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Effective light-front quantization of scalar field theories
and two-dimensional electrodynamics
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We introduce a new method to include condensates in the light-cone Hamiltonian. By using
a Gaussian approximation to the ordinary vacuum in a theory close to the light front, we derive
an effective Hamiltonian on the light cone, which has new terms re8ecting the nontriviality of the
vacuum. We demonstrate our method for scalar P theory and the massive Schwinger model.
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I. INTRODUCTION

2
1,2

The coordinate x+ plays the role of time. The subgroup
of the Poincare group consisting of the generators Mi~,
M+, M ~, and P+, P~ is dynamically independent.
This maximal amount of kinematical symmetry is re-
lated to the trivial structure of the vacuum in this for-
mulation [2]. Indeed the vacuum is identified with the
lowest eigenstate of the momentum P+ ) 0. The Fock
space constructed over this vacuum [2] can be used to
solve the eigenvalue problem for the mass (squared) op-
erator: m = 2P+P —P&. For states with fixed P+
and P~ ——0, one has to solve the Schrodinger equation

m2
P [m, P+, Pg = 0) = (m, P+) Pg = 0). (2)

This approach appears promising in nonperturbative
studies of gauge theories, in particular QCD [3—6].

The quantization surface x+ = 0, however, is a char-
acteristic surface of the field equations. This peculiarity
is re8ected in infrared singularities, P+ ~ 0, in such
formulations. Consequently, one is forced to use some
regularization. Usually the most simple regularization is
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The idea of quantizing field theories on the light front
(i.e., on the hyperplane tangent to the light cone) was
put forward by Dirac [1]. He pointed out that in such a
formulation, the part of the Lorentz symmetry described
kinematically is maximal. In other words, the number of
generators of the Poincare group, which depends on the
dynamics, is minimal. Instead of Lorentz coordinates
x~ (p = 0, 1, 2, 3) Dirac used the lightlike coordinates

chosen: P+ ) c ) 0, where e is a cutoE parameter. The
simplicity of the vacuum and of the physical Fock space
is related to this choice of regularization.

The question about the equivalence of such a light-
front formulation to the usual one arises. To answer
this question, results for various two-dimensional models
have been considered: sine-Gordon [7,8], p model [9,10],
QED [11,12], QCD [13], etc. The results for the mass
spectra agree rather well with the results of the usual
approaches, except for some "vacuum eR'ects. " These
are usually connected with condensates which are zero
in the naive light-front formalism. In four-dimensional
space-time the spectrum of positronium in QED was con-
sidered with similar results [14].

To gain understanding about the equivalence of light-
front formulation of the ordinary one, it is useful to con-
sider the theory again on a spacelike plane, close to the
light front [15,16], and investigate the limiting transition
to the latter. This can be done by introducing the coor-
dinates [15]

12—
g =x + —'g x

2

3
y =x

(3)

with the metric g~ (rl) (gp„——0, gp3 —g3p —1 g33
—g2). The quantization plane is defined by y = 0. The
parameter g is small and in the limit g ~ 0 the exact
light front is approached.

In the studies [15,16] of two-dimensional gauge theories
formulated on a finite y interval with periodic bound-
ary conditions, it was explicitly shown that one obtains
equivalent results only, when the continuum limit L ~ oo
is made first and then followed by the transition to the
exact light cone rl ~ 0 (or Lrl +oo, rl ~ 0). Tak-ing the
limit rl ~ 0 at fixed L (Irl ~ 0) yields the usual light-
front formulation (with ~x

~

( L) with zero condensates.
Attempts have been made to take into account vacuum

effects by considering zero (P+ = 0) Fourier modes of
the fields [9,10,15,17]. However, in the light-front formu-
lation these zero modes have peculiar dynamics [4,10,17].
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For example, they depend on nonzero modes through
some specific canonical constraints related to the choice
of the boundary conditions for ~z

~

= L [4,10]. This
means that the physics at low momenta (zero modes)
can depend on high-momentum modes in a complicated
fashion.

