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We prove that a large class of leading-order string solutions which generalize both the plane-wave
and fundamental string backgrounds are, in fact, exact solutions to all orders in o.'. These include,
in particular, the traveling waves along the fundamental string. The key features of these solutions
are a null symmetry and a chiral coupling of the string to the background. Using dimensional
reduction, one finds that the extremal electric dilatonic black holes and their recently discovered
generalizations with a NUT charge and rotation are also exact solutions. We show that our bosonic
solutions are also exact solutions of the heterotic string theory with no extra gauge Geld background.

PACS number(s): 11.25.Sq, 04.20.3b

I. INTRODUCTION

To address strong field efFects in string theory, it is
necessary to obtain exact classical solutions and study
their properties. As in other field theories, symmetries
have been used to help find these solutions. It is easy to
show that every Killing vector on spacetime gives rise to
a conserved current on the string world sheet. If the anti-
symmetric tensor field is related to the spacetime metric
in a certain way, these currents are chiral. The existence
of such chiral currents turns out to simplify the search
for exact solutions. One example is the Wess-Zumino-
Witten (WZW) model which describes string propaga-
tion on a group manifold. This background has a large
symmetry group, and all the associated currents are chi-
ral. (Since the gauged WZW models can be represented
in terms of the diAerence between two WZ%' models for a
group and a subgroup, a similar statement applies there. )
Another example is provided by the F models discussed
in [1,2] which have two null Killing vectors and two asso-
ciated chiral currents. In addition to these two examples,
the only other known exact solutions to (bosonic) string
theory are the plane waves and their generalizations [3,4],
which are characterized by the existence of a covariantly
constant null Killing vector.

We will show that the F models and generalized plane
waves are both special cases of a large class of exact solu-
tions which have a null Killing vector and an associated
conserved chiral current. Backgrounds of this type are
described by cr models which we will refer to as "chiral
null models. " We will see that they include a number of
interesting examples.
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The presence of a null chiral current is associated with
an infinite-dimensional aKne symmetry of the o-model
action. This implies special properties of the spacetime
fields. The generalized connection with torsion equal to
the antisymmetric field strength plays an important role
since it is the one that appears in the classical string
equations of motion. We will see that this connection has
reduced holonomy. A certain balance between the metric
and the antisymmetric tensor resulting in chirality of the
action is the crucial property of our models which is in
the core of their exact conformal invariance.

There are several levels of describing solutions to string
theory. The string equation is usually expressed in terms
of a power series in a.'. If one keeps only the leading-
order terms, one obtains an equation analogous to Ein-
stein's equation and a large number of solutions have
been found. The form of the higher order terms is some-
what ambiguous due to the freedom of choosing difFerent
renormalization schemes (or field redefinitions). For the
plane-wave-type solutions and the F models, it has been
shown that there exists a scheme in which the leading-
order solution does not receive o, ' corrections, and thus
corresponds to an exact solution as well. We will see that
the same is true for the more general chiral null models.

To explore the properties of a given solution one would
like to know not only that a given background is an exact
solution to the field equations, but also what the string
states and interactions are in this background. In other
words, one would like to know the corresponding confor-
mal field theory explicitly. This is known only for gauged
WZW models. But some chiral null models can be real-
ized as gauged WZW models [5,1] so in these cases one
has more information about the solution.

Many of the chiral null model backgrounds have un-
broken spacetime supersymmetry and some models ad-
mit extended world-sheet supersymmetry. For example,
the F models in even dimensions always have at least
(2,0) world-sheet supersymmetry. However, our argu-
ment that they are exact string solutions is not based
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on this fact. We will show that these backgrounds are
solutions in the bosonic as well as the superstring and
heterotic string theories. What types of solutions belong
to this class? To begin, all of the plane-wave-type so-
lutions are included, as well as all of the F models [1]
which contain the fundamental string solution [6] as a
special case. In addition, several generalizations of these
solutions are in this class, including the traveling waves
along the fundamental string [7]. Although the bosonic
string does not have fundamental gauge fields, effective
gauge fields can arise from dimensional reduction. In this
way, we will show that the charged fundamental string
solutions [8,9] are exact.

Perhaps of most importance is the fact that four-
dimensional extre mal electrically charged black holes
[10—12] can be obtained from the dimensional reduction
of a chiral null model, and hence are exact. Similarly, we
will see that the generalizations of the extremal black
holes which include Newman-Unti- Tamburino (NUT)
charge and rotation [13—15] are also exact. Finally, the
chiral null models also describe some backgrounds with
magnetic (and no electric) fields, as well as other solu-
tions which appear to be new.

If one considers only the leading-order string equations,
many of these solutions arise as the extremal limit of a
family of solutions with a regular event horizon. The
nonextremal solutions are not of the chiral null form and
are likely to receive o.' corrections in all renormalization
schemes. Finding the exact analogues of these solutions
(which include the Schwarzschild metric as a special case)
remains an outstanding open problem. The fact that
we only obtain a particular charge to mass ratio from a
chiral null model can be understood roughly as follows.
To have chiral currents, one needs a balance between the
spacetime metric and antisymmetry tensor field, which
upon dimensional reduction results in a relation between
the charge and the mass.

This paper is organized as follows. In the next section
we introduce the chiral null models, and discuss their
properties as well as some special cases and examples
of solutions. In Sec. III we describe a general scheme
of' Kaluza-Klein-type dimensional reduction working di-
rectly at the level of the string world. -sheet action. Unlike
the more traditional approach which uses the leading-
order terms of the spacetime effective action, our ap-
proach applies to all orders in o.'. Section IV will be
devoted to solutions obtained from the dimensional re-
duction of a chiral null model. These include the charged
fundamental string, extremal electric black holes, and
their generalizations.

Section V contains our main result: we prove that for
a chiral null model the leading-order solutions do not re-
ceive any o.' corrections (in a particular scheme). In Sec.
VI we extend this argument to the case of superstring and
heterotic string theory. We show that the (1,0) supersym-
metric extensions of our bosonic models are conformally
invariant without any extra gauge field background. We
also discuss the world-sheet supersymmetry properties of
these models. Section VII is devoted to some concluding
remarks.

In Appendix A we summarize the geometrical proper-

ties of the string backgrounds described by the chiral null
model (the generalized connection with torsion, its holon-
omy and curvature tensor, parallelizable spaces, etc.). In
Appendix B we elaborate on the discussion of D = 3
models in [1] and show that the general chiral null model
in three dimensions is actually a gauged WZW model.

II. CHIRAL NULL MODELS: GENERAL
PROP ERTIES AND EXAMP LES

A. Review of previous work

A bosonic string in a general "massless" background is
described (in the conformal gauge) by the cr model:

1
d zL,era'

(2.1)
L = (GM~+ BM~)(X)BX BX + n'Rp(X),

Pp
——const, (2.2)

Lp = F(x)OuD v + Ox; Bx* + n'7ZQ(x) . (2.3)

These two models are dual in the sense that applying a
spacetime duality transformation [17] with respect to u
turns the K model into the E model with E = K
P = Pp + 2lnF. The general K model includes arbitrary
u dependence and describes the standard plane fronted
waves. It is conformal to all orders if it is conformal
at leading order, i.e. , 8 K = 0. There exists a special
scheme [1] in which a similar statement is true for the F
model, i.e. , it is conformal to all orders if

0 F =0, P=P +-'lnF(x) . (2.4)

Perhaps the most important solution in this class is the
one describing the fields outside of a fundamental string
(FS) [6] which is given by

F =1+ ~ 4, D&4,r

E =1 —Mln —,D=4,
7 O

(2.5)

where r = x,.x' and D is the total number of spacetime

where GMN is the metric, BMN is the antisymmetric ten-
sor, and P is the dilaton [16] ('R is related to the world-
sheet metric p and its scalar curvature by 'R—:4 ~pBl l;
8 and 0 stand for 0+ and 0 when the world-sheet sig-
nature is Minkowskian).

