavior in the massless
limit for D=l+1, D=2+1, and D = 3+ 1, and in partic-
ular the large-distance behavior in the massless limit.

To this end it is suKcient to separate out the n = 0
term in Eq. (D13) after having set m = 0:

~argz~ ( vr/2, Rez ) 0,
which behave [19], for fixed v and z -+ 0, as

z
Kp(z) —ln

2

(D7)

(D8)

gdk ik x
Dp(r, x) = T

(2 )" k2

1 d k;i, cos(ny)+ 2~2T (2z.)" n'+ n' '
n=1

where n = k/(27rT) and y = 27rT&.
The sum of the series is

1 Z
—v

K (z) - —I'(e) (
—
) (Ree ) tt),

2 2

11 1 1
D()(r) = ——, Dp(r) =

47r r' 4m2 r2 (D9)

where p = 0.577. . . is Euler's constant.
These formulas allow us to recover the well-known be-

haviors of the &ee massless propagators in D = 2+ 1 and
D = 3+ 1 at zero temperature:

cos(ny) 7r cosh[n(vr —y)]
- n2 + n2 2n sinh(nor)n=1

1
20!

(D16)

The large-distance behaviors are determined by the IR
leading term of (D14). It is easy to see, by expanding
(D15) for small k, that the contribution of the sum (D15)
is subleading with respect to the first term on the RHS
in (D14). Thus the free massless propagator in D = d+1
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dimensions at finite temperature for large distances be-
haves simply as T x (free massless propagator in d dimen-
sions at zero temperature).

Let us now evaluate the full x: dependence for d=1,2,3.

1
Dp(~, x) = C(T) ——1n[cosh(2vrTx) —cos(2mT~)],

4~

(D20)

In this case

3. D=l+l
where C(T) is an integration constant which does not
depend on x. It is easy to verify that in the T —+ 0 limit
it satisfies (D10) in the coordinate dependence in two
dimensions at zero temperature, whereas at finite T, for
~x~ m oo, the leading behavior is that expected for one
dimension:+~ +~ —i2nnT~+ikzdk e

D (~, x)=T
2~ 4+2+2T2 + ~2 + m2

n= —oo

(D17)

Dp(& x) -—
2

(D21)

Dp(~, x) = — —cos(kx)
1 + dk cosh[k(P/2 —~)]

27r 0

(D18)

As expected, the IR behavior of this integral is the same
as that of the n = 0 term of (D16).

Let us now evaluate the x derivative of (D17):

BDp(7, x) + dk sin(kx) cosh[k(P/2 —~)]
Bx p 2vr sinh(kP/2)

T sinh(2vrxT)
2 cosh(2m. xT) —cos(2xwT)

(D19)

and it is evident that the zero-mass limit is badly diver-
gent. Anyway, this expression has a well-defined behavior
in x as can be easily seen by the fact that its derivative
with respect to x is a convergent integral even for m = 0.

By using the result (D15), the massless propagator can
be put in the form

4. D=2+l

We must evaluate

+~ +~ d2y —i2~nT~+'k. x
Dp(~, x) = T ) (2~)' 47r'n'T'+ k'+ m'

+oo kJ (kx) e i 2rrnT~—
dA:.4~2~2T2 + k2 + m2

(D22)

Separating out the n = 0 term (from here on remember
that x = ~x~), one gets

T
Dp(7, x) = —Kp-(mx)

27r

T+—) cos(2~nT7-)Kp(x/4vr n T + m )
7r

(D23)

Integrating again, one gets The sum of the series for m = 0 is not a closed form:

1 1) cos(ny)Kp(nz) =- p —ln~ —
~

+ —)2 gz2+y2 2 ( z ) 2 gz2+ (2mn —y)2

1 1+—) z&0, ycR
2 Qz2+ (2am+ y)2

(D24)

(p = 0.577. . . is again Euler's constant).
Identifying y = 2vrTv, z = 2vrTx, and taking into ac-

count that, as already seen in (D7), for m ~ 0,

mz
Kp(mz) —ln

2
y (D25)

it follows that for m ~ 0 the propagator is given by the
expression

T
Dp(7-, x) - ——

27r
1+4'

T+4'

T
ln(m) + —ln(T)

27r
1

Qx2 + ~2

) JT2x2 + (n —T7.) 2

) 1

QT'x'+ (n+ T~)'
(D26)
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In the second line, we see the term which survives for
T —+ 0, which, as expected, corresponds to the Brst term
of (D8).

For T g 0 the dominant term for x ~ oo comes from
summation of the series. We can use the summation
formula [22]

where

Oforxmoo,
g(7)z, T) m i i f T 0

4m g~&+~&

and thus, for x + oo,

(D31)

N N) f(n) = f f(x)dx+if(o)+if(%)
A =CL

T
Dp(r, x) - ——ln(z),2' (D32)

which is, as expected, the behavior typical of two dimen-
sions.