In this paper another, more eKcient, approach to light-
front quantization is proposed. It is based on approxima-
tions for the vacuum in the ordinary formulation [18]and
on the appropriate choice of canonical variables reHecting
the nontriviality of the vacuum in the given approxima-
tion. In terms of these new variables we then take the
naive light-front limit (g -+ 0 at fixed s); the result-
ing theory will include information on the approximate,
nontrivial, vacuum. This approach is demonstrated by
two simple examples: scalar Geld theory in two dimen-
sions (next section) and the massive Schwinger model
(Sec. III).

~(~) = [b(ki)+b'( k i)]e *"'"
4vr E()(ki)

+OO

~ki v'Eo(ki) [b(ki) —b'( —ki)]e *"'"
g4~

where Eo(ki) = ski + q2mo. For the operators b and bt

we have standard commutation relations

[b(ki) b'(ki)] = b(ki —ki)

[b(k, ), b(k')] = 0 = [b"(ki), bt(k')].

In terms of 6 and bt, Hp is diagonal by construction:

II. SCALAR FIELD THEORY
IN 1+1 DIMENSIONS

For scalar field theory, we define the Lagrangian den-
sity as

—OO

Since g appears also in the energy Ep, only terms in Hp
with ki & 0 are singular in the limit g ~ 0. In order
to make the energy Gnite in this limit we consider the
restricted Fock space T~,~.

&(p) = g" ~/ p(u—)ep(V) ——inoV' (9) —&U(p) (4) +(~)
'e

bt(k;) ~0(,), k, & s & 0

where U(p) is an interaction term. The theory is for-
mulated using the y" coordinates, Eq. (3); here, in the
two-dimensional case, the space coordinate is denoted by
y . Consequently, we can write

~(V) = ~o~(V)~i% (u) + 2~'[~oP(~)]'

where r is the cutofF parameter. If we now take g ~ 0
at Gxed e ) 0, we obtain a Gnite result for the energy,
because [Ep(ki) —ki]/p ~ mo/2ki, for ki & s & 0
and g —+ 0. The limiting form of the Hamiltonian on
the subspace T~, ~

reproduces the light-cone Hamiltonian
P

——mop (y) —AU(p).2 2 (5)
P = lim H„(acting on Xi,l)

q —+p

After introducing the canonical variable II(y), the conju-
gate momentum of p(y),

OL
ll(~) =

& Z
= ~'~.V(~)+ ~i~(~)

(9 (9oy y

d z —m*„y.*(x) + ) U (ty. ) ),2

where rp, (x) is the parametrization of the field in light-
front coordinates:

the Hamiltonian reads

II —(9ip 1dy' + —m', ty'+ AU(y))292 2

1
p. (2:,x+ = 0) =

g4~

OO d +
[b(p')e '" *

gp+

=:Hp+ AU.

The usual (equal y ) commutation relations are imposed:

[~(~'), ll(w')] = ~b(~' —~').

We make a Fourier decomposition of the canonical
Gelds y and II in terms of the "bare" operators 6 and
b+ (b~0s) = 0, with ~0s) as the &ee-field vacuum):

Note that we would get the same result in the theory for-
mulated on a finite interval, —L & y & L, with periodic
boundary conditions in y . In this case the role of the
cutoK parameter e would be taken over by the parame-
ter a/L. Furthermore, the result (9) can be obtained via
time-independent perturbation theory in g [15,16].