In [1], two types of models were studied, which were
called the K model and the F model. In terms of the
coordinates XM = (u, v, x'), the simplest (flat transverse
x' space) K- and F-model I.agrangians are

LIc = BuOv+ K(x)BuBu+ Ox;Bx'+ n'Rgp,
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dimensions.
The key property of the A model is that it has a covari-

antly constant null vector B/Bv. The main features of the
F model are that there are two null Killing vectors corre-
sponding to translations of u and v, and that the coupling
to u, v is chiral (since G„„=B„„).This means that the
F model is invariant under the infinite-dimensional sym-
metry u' = u+ f(r —o) and v' = v+ h,(r+ cr). Associated
with this symmetry are two conserved world-sheet chiral
currents: J„=EOv, J„=F Bu. These properties are
preserved if the transverse x' space is modified. In fact,
the two models (2.2) and (2.3) can be generalized [1) to
the case when the transverse space corresponds to an ar-
bitrary conformal a model. The simplest generalization
is to keep the transverse metric flat but include an extra
linear term in the dilaton.

B. The general chiral null model

The fact that a leading-order solution turns out to be
exact applies to a larger class of backgrounds than rep-
resented by the K and F models. We will consider the
following Lagrangian which will be called the chiral null
model:

L = F'(x) BuBv + K(x, u) BuBu + 2A; (x, u) BuBx*

+Bx;Bx'+ a'7ZQ(x, u) . (2 6)

L = F(x)Bu[Bv + K(x, u)Bu+ 2A;(x, u)Bx']
+Bx;Bx' + n'7ZQ(x, u), (2.7)

A=—F R, A;—= E' A, ,

and thus is invariant under the subgroup of coordinate
transformations v' = v —2g(x, u) combined with a "gauge
transformation"

We need to assume that F does not depend on u since
otherwise the argument for conformal invariance given
in Sec. V does not go through. As in the case of the K
and F models, it is possible to replace the flat transverse
space by an arbitrary conformal o model, but we will not
consider that generalization here.

This model has roughly half the symmetries of the F
model. There is one null Killing vector generating shifts
of v, and the action is invariant under the aKne symme-
try v' = v + h(7 + cr) which is related to the existence of
the conserved chiral current 1„=F(x)Bu. This in turn
implies the special geometrical (holonomy) properties of
the corresponding string backgrounds (see Appendix A).
Like the F term, the vector coupling has a special chiral
structure: the G„; and B, components of the metric and
the antisymmetric tensor are equal to each other.

The action (2.6) can be represented in the form

u, i.e. , when B/Bu is a Killing vector. In this case, K
cannot be set to zero without loss of generality.

When the fields do not depend on u, one can perform
a leading-order duality transformation along any non-
null direction in the (u, v) plane. Setting v = v + au
(a =const) in (2.7) and dualizing with respect to u yields
a o model of exactly the same form with F, K, A, , and
P replaced by

F' = (K + a), K' = F, A', = A, ,

(2 9)
P' = P —2ln[F(K + a)] .

In other words, chiral null models are "self-dual:" the
null translational symmetry and chiral couplings are pre-
served under duality.

In Sec. V we shall determine the conditions on the
functions F, K, A;, and P under which these models
are conformal to all orders in o.'. As in the case of the
simplest F model (2.3), there exists a scheme in which
these conditions turn out to be equivalent to the leading-
order equations [derived in Appendix A, see (A27)]

F2( iB2F—i + biB F—i) 0

F( 2B;W~ +—b,W~) = 0,

F( 2B K+ b—'B;K+ B'B„A; —2b*B„A;)

(2.1o)

+2B„'p = o, (2.11)

P(u, x) = P(u) + b;x'+ 2lnF(x),
where

T~ =OA~ —0~A;, 0 =00; .

(2.12)

Notice that the leading-order equations allow a linear
term b;x in the dilaton. Equation (2.12) implies that the
central charge of the model is given by c = D+6b'b, . One
can easily verify that these equations are invariant under
the "gauge" transformations (2.8) [and, when the fields
do not depend on u, under the duality transformations
(2.9)]. When F, K, A;, P are independent of u and b, = 0,
these equations take the simple form (at the points where
F is nonvanishing)

B F '=0, B K=0, BW'~ =0, P=Po+2lnF(x) .

(2.13)

A crucial feature of these equations is that they are lin-
ear. Thus all solutions satisfy a solitonic no-force con-
dition and can be superposed [this is also true for the
more general equations (2.10)—(2.12) provided b; is held
fixed]. Since these equations are exact conformal invari-
ance conditions, changing F, K, or A; while preserving
(2.10)—(2.12) can be viewed as "marginal deformations"
of the corresponding conformal field theory.

X' = a+ 2O„~, A,' = A, + ;q . (2.8) C. Some special cases

It is clear that using this freedom one can always choose
a gauge in which K = 0. However, we will often consider
the special case when K, A, , and P do not depend on

We now discuss some special cases of the general chi-
ral null model (2.6). If F = 1, we obtain a class of plane
fronted wave backgrounds which have a covariantly con-
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stant null vector. The general background with a covari-
antly constant null vector contains another vector cou-
pling [3]

L = cluOv + K (x, u) BuOu + 2A; (x, u) OuOx'

+2A;(x, u)Bx'Bu + Ox, Dx* + n'7ZQ(x, u) . (2.14)

0;X*' = 0, B,P*' = 0, P = P(u), (2.i5)

—
—,'O'K + O'B„(A, + A;) + X"X;, + 2cl„'P

The conditions of conformal invariance of this model turn
out to take the form [18] (for simplicity we set b; = 0)

embedded in D = 10 supergravity theory and it was con-
jectured that these "supersymmetric string waves" re-
main exact heterotic string solutions to all orders in o.'

when supplemented with some gauge Beld background.
As we shall demonstrate, (2.14) with A, = 0 is, in fact,
an exact solution of the bosonic string theory. In Sec. VI
we shall prove that, furthermore, it can be promoted to
an exact superstring and heterotic string solution with
no need to introduce an extra gauge Beld background.
It is the chiral structure of this solution which is behind
this fact.

If K = 0, and A;(x), P are independent of u, the chiral
null model (2.6) reduces to

L = F(x)BuBv + 2A, (x)BuBx' + &x,Ox* + ~ &Q(x) .