(D27) 5. D=3+X

R (N) = ' [f'" '(N) —f'" '(a)]
(2g)'

N B&2~(z —[*])f(2,)( )d
(2q)!

(D28)

This formula holds if f ( s) (x) is absolutely integrable over
(a, N). The first Bernoulli coefficients are

where a, q, N, are arbitrary integers with a ( N and
q) O, and

In a=3+1 the massless propagator is well defined even
at 6nite temperature:

+ +~ a3 r —i2vrnT&+ik x
u, k e

D t~, x&=-
p ~ - f (2w)' w4'n' 'r+ k'

T ~ . k sin(kx)
4~2T2~2 + k2

e ' " dA:.
n= —oo 0

(D33)

B2 1 B4 1

4! 720
(D29) By separating the n = 0 term and using again the sum

of the series in (D15), one easily arrives at the expression
It is easy to see that for x + oo the terms in the 6rst line
of (D26) are dominant and that ln(m) is the only infinite
constant for m —+ 0. The Gnal result, giving the large-x
dependence in the massless limit, can be put in the form

T sinh(2vrTx)
4vrz cosh(2z Tx) —cos(2vrTr)

(D34)

T
Dp (r, z) = ——ln(m) + g(r, z, T)

27r
T——ln[P + r + Qz + (P 4- r) 2]4'
T——»I —&+ v z'+ (& —&)'] (D3o)
4m

T
Dp(r, z)-

4vrx
(D35)

For T ~0 it is easy to recover the four-dimensional result
already given in the second equation of (D8), whereas for
T P 0 and x -+ oo the leading behavior is that of three
dimensions:

[1] D. J. Gross and A. Neveu, Phys. Rev. D 10, 3235 (1974).
[2] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).
[3] S. Coleman, Commun. Math. Phys. 31, 259 (1973).
[4] A. Barducci, R. Casalbuoni, R. Gatto, and G. Pettini,

Phys. Rev. D 49, 426 (1994).
[5] L. Jacobs, Phys. Rev. D 10, 3956 (1974); B. Harrington

and A. Yildiz, ibid. 11, 779 (1975).
[6] R. F. Dashen, S. K. Ma, and R. Rajaraman, Phys. Rev.

D ll, 1499 (1975).
[7] E. Witten, Nucl. Phys. B145, 110 (1978).
[8] Y. Cohen, S. Elitzur, and E. Rabinovici, Nucl. Phys.

B220, 102 (1983).
[9] U. Wolff, Phys. Lett. 157B, 303 (1985).

[10] F. Karsch, J. Kogut, and H. W. Wyld, Nucl. Phys. B280,
289 (1987).

[11] K. G. Klimenko, Z. Phys. C 37, 457 (1988); T. F. Treml,
Phys. Rev. D 39, 679 (1989).

[12] B. Rosenstein, B. J. Warr, and S. H. Park, Phys. Rep.
205, 59 (1991).

[13] V. L. Berezinski, Sov. Phys. JETP 32, 493 (1971);J. M.
Kosterlitz snd D. J. Thouless, J. Phys. C 8, 1181 (1973).

[14] See also, for instance, A. D'Adds, P. Di Vecchia, and M.
Luscher, Nucl. Phys. B152, 125 (1979); A. C. Davis snd
A. M. Matheson, ibid. B258, 373 (1985).

[15] See, for instance, J. Zinn-Justin, Quantum Field The
ory and Critical Phenomena (Clarendon Press, Oxford,
1989); G. Parisi, Statistical Field Theory (Addison-
Wesley, Reading, MA, 1988).

[16] R. Jackiw, Phys. Rev. D 9, 1686 (1974); L. Dolan and R.
Jsckiw, ibid. 9, 3320 (1974).

[17] See, for instance, I. D. Lawrie and S. Sarbach, in Phase
Transitions and Critical Phenomena, edited by C. Domb
and J. L. Lebowitz (Acadexnic, New Y'ork, 1984), Vol. 9,
pp. 1, 155.

[18] H. Leutwyler, Phys. Lett. B 284, 106 (1992); A. Bar-



3060 BARDUCCI, CASALBUONI, MODUGNO, PETTINI, AND GATTO 51

ducci, R. Casalbuoni, G. Pettini, and R. Gatto, ibid. 301,
95 (1993).

[19] Handbook of Mathematical Functions, edited by M.
Abramowitz and I. A. Stegun (Dover, New York, 1972).

[20] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals,

Series and Products (Academic, New York, 1985).
[21] C. Itzykson and J. B. Zuber, Quantum Field Theory

(McGraw-Hill, New York, 1985).
[22] F. W. Giver, Asymptotics and Special Functions (Aca-

demic, New York, 1974).