At this point we want to introduce a better way to
formulate the light-cone limit g —+ 0. Before the limit-
ing transition, i.e., still for finite g, we approximate the
vacuum by a Gaussian trial state [18,19] using the limit
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e —+ 0. This trial state is parametrized by a Bogoliubow-
type transformation:

~0 ) = exp —— dkf(k)[bt(k)bt( —k) —b(k)b( —k)]
1

2

+f (b'(o) —b(o)) IO )

where f(k) and fp are real, and f(k) = f( k) —Th.e trial
vacuum can be easily defined with new operators a(kq),
at(kz) such that a(kq)~0 ) = 0. As follows from Eq. (11),
these new operators a(kq) and at(kq) are linear combi-
nations of the old operators bt(kq) and b(kq). Therefore
one can rewrite the Fourier decompositions of p and II
in terms of a, at:

E(kl) Ep(kl)exp[2f (k&)]

fp 1 —exp[ —f (0)]
g~gmp f (0)

In the following we will consider E(kq) and happ as param-
eters of the transformation (or, equivalently, of the trial
state).

From now on we specify the interaction as U(p)
y4. We proceed by rewriting the Hamiltonian H in the
normal ordered form with respect to the a, at operators;
:: denotes this normal ordering. The result is

(II —Bgy)' 1H= dy
' ' +--.'+12Am% y'+Ay'

2'g 2

1 1 1 2+ IIII +
&

BglpB] lp + mp (pip +34( pp )2q2 ~ 2g ~ ~ 2

p(y) = yp + [a(kg) + a (—kg)]e ' '",1 dkg —i ki y

4~ E(kg) where
(14)

+(y) dk& V E(k&)[a(kl) a ( kl)]e
4m

Identifying these expressions with the corresponding ones
in terms of the b and bt operators [Eq. (7)] yields the
linear transformations between the sets (a, at) and (b, bt)
in terms of E(kq), Ep(kq), and pp. Then the condition
a(kq) ]0 ) = 0 determines the relation between [E(kq), pp]
and [f(kq), fp] to be

dkg dkg

47rE(kj )
' ~ 47r

IIII:= E(kg),

dkq(kq)z

4 E(k)
These integrals are understood to be regularized by a cut-
off parameter A, ~kq~ & A. In order to fix the parameters
E(kq) and yp we minimize the expectation value of the
Hamiltonian density 'R in the trial vacuum ~0 ). This
expectation value is given by

(0 ~'R~O ) = (IIII +Bqpg~p) +. —(m + 12A(pp) (p(p +3A( y(p ) + m(p + Ap,'—

dkg E(kI) + ~ + 3A
~ + —mppp + A(pp.

8~gz ) &
"')

At the extremum, b(0 ~'R~O )/hE(k1)
h(0~]'R]0 )/bpp ——0, we obtain E (kq) in terms of the
new mass m:

E (kq) = k~ + g mp + 12Ayp + — dq&E (qx)
iq i(A

we can renormalize the theory by choosing

mp 3 gA= —ln +(,
vr 4A2

with a parameter (, —oo & ( & oo. Then we can convert
Eq. (15) into a nonlinear equation for m:

and

= k~+g m,2 2 2

y+ —lny = (+ 12pp,
3 2

yp(m —8Ayp) = 0.

Using the equality (15) we get for a large cutoff A:

with

y=m /A.

4A2
dq&E '(qg) = ln

(A/m) -+oo

This equation should be solved together with Eq. (16),
which obviously has the solutions

Since in this limit

4A' A 4A'= ln 2 + ln
2

= ln
@2' m2 @2'

(1) pp ——0,

(2) yp
——m /8A = —y.

Therefore, there are two diferent cases:

(18)

m mp + 12A(pp + ln2 2 3A 4A
g2A

3
(1) y+ —lny = (
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Vacuum solutions y1, y2 steps following Eq. (8), we obtain the effective light-&ont
Hamiltonian

2
+(&)P.'(*) + A V'2+(&) 0(&- —&)P.'(x)

+A(p.'(x)

l ~~aashe~ I

-4 -2 0

I

8 10 12 14

FIG. 1. Solutions yi(() and y2(() of Eq. (19).

and

1 3
(2) ——y+ —lny = ( .