(2.18)

Thus, if one breaks the chiral structure by introducing
the A; coupling, then, in general, there are corrections
to the uu component of the metric conformal anomaly
coefIicient (2.16) to all orders in n'. The higher-loop
corrections still vanish in one special case: when A, and
A; have field strengths constant in x (in general, the field
strengths may still depend on u),

(2.17)

This background is also supersymmetric [23] when em-
bedded in D = 10 supergravity theory (and was also con-
jectured [23] to correspond to an exact heterotic string
solution when supplemented by a gauge field). As above,
we will prove in Sec. VI that it is an exact solution of the
heterotic string theory by itself, i.e. , that the (1,0) super-
symmetric extension of (2.18) is a conformally invariant
model without extra gauge Beld terms added.

Such a model represents a simple and interesting con-
formal theory in its own right. When the Belds do not
depend on u one may define the dual 0 model which is
also conformal to all orders and will be discussed at the
end of Sec. V.

The special property of the model with A, = 0 or
A; = 0 (i.e. , with G„, = +B„,) resulting in cancellation
of the vector-dependent contributions to the P function
for K was noted at the one-loop level in [18]and extended
to the two-loop level in [20]. It was further shown [22]
that such backgrounds are ("half" ) supersymmetric when

D. Examples of solutions

L = F(x)OuD[v+ K(x)8 u+ 2A, (x)Dx']
+Ox, Bx* + n'7ZQ(x), (2.19)

We now discuss some examples of solutions which are
described by chiral null models. These solutions can be
viewed as difFerent generalizations of the fundamental
string solution (2.5).

It is straightforward to describe the general solution
for the conformal D = 5 chiral null model which is inde-
pendent of u (and has b, = 0). It is given by

One particular case corresponds to the D = 4 nonsemisim-
ple WZW model of Ref. [19], namely, K = —x'x, , A,.
—A, = ——e,~x~, P =const, which is obviously a solution of
(2.15) and (2.16). Since A, = —A, , A, represents the antisym-
metric tensor part of the action (2.14). Another equivalent
(related by a u-dependent coordinate transformation of x')
representation of the model of [19] is K = 0, A, = ——e,~x~,
A, = 0, which will be useful at the end of Sec. IV (see also
Appendix A).

It was observed in [20] that, introducing the generalized
connection with the antisymmetric tensor field strength as
torsion, one finds that if A, = 0 the generalized curvature (see
Appendix A) is nearly Hat: the only nontrivial components
of it are R",

&
——20,&~I„B",„.= 20;0~A~ —O, 0~A. Then

assuming that all terms in the P„„ function have the struc-
ture Y„~ R q~, where Y depends on H„y and R„„q~ (in
a special renormalization scheme this is true at the two-loop
order [21]) one can argue [20] that all higher order correc-
tions vanish. This argument is not completely rigorous and,
in fact, unnecessary, since a simpler direct proof of conformal
invariance of this model can be given (see Sec. V).

where the functions F, K, A;, and P satisfy (2.13). Since
the transverse space is now three dimensional, every so-
lution A, to Maxwell's equation can be written in terms
of a scalar

~""0,Ak = O'T(x), O'T = 0 . (2.20)

Another simple case is D = 4 since in two transverse di-
mensions A,. = qe,.~x~.

With E and K also satisfying Laplace's equation in
the transverse space, the general solution is character-
ized by three harmonic functions. It is clear from (2.11)
that the model remains conformal if we let K have an
arbitrary u dependence. If we set A, = 0, take F and P
given by the FS solution (2.5), and keep K general, the
solutions describe traveling waves along the fundamental
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( 2mS')ds'= (1+ )
dr'+ r'dn (2.22)

C( 2mSI
Byg ——— 1 + e =1+ 2mS

The extremal limit corresponds to sending m ~ 0,
o. ~ oo in such a way that M = 2me is held fixed.
In this limit the horizon at r = 2m shrinks down to zero
size and becomes singular. The charged black string so-
lution (2.22) approaches the fundamental string (2.3). If
we add linear momentum to (2.22) by applying a boost

t coshP + y sinhP, y = t sinhP + y coshP, and
then take the extremal limit m ~ 0, n, P ~ oo with

string and were first discussed in [7].
Consider now spherically symmetric solutions with

A; = 0 and no u dependence. Since all spherically
symmetric solutions to Laplace's equation take the form
a+ br, the function K can always be represented as
K(x) = c+ nF (x). After a shift of v the model then
takes the form (2.6) with K = n. In view of the freedom
to rescale u and v the only nontrivial values of the con-
stant n are 0 and 1. n = 0 corresponds to the standard
FS while n = 1 yields the simple generalization

L = F(x)BuBv + BuBu + Bx,Bx' + cx'7ZQ(x), (2.21)

where F and P are given by (2.5) and (2.4). This solution
was first found in [9] and further discussed in [24].

It should be noted that these models (as well as the
related models considered below) are conformal without
the need to introduce sources at x' = 0. This is because
the conditions of conformal invariance (2.10), (2.11) con-
tain overall powers of E and are satisfied even at x' = 0.
However in the following, we will often concentrate on
the region with F' g 0 and drop these powers of F.

It is known [25] that the fundamental string is the ex-
tremal limit of a family of charged black string solutions
to the leading-order equations. The generalization (2.21)
can similarly be viewed as the extremal limit of a black
string as follows (we consider D = 5 for simplicity). The
charged black string can be obtained by boosting the di-
rect product of the Schwarzschild background with a line,
and applying a duality transformation [26], The result is
(S—:sinhn, G—:cosho. , n is the original boost parame-
ter)

M = 2me = 2me i fixed, we obtain the generalized
fundamental string (2.21). So this solution can also be
viewed as the extremal limit of a charged black string,
but now with a nonzero linear momentum.

III. DIMENSIONAL REDUCTION

L = (G„+B„)(x)Bx"Bx + (A„+8„)(x)Bx"By

+(A„—8„)(x)Bx"By

+(G.b+ B.b)(*)By By'+ ~'Z, y(x), (3 1)

where

Apa =—Gpa& 8pa = Bpa (3.2)

To consider further applications of the chiral null mod-
els to, for example, extremal dilatonic black holes in
D = 4 and charged FS solutions, we need to discuss first
the Kaluza-Klein reinterpretation of higher dimensional
bosonic string solutions (heterotic string solutions will be
discussed in Sec. VI). To have extremal black holes we
need gauge fields. There are no fundamental gauge fields
in bosonic string theory but they appear once the the-
ory is compactified on a torus or a group manifold and
is expressed in terms of "lower-dimensional" geometrical
objects.

The usual treatment of dimensional reduction in field
theory starts with a spacetime action. This is possible
also in string theory, but difficult to do exactly. One
would have to start with the full massless string efI'ec-

tive action in, say, five dimensions containing terms of
all orders in o.'. Assuming the fifth direction x is pe-
riodic, we can expand the metric, antisymmetric tensor
and dilaton in Fourier series in x and explicitly inte-
grate over x . The result will be the efI'ective action in
D = 4 containing massless fields as well as an infinite
tower of massive modes with masses proportional to a
compactification scale. Any exact solution of the D = 5
theory which does not depend on x can then be directly
interpreted as a solution of the equations of the D = 4
"compactified" theory with all massive modes set equal
to zero (but all "massless" n' terms included).

Fortunately, in string theory there is a simpler
alternative to perform the dimensional reduction di-
rectly at the more fundamental level of the string action
itself. Let us start with the general string o model (2.1),
split the coordinates X™into "external" x~ and "inter-
nal" y and assume that the couplings do not depend on
y

In Ref. [24] the string effective equations were taken in the
form with raised indices (R" + . ) which follows from the
efFective action upon variation of G„and thus a string source
was needed to support the solution at the origin. In fact,
the functional form of the conformal invariance condition is
P„=0 as used here.

Assuming for simplicity that B b ——0, it is easy to rep-
resent the action in a form which is manifestly invariant
under the spacetime gauge transformations of the vector
fields A„= G A„b and 8„

L = (G„+B„„)(x)Bx"Bx

+8„(x)(Bx"By —Bx"By )

+G b(x)[By + A„(x)BxI'][By + A" (x)Bx"]
+n'RP(x), (3.3)
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where the gauge-invariant "Kaluza-Klein" metric G„„is
defined by

Setting

G„„=G„„—G bA„A„. (3.4)
P=2$ —Ir,

the action (3.8) becomes

(3.10)

Like all o-model Lagrangians, (3.3) changes by a total
derivative if one adds the curl of a vector to the antisym-
metric tensor field. Since we are assuming no dependence
on y, the (p, a) component of this transformation is sim-
ply 8„—+ 8„+t9„A, i.e. , the standard gauge transfor-
mation for the vector fields 8„.The action (3.3) is also
invariant under shifting y -+ y —rI (x) together with

S'4 ——Kp d x Ge B+ O„p

—4e' (X„„) —4e
' (8„„) + O(n')} .

In the Einstein frame (3.11) takes the form

(3.11)

A„-+ A„+ B„rj, B„„+B„„—28(„g 8„] . (3.5)

The first transformation is the usual one for the vec-
tor fields A while the second implies that the gauge-
invariant antisymmetric tensor field strength is given by5

$4 ——Kp d x G@ R~ —
2 0~p — t9p 0

I

1 —2'�(H )2 i y+2o (~ —)2

HQII ~ = 3I9[gBP~] 3A[P B~gg]~ ) BP~~ —2I9[~8~]~ ~ (3~ 6) —4e
' (8„) + O(~')} . (3.12)

Although the world-sheet approach to dimensional re-
duction in string theory is the most straightforward and
simplest, it is useful to recall what the corresponding pro-
cedure looks like from the point of view of the spacetime
effective action. For example, if we start with just the
leading-order term in the D = 5 bosonic string action

S5 ——~p d x Ge

x ((R+ 4(I9MQ) —i'2 (HM~z ) + O(a') }, (3.7)

Thus, in general, the four-dimensional theory contains
two scalars, two vectors, and the antisymmetric tensor, as
well as the metric. In certain special cases, the nontrivial
part of the action (3.12) can be expressed in terms of only
one scalar and one vector, so that it takes the familiar
form

1 g 2 1 a+ y. 2

and assume that all the fields are independent of x, we
obtain the four-dimensional reduced action (for the gen-
eral case, see, e.g. , [27) and references there)

+O(cr')} . (3.13)

where we have defined

G5$ = e ) Xp~ —2I9[pA~] ) Bp~ —28[~8~]

A„=—A„', 8„=—B„s .
(3.9)

S4 ——vp d x Ge ~+ R+ 4 0„—48„8"~
i (H )2 i 2cr(~ )2

—4e (BI „) + O(a')}, (3

For example, if one sets P = 0 and HM~Ic = 0 in the
D = 5 action, or, equivalently, y = —o., H„„p ——0 = 8„„
directly in (3.12), one obtains (3.13) with Q = —aIT and
a = ~3. This is, of course, the standard Kaluza-Klein
reduction of the Einstein action. Another possibility is
to set o = 0 (Gss ——1), H&„g = 0, and either the two
vector fields proportional to each other, or let one of them
vanish. This case corresponds to (3.13) with g = y and
a= l.

IV. SOLUTIONS INVOLVING DIMENSIONAL
REDUCTION

From the world-sheet point of view we are using there seems
to be no reason to redefine the antisymmetric tensor B„„in
(3.3) by the term A[„8„] as it is sometimes done in the ef-
fective action approach to dimensional reduction. If one does
such a redefinition, the new B„„also transforms under the
B„gauge transformations and the generalized field strength
tensor Hz„ takes a more "symmetric" form with respect to
the two vector fields A„and 8„. It should be noted, how-

ever, that it is the full Hq„„ that has an invariant meaning,
and it remains the same irrespective of the definition of B„„.

In this section we discuss the dimensional reduction
of some of the exact solutions described by chiral null
models (2.6). We will see that several previously found
solutions of the leading-order string effective equations
can be easily obtained in this way. In addition, we find
some solutions which appear to be new.

Such Ansatze must, of course, be consistent with the D = 5
equations of motion.
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A. Charged fundamental string solutions B. D = 4 solutions with electromagnetic Belds

Our first example is the charged FS solution found at
the leading-order level in [8,9].7 This solution is obtained
by starting with the general chiral null model in D + N
dimensions, and requiring that all fields be independent
of u and N of the transverse dimensions labeled by y . If
we further assume that the vector coupling has only y
components, we obtain

L = F(x)OuOv + K (x)OuOu + Ox, Ox' + 2A (x)BuOy

+Oy Oy + o.'7ZQ(x), (4.1)

which is conformal to all orders provided E, K:—E K,A:—E A, and P satisfy (2.13). If we are looking for
FS-type solutions which are rotationally symmetric in
D —2 coordinates x', then solving the Laplace equations
we can put the functions I",K, A in the form

F '=1+ ~, P=Po+2lnE(r), r =x'x, ,

(4.2)
PK=c+, A

r r

Shiftiiig v we can thus in general replace K in (4.1) by a
constant. To reinterpret (4.1) as a D-dimensional model
coupled to N internal coordinates we rewrite it in the
form (3.3)

L = F(r)OuOv + K'(r)OuOu+ Ox;Ox* + n'RP(r)

To obtain four-dimensional solutions with electromag-
netic Gelds, we can reduce a D = 5 chiral null model. It
was recently shown [2] that extremal electrically charged
black holes can be obtained in this way. If one starts
with the standard D = 5 FS (2.3) and (2.5), one gets
[28] the extremal electric black hole solution to (3.13)
with o, = ~3 which was discussed in [10], while starting
with the generalized FS (2.21) one obtains the extremal
electric black hole solution to (3.13) with a = 1 discussed
in [11,12].

Here we shall consider the most general D = 5 chi-
ral null model which is independent of u. It will yield
a large class of D = 4 solutions. Some of these back-
grounds were recently found [13—15] as leading-order
string solutions, i.e., solutions of the dilaton-axion gen-
eralization of the D = 4 Einstein-Maxwell theory. They
are the analogues of the Israel-Wilson-Perjes [29] (IWP)
solution of the pure Einstein-Maxwell theory. Spe-
cial cases of this generalized IWP solution describe
a collection of extremal electric dilatonic black holes
(Majumdar-Papapetrou-type solution) and an extremal
electric Taub-NUT-type solution.