2 7r
(19)

The solutions yi(() (solid curve), y2(() (dashed curve)
are shown in Fig. 1. Of course, one needs to choose the
solution which corresponds to a minimum of the (trial)
vacuum energy. The difference of this energy in cases (1)
and (2) can be calculated straightforwardly; the result is

A (,
(0-i&10-)( )

—(0-1&10-)( )
=

8 (y y)+—
48

y'+2y'

At the critical point (, = —0.503. . ., the sign of the en-
ergy difference changes and, consequently, the favored so-
lution switches from y2 to yi (for increasing (). In other
words, we obtain the well-known phase transition in this
approximation [18,19]. Moreover, the exact location of
the phase transition, i.e., the critical point, agrees with
earlier results [18].

For the minimal energy solution of Eqs. (17) and (18)
we introduce the notation

This expression differs from the usual one by the pres-
ence of the function E describing vacuum effects. In the
quadratic term, we see that the effective theory has a
renormalized mass term. The cubic term was even com-
pletely absent in the usual approach. For ( & („ i.e. ,
in the phase without zero mode (po ——0), the cubic
term vanishes identically and the mass renormalization
is all that remains. For ( ( („ the re8ection symme-
try p ~ —p is spontaneously broken and a zero mode
rpo g 0 is present. This zero mode produces in the ef-
fective light-cone Hamiltonian an additional interaction
term, which explicitly breaks the reflection symmetry.
In other words, this formulation converts a spontaneous
symmetry breaking into an explicit symmetry breaking in
the effective light-cone Hamiltonian. In this way, a rather
long-standing defect of light-cone quantization, namely
the triviality of the vacuum, can be handled in an ap-
proximative way. We emphasize that the proposed ap-
proach is very reasonable. The zero modes carry infinite
light-cone energy. The strategy to remove high-energy
degrees of freedom by effective interactions is the usual
strategy of renormalization in equal time field theory.

The efFective light-cone Hamiltonian, Eq. (21), can be
used for explicit calculation using standard light-cone
techniques. We note that this approach can easily be
generalized to other scalar field theories in two or more
dimensions.

III. MASSIVE SCHWINGER MODEL

The massive Schwinger has also been formulated in the
y" coordinates, i.e. , for q g 0 [15,16]. The Lagrangian
density reads

+(():= &
~(&. &) = y"'y'+. -(y—)+-»(y)

(g x)
+Q(x(y)) ' p"Di —M Q(x(y))

where (m /A)2 denotes the upper branch of the curve
(m /A)2. Now we are in the position to present a renor-
malized Hamiltonian, which is obtained by subtracting
the trial-vacuum energy:

where the covariant derivative,

D„=0„—ieA„(y),

(22)

H, „=: dy —AE
292

+A/2' (()0((, —()g + A&p (20)

and the field strength tensor, E~„=0„A —0 A„, are ex-
pressed in terms of the vector potential A„. The fermion
field contains two spinor components,

with p:= y —po.
We can use H, „as the starting Hamiltonian for the

limiting transition to the light cone. Repeating the
and M is the fermion mass. With definition (3) of the
coordinates and the p matrices,
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fo -ib, &0 ')Y=
I p I

'Y=
I p

we obtain, for the Lagrangian density,

The regularized charge densities of the right and left
movers are obtained via point splitting the two densities
and connecting the two centers with a string:

l'(y) = +oi(y) +iv 2@+Do@++ ~2iq g Dog
2 01 + 2

+i@2vgt Dig —iM(gt Q+ —g+tQ ). (23)

ZE' 1 ZE'I+(y)=»mx~ y+ —x+ y +—')
Note that only the mass term couples the two fermion
components @ and g+. Let us consider the theory on
a finite y interval: —I & y & L and impose periodic
boundary conditions on the fields A„and g. We fix the
gauge by imposing

81A1 ——0, (24)

i.e. , the "Coulomb gauge. "
It has been shown earlier [15,16] that the zero mode of

A1 cannot be gauged away. In the Coulomb gauge the
only constraint is Gauss's law

x exp(+seAi)—

(:= »m
I I~(y E)~-+o q 2~a) (3o)