The D = 5 chiral null model which is independent of

L& ——F(x)Ou[Ov + K(x)Ou+ 2A;(x)Ox']

+A (r)(OuOy —Oy Ou)

+ [Oy + A (r) Ou] [Oy + A (r )Ou],
(4.3)

+Ox, Ox' + n'7ZQ(x), (4.4)

K'(r)—:K —(A )

The first four terms give the D-dimensional spacetime
metric, antisymmetric tensor, and dilaton while the last
two identify [see (3.3) the presence of two equal vec-
tor field backgrounds [two equal components G„and
B„conspire as one D-dimensional Kaluza-Klein vector
field, cf. (3.11)]. Note that since G s = h s the modulus
field is constant and the lower dimensional dilaton is the
same as the higher dimensional one. In the case of just
one internal dimension we get one Abelian vector Geld u
component and the resulting background becomes that
of the charged FS in [8,9].

was discussed in Sec. IID, where it was noted that the
general solution depends on the three harmonic functionsF, K, and T [see (2.20)] of the three coordinates x'.
This model can be reduced to D = 4 along any spacelike
direction in the u, v plane. Shifting v by a multiple of u
changes, of course, the direction of O jOu, but this trans-
formation is equivalent to a shift of K by a constant.
Shifting u by a multiple of v can be undone by a particu-
lar case of the gauge transformation (3.5) (which gives an
equivalent background, in particular, leaves H„p invari-
ant). Thus it suffices to use u as the internal coordinate
y (which is possible, provided FK ) 0) and to identify v
with 2t. Then we can put (4.4) in the "four-dimensional"
form (3.3) as follows:

The method of [8] was to start with the neutral solution and
to make the most general leading-order duality rotation in all
available isometric directions (including the internal ones).
Since the duality transformation has, in general, n' correc-
tions, this procedure does not guarantee the exactness of the
resulting solution.

In the zero charge Q = 0 limit we get not just the FS
solution of [6] but its modification (2.21) which corresponds
to momentum running along the string.

The a = V 3 black hole can also be obtained [10] from the
D = 5 plane-wave-type background (2.2) which is dual to
the FS. Similarly, one can get the a = 1 electric dilatonic
D = 4 black hole form a duality-rotated (2.9) version of the
generalized FS (2.21). Such a model is, however, essentially
equivalent to (2.21), since it is "self-dual. "

10It was shown also that these backgrounds are supersym-
metric when embedded in a supergravity [13].
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Is ———K(x) 'F(x) [Ot+ A;(z)Ox'][8t + A, (z)Bx'] + Oz, bx'+ a'Rg(x)
+F(x) (OyDt —BtBy) + F(x)A; (x) (Oyez' —Ox'By)

+K(x)F(x)[By+ K (z)Bt+ K '(x)A;(x)Oz'][By+ K (z)8t+ K '(x)A, (x)8x'] . (4 5)

The corresponding four-dimensional background is thus
represented. by the following metric, two Abelian gauge
fields As = A„, 8~s = 8„, two scalars (the "modulus"

o = zlnGss and the dilaton) and the antisymmetric ten-

sor field strength H [cf. (3.3) and (3.11)]:

"standard" extremal dilatonic black hole [11,12]

ds = F(—r )dt + dx, dx',
Ag —— 8g ———F(r), 4(x) = 4p+ —,'»F(r),
+ =8, =O. =Hp„=0.

(4.8)

= —F(x)K (z) [dt + A, (x)dx'] + dx;dx',
= K '(x), A; = K '(x)A, (x),

F(x), —8, = —F(x)A;(x),
= —,'ln[F(x)K(x)], P = Pp + —,'lnF(x),

6A[+ Op 8~]

(4.6)

ds = —F (x)[dt+ A, (x)dx*] + dx;dx*,

A, = F(x), + = F(x)A;(x), 8„=—A„, (4.7)

P = Qp+ zlnF(z), Hg„= 6A[pB„A j, o' = 0 .

Since o = 0 and the two gauge fields di8'er only by a
sign, these backgrounds are solutions to (3.13) with a =
1 provided the antisymmetric tensor term of (3.12) is
included (and the above string metric is rescaled to the
Einstein one). These are precisely the D = 4 dilatonic
IWP solutions [13—15]. If we restrict further to A; = 0
and F = 1 + M/r, then Hp~„= 0 and we obtain the

Notice that even though the D = 4 antisymmetric tensor
B„„vanishes, the gauge-invariant field strength Hg„ is
nonzero due to the contribution from the gauge fields
in (3.6). This background represents a solution of the
equations following from the D = 4 effective action (3.11)
since A, satisfies e'~"B~AI, = O'T(x), and F,K, and T
are solutions of the three-dimensional Laplace equation.

Let us now consider some special cases. If K = 1 and
A; = 0, the gauge field A„becomes trivial and the two
scalars coincide (up to a constant). Since the gauge fields
have only time components being nonzero, the antisym-
metric tensor H vanishes. If we now set F = 1+M/r,
the original D = 5 theory (4.4) describes the fundamen-
tal string and the D = 4 reduction is the "Kaluza-Klein"
extremal black hole, i.e. , the extreme electrically charged
black hole solution corresponding to (3.13) with a = ~3.
We see that this solution has a straightforward general-
ization to the case of A; g 0.

The case K = F is of particular interest. The D = 5
model (4.4) is the A; generalization of (2.21) while the
corresponding D = 4 background is

MkF—i 1+)k N
QA:

/x —xg[
' (4.9)

To add angular momentum, one takes solutions to
Laplace's equation which are singular on circles, rather
than points as in (4.9).

Finally, if we set K = F = 1 in (4.7), the dilaton
becomes constant. This solution depends only on A, and
describes a spacetime with a magnetic field T,~

= 26r, A~~

and antisyrnmetric tensor Hq,.~
——T,~. The corresponding

D = 5 exact conformal 0' model (4.4) can be put (by a
shift of v) in the simple form

I = ctuOv + 2A, (x)Buzz' + Bx;Bx', B,X'~ = 0, (4.10)

and deserves further study. Some special choices of A;
are particularly interesting. One is the monopole back-
ground, X,i = qe;~I, z"/[x[ . This turns out to be the ex-
tremal magnetically charged d.ilaton Taub-NUT solution

Let us note that the D = 4 extremal electric dilatonic
black hole background can also be related to a D = 6 chi-
ral null model with K' = 0, I6 = F(z)Bu[Bv + 2A(x)By']-
By'By' + Bx;Bx', where the internal coordinate y' has the
"wrong" (tiinelike) signature. Introducing the new coordinate
y' = y+ u and choosing A = F (which is consistent with
the conformal invariance conditions) we find that this model
takes the form of (2.21) plus an extra free timelike direction,
L6 = F(z)BuBv+BuBu+Bz, Bz' —ByBy, and thus can also be
related to the D = 4 extremal electric black hole. An equiv-
alent observation was made at the level of the leading-order
terms in the eff'ective action in [30] (Ref. [13] also discussed
a similar higher (six) dimensional interpretation of the IWP
solution). It should be emphasized that it is our D = 5 model
(4.4) that provides the correct higher dimensional embedding
of these D = 4 black-hole-type solutions: though the presence
of an extra timelike "internal" coordinate in the above D = 6
model is irrelevant from the point of view of the proof of ex-
actness of the D = 4 solution, it is unphysical, since complex
coordinate transformations are needed if one wants to keep
the physical signature of the full higher dimensional space.

Adding a nonzero A, to this solution by setting T
q/r has the effect of adding a NUT charge. The result
is the extremal electrically charged dilatonic Taub-NUT
solution. Linear superposition of an arbitrary number of
solutions of this type is possible by setting
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with zero mass. Another is the case of a uniform mag-
netic field, T,z ——const, i.e., A; = —2T;zx~. This model
is equivalent (see Appendix A 3) to a product of the non-
semisimple D = 4 WZW model of [19] and an extra free
spatial direction and thus has a conformal field theory
(CFT) interpretation. One can choose coordinates so
that the D = 4 metric for the uniform magnetic field
solution is simply

ds = —(dt+ 2'Rr d0) + dz + dr + r do, (4.11)

and describes a rotating universe (while the antisymmet-
ric tenor II is constant). This uniform magnetic solu-
tion may be contrasted with the dilatonic Melvin solu-
tion [11,31] in which the magnetic field decreases with
transverse distance. The latter solution contains a non-
constant dilaton (but no antisymmetric tensor or rota-
tion).

The solutions (4.6) with generic K and thus difFerent
gauge fields A; and 8; appear to be new.

adding the source terms (z denoted the two world-sheet
coordinates)

L, „„,= V(z)BBu + U(z)BBv + I;(z)BBx* (5 1)

to (2.6) and performing the path integration over v. The
resulting b function sets u to its classical value U (up to
a zero mode which we absorb in U). Thus u is "frozen"
and the effective x theory is

L,~ = Bx;Bx'+ K(x, U)BUBU+ 2A;(x, U)BUBx'
+n'RP(x, U) + X;BBx*+ VBBU . (5.2)

Computing the classical dilaton contribution ( BB$)
to the trace of the stress energy tensor and observing
that there cannot be O(BU Bx') quantum contributions
[in view of the absence of the O(BU) vector coupling
and simple dimensional considerations] one finds that the
necessary conditions for this theory to be conformal are
B,B„Q = 0, B;B~$ = 0, so that

P(x, u) = P(u) + b, x', b, = const . (5.3)
V. CONFORMAL INVARIANCE OF THE

CHIRAL NULL MODELS

The aim of this section is to demonstrate that the gen-
eral chiral null model (2.6) is conformal to all orders in
n provided the couplings satisfy the conditions (2.10)—
(2.12) and one chooses a special renormalization scheme.
Our discussion will be based on the approach of [1] where
more details about the special choice of the scheme can
be found.

In [1] it was shown that the I' model (2.3) [i.e. , (2.6)
with K = A, = 0], which has two null Killing vectors
and two associated chiral currents, is exact ~ It turns out
that a single chiral current associated with a null symme-
try is, in fact, sufIicient to establish the exact conformal
invariance of the more general backgrounds (2.6).

To find the conditions for conformal invariance of a
0. model we must define it on a curved two-dimensional
surface, introduce sources for the o.-model fields, and de-
termine when the resulting generating functional (or its
Legendre transform) does not depend on the conformal
factor of the two metric. There are two reasons why the
models (2.6) are special. First, the null symmetry and
chiral coupling to v imply that, the path integral over v
is readily computable, giving a b-function constraint on
u which expresses u in terms of x' and a source. Second,
chirality of the BuBx coupling implies that the resulting
effective x theory has only tadpole divergences (or con-
formal anomalies) in a properly chosen scheme.

We shall first give the proof of conformal invariance
in a few cases mentioned in Sec. II [when some of the
functions in (2.6) are trivial] and then give the general
argument.

One also learns that (in the minimal subtraction scheme)
the renormalization of the BUBU and BUOX' may come
only from the one-loop tadpole diagrams. The conclu-
sion is that this model is conformal to all orders once
the leading-order conditions of conformal invariance are
satisfied (see also [18]):

—
2 B K + b'B; K + B'B„A; —2b'B„A, + 2B„Q = 0,

—2B;W~ + b;W~ = 0 . (5.4)

These relations follow from a direct computation of the
tadpole graphs and use of classical 0-model equations
to transform the dilaton contribution [for simplicity, one
may gauge away K by using the freedom (2.8)]. They
agree, of course, with the standard general expression
for the one-loop Weyl anomaly coefIicients given in Ap-
pendix A.

Let us now set A, = 0 and assume that K = E K
and P do not depend on u, i.e. , consider

L = F(x)BuBv+ K(x)BuBu+ Bx,Bx'+ n'7ZQ(x) .

(5.5)

Bu = I" (x)BU . (5.6)

Introducing the source terms (5.1) and integrating over
v one finds the constraint

A. E=1

The argument is simplest when E = 1. To find the
exact conditions of conformal invariance we follow [1] by

Integrating then over u and taking into account the de-
terminant contribution that shifts the dilaton as well as
fixing the same special "leading-order" scheme (related
to the standard one by an n' redefinition of the ij com-



NEW CLASS OF EXACT SOLUTIONS IN STRING THEORY 2905

ponent of the metric) as in the F model [1] one finds that
the efFective x theory takes the form

C. General chiral null model

L,~ = Bx,Bx' —E '(x)BUBV
+K(x)BUBB [F (x)BU]
+a'Roti'(x) + X;BBx*,

P' = P —ilnF(x) .

(5.7)

(5.8)

For the general chiral null model (with u dependence),
one can set K = 0 by the gauge transformation (2.8).
Adding sources and integrating over v and u as above we
arrive at the efFective z theory

I,s = Bx,Bx* —E (x)BUBV

+2A, (x, B [F i(x)BU])BUBx'

The conditions of exact conformal invariance include the
linearity of the dilaton P' in x:

P' = Pp + b, x*, P = Pp + b;x*+ -', lnF, (5.9)

and the standard scalar ("tachyonic") equation for F
1g2~—1 + bi g ~—1 0 (5.10)

The conformal anomaly must be local, so it is only
the local part of the quantum average of the nonlocal
O(BUBU) term that may contribute to it. Since this
nonlocal term already contains two factors of BU it can-
not produce Bx-dependent counterterms. That means we
may expand the functions K(x) and F (x) in it near a
constant, x'(z) = xp + rI'(z):

+a'RP'(x, B '[F '(x)BU]) + X;BBx', (5.14)

B'B„A, —2b'B„A, + 2F B„$= 0,
——2'O, W'+ biW' = 0. (5.15)

where P' is as in (5.8) and we again use a special scheme
to keep the free kinetic term of x' unchanged (see [1]).
The condition of conformal invariance in the Bx Ox di-
rection is a straightforward generalization of (5.3) and
the condition in the model with A, = 0 (5.9), i.e. ,

P' = P(u) + b, x* Th. e BU BV term is conformally invari-
ant, provided one imposes (5.10) as in the A, = 0 model.
The conditions of conformal invariance in the Bu Bu and
Bu Bx directions are similar to (5.4) with K = 0:

d zd z'[K(x)BU](z)B A '(z, z')[E '(x)BU](z')

1), , B;, B, K(xp)B, , B,„F (xp)
n, m=O

x d zd z'g" . g'- zBUzOA z z'

x (rp" . rl'")(z')BU(z'), (5.ii)

~—1g2~ + ~g2y —1 2giy —1g ~ + ggi~g ~—1

(5.i2)

or, combined with (5.10),

where we define b, i by BBb i = h( )(z, z'). Then the
only contractions of the quantum fields g' that can pro-
duce local O(BU BU) divergences are the one-loop tad-
poles on the left and right sides of the nonlocal prop-
agator A (z, z'). Any contraction between rP (z) and

(z') gives an additional A i(z, z') factor and thus con-
tributes only to the nonlocal part of the corresponding
two-dimensional efFective action.