I, (y) = Q„+) Q]nII„, (y )exp( —ip„y')
J

These chiral charge densities have Fourier expansions
(r = +, I)„=em/I ):

BiEoi + e~2$+g+ + —v 2eri'@ g = 0.
2

It can be solved with respect to the nonzero modes of
+01-

(+oi) =
cubi (e~&')/)+4+ + 2~&e'9 ')/' ~ )— +L

Q, = I-(y')dy',
—L

(32)

The zero-mode part of the Fourier expansion is defined
by the total chiral charges

where the angular brackets () define the nonzero modes

I
(f) = f(y') —

2&
f(y')dy'

which can be calculated via the c prescription by in-
serting the s-regularized charge density I„(y,s) into
Eq. (32):

Q„= lim [Q.(s) —L/mrs]. (33)

8~ (x) = ) exp (2iwn-
2i7rn L

n+0
(26)

and t91 is the periodic Green's function of the di8'erential
operator o)i (see, e.g. , [20]): The coeKcients I„„obey commutation relations, which

are a consequence of the commutation relations of the
Fourier coefBcients y „of the fermion fields and of the
regularization, Eq. (30):

Substituting Eq. (25) into the Lagrangian and performing
the Legendre transformation yields the Hamiltonian in
terms of the canonical variables X+
q ' rig , lli = J ~ dy—'I"oi(y'), and &i:

dy' &', + —e'[~i '(x+x+ + x' x-)]'8L2 2

x.(y') = ). x-,.(y') exp( —iu-y'),

(x (yo), x„(yo)) = 4

(34)

(35)

—2~lp x-»x-+ ~—(x x+ —x+x-))
.M

(27)

Moreover, integration of Gauss's law gives a residual con-
straint, which is to be imposed on the physical states:

f
L

dy'(x+x+ + x' x—) Iphys} = o.
—L

[I I, ,]=r 8„,b, ngp. (36)

x„„Il)= 0(rl„—rn)Il),

with

As usual [21,22], we define subspaces Il) of the total
Hilbert space which correspond to sectors [l = (l+, l )]
with given edges of occupied energy levels for the right
and left movers as follows:

Notice that our canonical variables satisfy the commuta-
tion relations

y
1 1 g 1 1

~')=(o' I&n' (37)

[&i(y') lli(y')] = '. (29)
Consequently, the operators I +,I,n & 0, annihilate
the states Il):
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I„,+~l) = It ~l) = 0. (38)
The charge eigenvalues in sectors ~l) depend on the zero-
mode gauge field [21,22]

q. ll) =
] «. +r '+1/2

[ ll) [q. IIi] =
[(u„q„]= ih, . (40)

Then we can represent the fermion fields with the help
of the bosonic operators I„,w„Ai [22—24]:

We introduce [22] the variables w„canonically conjugated
to the Q„such that

x.(y') = 1 . iT7r rivery

+2L
exp( —iw, )exp (Q+ + Q —1) — QL

(x exp —) ~nI+, e'""""
I exp + ) ~nI „e.). '

) ( .)o
reLAg

2)

(41)

Ilp = ~sr(I+ —I ),
1 (II,' —~ '[e(I++I-)]mt2L )'

m =e /vr. (42)

With the help of the commutation relations (36) one can
verify that IIy and P are canonically conjugate variables.
The mass term of the bosonic Hamiltonian is easily cal-
culable using the fact that the zero mode is subtracted
in (e(I++ I )):

These operators satisfy the commutation relations,
Eq. (29), and reproduce the regularized charge densities,
Eq. (30). The necessary explanations can be found in
the Appendix. The operators I„ link the fermionic to the
bosonic description: In the Hamiltonian of Eq. (27) we
recognize four terms. The first three terms can be rewrit-
ten as a free-boson Hamiltonian in terms of bosonic vari-
ables (P, II~) constructed from the charge densities I„: dy'[x' (y') x+ (y') —x+(y') x-(y')]

M
: sin(su+ —(u + /4vr(g)): .

gL
(47)

In a similar way to the treatment of the scalar field
theory in 1+1 dimensions we approximate the vacuum
by a trial state ~0 ) which is defined as

a„~o.) =0, (48)

where a and at are the normal modes of the boson vari-
ables rt(y ), IIp(y ):

I

The mass term remains as a last term in the fermionic
Hamiltonian of Eq. (27). It is given by direct insertion
of the boson representation of the fermion fields Eq. (41)
into Eq. (27). After simplifying this expression with the
help of normal ordering with respect to It „and I (cf.
the Appendix), we obtain

1
dy' —m'P' =

2
dy IIi1 2

8L2

2

+ [0, '(I++ I —)]' .
2

11~(y') =

n= —oo
OO

~,L ). E„ ~ 1"
(a —at )e

2

The momentum term can be expressed with the help of
Eq. (41) in terms of the chiral charges. The space integral
of the square of the zero-mode free chiral charge density
(I,) is related to the fermionic momentum

+L
dy'(I. )' = dy'x.'(y') (iDi)x.(y') (44)

—L

q ~phys) = 0, Q = Q+ + Q

we obtain, with Eqs. (42) and (44),

(45)

1 (11y cubi)
y 22rl

2 +L
dy'x' (y')( —i~i)x-(»). (46)

This relation is derived in the Appendix. On the physical
subspace defined by

The weights E are variational parameters, which then
also enter the Fourier coefficients of the chiral charges [cf.
Eq. (42)]:

In, r = [(E„+rp„)a„—(E„—rp„)at „].4E„fp„/

Inserting these expressions into Eq. (47) and normal or-
dering with respect to the trial vacuum Eq. (48) we ob-
tain on the physical subspace, Eq. (45), the effective
Hamiltonian

(IIy —8 P) 1 M
2@~ 2 re

xexp —) ——:cos(~ + v 4m (P)):
(p E )

(51)
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(0-I&(V)I0-) =
4LrI2 (

" E„ j

with ~ = ~+ —ur —vr/2. Note that the normal ordering
symbol:: means here to order the operators a„, at.

In order to fix the variational parameters we look for
a minimum of the vacuum energy density using the trial
vacuum state ~0 ). The calculation proceeds in an analo-
gous way to the calculation of the p scalar theory. Note
that the minimum corresponds to u = 0. Using condition
(49) we obtain the following expression for the vacuum
energy density of the Hamiltonian, Eq. (52), at u = 0:

. (1 li 1—) —— = —a ((3) + O(a ),; I p~ E~j

where ( is the Riemann function; ((3)
= 1.201056903. . . . Actually, in this limiting case p di-
verges as I/~rI.

The next step is to take this Hamiltonian, Eq. (52) with
E and p, fixed by Eqs. (54) and (55), as the starting one
for the transition to the light-cone formulation. Repeat-
ing this procedure as outlined in Sec. II for the scalar
field theory, we obtain the following effective light-cone
Hamiltonian for the massive Schwinger model:

exp —)rIL L (p„ E„) (52)
e~

2 M~P =: dz —pL + (M~I 2X 2'

At the minimum of this expression we have (n ) 0)

4~MgE„=p„+r» m + exp —)L L ~p„Ej

+ M'+ e~/vr)[l —cosg4mpl]):,

where pL, (z) is the analogue of light-cone field, defined
by the Fourier decomposition

with

=s +el (53)
1

yL, (x) = ) (a„e *""* + ate'""* ).„.;V'4Lp. "

4~M
p, = m + exp —) ; (pn &nj

From this equation p is to be determined. In order to
do that we rewrite the infinite sum in the exponent [25]
as

L):L„, (»