As a result, we find the conformal invariance condition

The reason why there are no extra terms involving F is
that the locality of the conforrnal anomaly implies that
the only contributions depending on derivatives of E are
tadpole ones which thus vanish due to (5.10). This is easy
to see by expanding the argument x'(z) of F i and A,
near its "classical" value. Contractions of the quantum
fields on the opposite sides of the 8 operator produce
only nonlocal contributions to the corresponding efFective
action.

Equation (5.15) is valid in the gauge K = 0. The gen-
eral form of this conformal invariance condition can be
obtained by doing the gauge transformation (2.8). Com-
bining all the conditions together we obtain

—-'B2E '+ b*B;F ' = 0, P = P(u) + b;x'+ 2lnE(x),
(5.16)

—2B K + b*B;K + B'B„A; —2b*B„A; + 2F 'B„p = 0,

2j—1 2git9 / —1 g2~ = 2b~g.

P = Pp + b, x' + —,'lnF . (5.i3)

Note that if I" were u dependent the integral over u would
not be easily computable and the argument below would not
apI ly

Let us note that the fact that the model (2.7) is Weyl
invariant means that when considered on a Bat world sheet
this o model is ultraviolet finite to all loop orders on the
mass shell. The latter clarification means that the standard
P functions vanish only modulo a diffeomorphism term (which
is related to the presence of a nontrivial dilaton in the corre-
sponding Weyl-invariant model).
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D. Further generalizations?

Can one extend the chiral null model (2.6) to include
a larger class of backgrounds and maintain their con-
formal invariance? As we have already remarked, one
possible generalization is to replace the transverse space
with a nontrivial conformal 6.eld theory. Another possi-
bility would appear to be the addition to a second vector
coupling:

L = F(x)OuOv + K(x, u) OuBu + 2A, (x, u) OuBx'

+2S;(x, u)Bx'Bv + Ox, Bx' + n'7ZQ(x, u) . (5.18)

L = BuBv + K(x)BuBu +. 2S; (x)Bx'Bv

+Ox, Ox' + n'7ZQ(x) . (5.19)

This 0 model shares with the chiral null model the fol-
lowing three properties: (i) conformal invariance of the
transverse part of the model; (ii) existence of an affine
symmetry v = v + h(w + cr) in a null direction; (iii) chi-
rality of all vector couplings.

The second condition implies the existence of the asso-
ciated conserved chiral current. At the "point-particle"
(zero mode) level this affine stringy symmetry reduces to
the null Killing symmetry v' = v + h, h =const.

However, the model (5.18) is not, in general, conformal
to all orders if only the leading-order equations are satis-
6.ed. As before, we can still explicitly integrate out v and
then u. But the result is a complicated x theory for which
the conditions of conformal invariance seem difEcult to
formulate and solve explicitly to all orders.

To illustrate this point, let us consider a particular
example of (5.18) with F = 1, A,. = 0, and u-independent
couplings:

to all orders in o.'.
This example makes it clear that the above three con-

ditions are not suKcient to ensure that leading-order so-
lutions will be exact. One needs an additional condi-
tion which can be taken to be (iv) the null Killing vector
should be orthogonal to the transverse subspace.

One can further generalize (5.18) by introducing a non-
trivial transverse space metric. Then there may exist
some special cases in which such a model may remain
conformal to all orders once it is conformal to the lead-
ing order. An example is provided by

L = F(x) [Bu+ 2S;(x)Bx*][Bv+2A;(x)Ox']

+Ox, Bx' + n'RP(x) . (5.21)

'+~*»,, = 0, P = Po+ -lnF, 5,, = 2Bi,Sg .

(5.22)

The proof is a simple version of the arguments used in
the previous subsections (in the special case of S, = A, it
was given already in the Appendix B of [1]). Introducing
the sources and integrating out u and v one obtains the
effective x theory [cf. (5.2), (5.7), and (5.8)],

This model is related by u duality to the u-independent
case of the "nonchiral" generalization of the K model
(2.14) with two nonvanishing vector couplings [the re-
lation of the functions is F = K (x), S, = —A, (x),
A; = A;(x), P = Po+ zlnF(x)]. In the case when S; and
A; have constant field strengths (2.17), the theory (5.21),
like (2.14), can be shown to be conformally invariant to
all loop orders, provided [cf. (2.16)]

The corresponding target space metric has a null Killing
vector, but in contrast to the case of the model (2.6) with
F = 1 this vector is not covariantly constant. Making the
coordinate transformation u -+ u+ p(x), we get

L,~ = Bx;Bx' —F '(x)OUOV + 2A;(x)OUOx*

+2S, (x)Bx*OV + n'7ZQ'(x) + X,BBx', (5.23)

L = BuBv + KBuBu+ KO,p(OuBx'+ Ox*Ou)

+(2S, + B;p)Ox*tv + (h;, + KO;pB, p)Ox*Ox'

+n'7ZQ(x) . (5.20)

If we now choose S, = —zB,p, the new BxBv coupling
disappears. We learn that in this case the model (5.20)
is equivalent to a modification of (2.6) with a nontriv-
ial transverse metric and nonchiral BuOx and BxOu cou-
plings [cf. (2.14)]. Integrating over v it is easy to see that
the resulting conformal invariance conditions (in both
OuBu and BxBx directions) contain nontrivial corrections

We assume that K and A,. do not vanish at the same time.
In the special case when K = 0 and A, = 0 the model (5.18)
is equivalent to the special case (2.18) of (2.6) with u ~ v,
V ~tC.

so that if A, and S, are linear in x all conformal anomaly
contributions come only from one-loop diagrams.

VI. SUPERSTRING AND HETEROTIC STRING
SOLUTIONS

So far we have discussed exact classical solutions of
the bosonic theory. A generalization to the case of the
closed superstring theory is straightforward. The super-
string action is given by the (1,1) supersymmetric exten-
sion of the bosonic o model (2.6) [with x" = (u, v, x') in

(2.6) replaced by (1,1) superfields X"(z, 0, 0)]. Repeating
the arguments of Sec. V starting with the (1,1) super-
symmetric extension of (2.6) I(i i) = J' d2z d20(G„+
B„„)(X)'DX"17X and using that the one-loop confor-
mal invariance conditions are the same as in the bosonic
case, one Ands that our exact bosonic backgrounds also
represent superstring solutions. One can also start with
the component representation (here ~+™„„
,H „„)—
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I(i i)
—— d z G„+B„xOx"Ox"

+A~ (h„cl+ io „„(x)Dx")A~
+&L, (&„&+ ~+„„(x)coax")AL

2—B+-~a&i &I.&R&R] (6.1)

write down the fermionic part of the action explicitly
with the help of (A9) and (A16), and directly integrate
over the left and. right fermions. One then finds that the
only e8'ect of the fermionic contributions on the efFective
bosonic x' theory is to cancel the local OlnFt9lnE term
coming &om the bosonic u, v determinant. Thus there
is no need for a special adjustment of a scheme compared
to the pure bosonic case (see also [1]).