1 1= —2 ) Ko(2vrak) + p + In —a +
) 2 2G

where we introduced a = Lrj»1, /vr; Ko is the modified
Bessel function and p = 0.5772. . . (Euler's constant). In
the limit gmL &) 1, a )& 1, the sum gives p + ln2a and
one readily obtains

p, = m + (-ae~) = m + 2e~Mp,
4' M

gL
(54)

which gives

p = e~(M + QM2 + e —z&mz)

e2

M~ + M2+— M~ = e~M. (55)

This value of p corresponds to the effective boson mass
parameter in the Hamiltonian (52). Some remarks are in
order. Taking L ~ oo corresponds to e ~ 0, (~ki~ & e') in
the scalar field theory [Eqs. (15) and (16)]. For obtaining
the efFects of the nontrivial vacuum one needs to take
these limits in the relevant equations [cf. Eqs. (15)—(17)].
Indeed, immediately approaching the light front, g ~ 0
at finite L would not reproduce the boson mass, Eq. (55).
This can easily be seen from Eq. (54) in combination with
the small-a limit of the infinite sum:

Note that the operators a, at, n & 0 define the light-
cone Fock basis. The field yl, (x) can be expressed in
terms of light-front fermionic variables:

v i(~) = —v~~ '(x+x+).

This means that expression (56) can be written on the
light cone also in the fermionic basis.

It should be emphasized that the result, Eq. (56), in-
deed yields a correction to the naive light-cone approach
[26]. In the future we hope to address the interesting
question how this affects the mass spectrum, in particu-
lar for small fermion mass.

IV. DISCUSSION

The most outstanding advantage of light-cone quan-
tization is the simplicity of the vacuum. However, this
advantage also poses problems since nontrivial vacuum
effects ought to be present. In this work this question
is addressed by approximating the theory close to the
light cone and, subsequently, deriving an effective light-
cone Hamiltonian. As a result, the canonical light-cone
Hamiltonian is seen to be modified.

Much research has been done in the last years in order
to account for condensates and spontaneous symmetry
breaking on the light cone and similar results as ours
have been obtained before. One can distinguish differ-
ent ways of dealing with this problem. The constrained
zero-mode approach [10] explicitly considers zero modes
of field operators. They are not dynamical degrees of free-
dom but appear in constraint equations which are derived
in the Dirac-Bergman formalism (or via the equations of
motion). This way one gets a nontrivial dependence on
the nonzero-mode degrees of freedom, which indeed can
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yield a nontrivial vacuum structure. For scalar field the-
ories spontaneous symmetry breaking was demonstrated.
Moreover, the phase transition was shown to be of second
order.

Alternatively, it has been argued in [8] that the zero-
mode problem can be avoided by a modification of the
canonical light-cone quantization. In this diagrammatic
approach generalized tadpole diagrams are taken into ac-
count which are usually set to zero. Also in this case the
usual light-cone Hamiltonian is changed.

Our work is based on another approach where one
quantizes on a spacelike plane close to the light cone. The
transition to the exact light cone is governed by a param-
eter. This procedure has been studied in great detail by
several groups [15,16]. Its advantages are the following
ones. Infrared singularities are controlled; especially in a
combination with a finite volume approach. Massless left
moving particles are still present. Constraints are often
avoided. Finally, it has been shown that the nontrivial
vacuum eKects can persist in approaching the light cone.

In our paper, these formal advantages are combined
with the simplicity of the canonical light-cone approach.
As a first step we make a Gaussian approximation to the
vacuum in the frame close to the light cone. Indeed con-
densates and spontaneous symmetry breaking show up.
(Because of the Gaussian approximation the phase tran-
sition, however, is of first order. ) Second, we make the
light-cone transition in order to exploit the usual light-
cone advantages and techniques. As a remnant of the
nontrivial vacuum new terms in the eA'ective Hamilto-
nian show up. Scalar field theory in (1+1) dimensions
and the massive Schwinger model have been successfully
worked out this way.

The generalization of this approach to gauge theories
in higher dimensions may be attempted with the help
of Hamiltonians where the dependent degrees of freedom
have been eliminated after gauge fixing [20,27].

APPENDIX

In this appendix we give clarifications of Eqs. (41),
(44), and (47), based on the more general considera-
tions of [22,23]. Let us demonstrate that the expres-
sion in Eq. (41) satisfies canonical anticommutation rela-
tions. First of all, notice that the representation (41)
acts in the Hilbert space spanned by vectors of the
form Q, .(It +)(I, f~l), n; ) 0, nz ) 0, where the

I~+, It and It +, I act like annihilation and cre-
ation operators with respect to "vacuum" states ~l) ac-
cording to Eqs. (37), (38) at n ) 0. Using for these
operators the normal ordering symbol:: we can rewrite
Eq. (41) in more compact form:

1'1
y„(y ) = exp( —i~„)exp rim

i

—Q
2L (2

x:exp( —r2vriB, '(I (y'))):, (A1)

. 1 &z'l"
x exp b„„~ -n z) (A2)

and

~.'(y')X. (y') =F-( ')( ') "'""'-
( )

~"

where we denote by Q„and Q the integer valued parts
of the charges Q and Q (Q = Q —reLAi/vr —2).

Let us consider the products y, (y )y, (y ) and
yt, (yi )y„(yi) as a function of z = exp(ri7ry L ), z' =

I

exp(r'ivory L ), taking the operator products in normal
ordered form. We get

x.)w')x.' )u' ) = ~- (* *')~xv(' —(~ —~')
)

x (z') q- +'(.)-~--'-
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F,„(z,z') = —i(Cu„—~„i) i
& (7 —~ )Q

2L
x: exP(2~i[r'c) (I„(yi&))
—"~ '(I.(y'))]):.

Notice that F, (z, z) = 1/2I.
We see that for r g r' exPressions (A2) and (A3) differ

only by a sign (due to exP[i(vr/2)(r —r')] = —1) Hence

(&~(y )~&—&(y )) = 0 For r = r', we use the analytical
regularization of the tyPe used in [22]. This yields

] t y . 1 dz" . fz"l)" (~ l
x.(y')x.'(y') = l

27IL( ig) i z(z)(z)
—1

fl

x 1 ——
z

F „(z,z"), (A4)
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t d n ( v l" ( n)
x.'(y')x. (y') = »m . „)..~o 2vri I.„I,+, z" ~z') ~

z )
z

xj 1 ——
Zll F„„(z,z"). (AS)

Adding (A4) and (AS), we get

( dz"
jx„(y'), xt(y' )) = lim

o2vcx (fj, ~
&+ fj,«~ —

& j z z

ll ll

E' ) &')

2L
exp (y' —y' ) ~

= b(y' —y' ). (A6)

Analogously, one obtains (X„(y ), X„(y )) = 0.
To explain Eq. (44) let us consider the z-regularized charge densities Eq. (30), using Eq. (A3) with the substitutions:

y~ -+ y~ + ris/2, y ~ y~ —riE/2, and expanding in s up to O(s ). We get

1 t 1 1I„(y', E) = xt y' — x„y' + exp(rseA, )') ')
+ I, (y ) +. 7rs[I, (y )] — + O(s ), (A7)

in agreement with Eq. (30). Differentiating Eq. (A7) with respect to e, we obtain

riel . (, rig ( ( Ldy'xt y' — iD;x„y' + I

= —&
2 + —

I
+ &~

2 ) (ale 12)
dy'[I, (y')]'+ O(~), (AS)

that coincides with Eq. (44) after subtracting the constant and taking the»mit s' ~ 0.
Equation (47) is a direct consequence of Eq. (A3) and Eq. (41) if it is considered on the physical subspace (Q = 0).

Indeed, from Eq. (A3) we get

iM g t(x+x- —x x+) =
rl

iM ~.vry
( 1)g i((u+ —~ ) q 2wi[8~ (I~+I )]

2LrI ( L )
+ — —~

~

' 2 t ~1++1~y'' I. (A9)

which indeed coincides with Eq. (47) at Q = 0.
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