As for the heterotic string solutions, one approach is to
start with a closed superstring solution and embed it into
a heterotic string theory by identifying the generalized
Lorentz connection io+„„(or io „„)with a Yang-Mills
background, i.e. , by rewriting the (1,1) supersymmetric o.

model in the (1,0) [or (0,1)] supersymmetric heterotic o-
model form [33—36]. For this to be possible, the holonomy
group of the generalized connection io+( or io ) should be
a subgroup of the heterotic string gauge group. In gen-
eral, such embedding is problematic for solutions with a
curved spacetime (i.e. , with a nontrivial timelike direc-
tion) since the holonomy is then (a subgroup of) a non-
compact Lorentz group SO(1, D —1) while the heterotic
gauge group should be compact on unitarity grounds.
In fact, as shown in Appendix A 2, the holonomy groups
of u+and ~ for generic chiral null models are noncom-
pact [except for the case of the plane-wave background
(4.10) when the holonomy of io+ is SO(D —2)] and thus
cannot be embedded into SO(32) or Es x Es.

A. Exact heterotic string solutions

One should thus try a more direct approach. As in-
dicated above, given a bosonic string theory, there exist,
in principle, two possible ways to construct a heterotic
string theory depending on whether the "right" or "left"
parts of the bosonic coordinates are supersymmetrized,
i.e., on whether one considers a (1,0) or (0,1) supersym-
metric world-sheet theory. The two heterotic theories
are related by interchanging left and right movers in the

A simple test that this cancellation does take place is pro-
vided by the observation that the two-loop P function must
vanish (in a "supersymmetric" scheme) in the (1,1) super-
symmetric o model [32], while the one-loop-induced term
OlnI" OlnI' term would contribute to the two-loop conformal
anomaly.

A special case of this was pointed out in [37]. Notice that
if the gauge group is noncompact, at least one of the internal
fermions has a negative norm but [compared to the (1,1) su-
persymmetric superstring case] there is no extra local world-
sheet superconformal symmetry to gauge it away [38].

vertex operators, and, in general, are inequivalent. The
fermionic parts of the heterotic o models corresponding
to the two theories depend on u and u+, respectively.
In what follows we shall concentrate on the standard (1,0)
(or "right") theory since it turns out that the (0,1) (or
"left" ) theory does not have chiral null models as exact
solutions.

The action of the (1,0) heterotic o model is given by
(we ignore the "internal" fermionic part with a possible
gauge field background)

1(i,o) = d z do(G„„+B„)(X)1)X"BX"

d2z[(G„+ B„)(x)Bx"Bx

+&R-(4™~+~ .,(x)~x")&R] . (6.2)

The (l, l) superstring o-model action (6.1) can be for-
mally obtained from (6.2) by adding the internal left
fermionic part coupled to the gauge field background
equal to w+.

Thus u appears in the fermionic part of the 0-model
action (6.2) (and also in the leading-order spacetime su-
persymmetry transformation laws). The P functions and
the effective action S of this theory will depend on w but
also explicitly on the curvature A of G„and the anti-
symmetric tensor field strength H. The o-model anomaly
will also naturally involve u . However, since the form
of the anomaly is ambiguous (scheme dependent) [39,40]
it can be arranged so that it will be w+ that will enter
the anomaly relation as well as the "anomaly related"
terms in the effective action (this, in fact, is a common
assumption; see, e.g. , [41,42]). It should be emphasized
that there is no unambiguous definition of such "anomaly
related" terms since S is scheme dependent and, in gen-
eral, cannot be represented only in terms of w+. There
are always other H-dependent terms which are not ex-
pressed in terms of the generalized curvature of w+ (so
that one can equally well use u in place of u+ at the
expense of modifying the rest of the terms). s

In particular, the o-model P functions and low energy ef-

fective actions corresponding to the two theories are related
by simply changing the sign of B„„(the efFective actions of
bosonic or supersymmetric string theories are invariant un-

der H„„—+ —H„since these theories are invariant under
world-sheet parity transformation). That implies, e.g. , that
the "right" and "left" heterotic extensions of a bosonic back-
ground which is chiral (i.e., which distinguishes between left
and right, e.g. , having B„g0) will be inequivalent.

O(n') terms in the heterotic string effective action were
computed in [43,21] starting from the string S matrix. As
was shown in [21], there exists a scheme in which the o.' term
(its part which is not related to Chem-Simons modification
of the leading-order H term) in the heterotic string action is
the same as in the bosonic string one up to an extra overall
factor of 1/2. The same result was obtained from the analysis
of the three-loop conformal anomaly of the heterotic o. model
[44].
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Let us now show that our bosonic solutions are exact
solutions of the heterotic string theory without any extra
gauge field background: the direct (1,0) supersymmetric
extension of the bosonic o model (2.6) is conformally in-
variant if the bosonic model is conformal. The fermionic
part of the action (6.2) does not actually contribute to
the conformal anomaly. This follows &om the special
"null" holonomy property of ~: according to Appendix
A [see (A16)] the only nonvanishing component of the
generalized Lorentz connection w is iv „-; (u, v, i are
tangent space indices). i The nontrivial fermionic terms
in (6.2) are thus given by

I (i,O) (&R)

~R~~R + ~R~~R + ~—uip(+)~+ ~R~R (6'3)

The "null" structure of the coupling implies that inte-
grating out fermions does not produce a nontrivial con-
tribution to the x" theory which remains conformally in-
variant. There is an obvious similarity with integrating
out u and v in the bosonic theory (cf. Sec. V).

Thus we do not need a nontrivial gauge Geld back-
ground to promote our bosonic solutions to heterotic
ones. We conclude that, for example, the exact D = 5
bosonic solutions (4.4) are also heterotic string solutions
and so are their four-dimensional "images" (4.6). In par-
ticular, the D = 4 extremal electric black holes discussed
in Sec. IV B are thus exact heterotic string solutions [2]
without any extra gauge field background.

Let us compare the above conclusion with the pertur-
bative result for the two-loop P function of the heterotic
o model. Let us consider the "nonanomalous" n' contri-
bution to the metric P function P„„(i.e., we shall ignore
other noncovariant o.' corrections which modify the one-
loop H2 term by the Chem-Simons terms). The contri-
bution of the fermions AR is essentially the same form as
the standard two-loop "F " term that comes from the
internal fermionic sector @I, [34] except for the fact that
the gauge field is represented by the connection w [45].
Thus

where (P„„)0is the bosonic contribution. There exists
a special chiral "right" scheme in which the latter is given
by [21]

This property of w is also responsible for the "one-
half" extended spacetime supersymmetry of our bosonic back-
grounds when they are embedded into D = 10 supergravity
as shown for the special cases of the (generalized) FS in [6,9]
and for the F = 1 and K = F cases in [22,23] (our nota-
tion for ~ and u+ is opposite to that of [22,23]). The general
chiral null model also has unbroken spacetime supersymme-
try, at least to leading order in o.'. It should be possible
to address higher order corrections to the spacetime super-
symmetry transformations for this model in the world-sheet
approach using Green-Schwarz superstring action in a light-
cone-type gauge (cf. [9]).

G'(2) 1 I "~P& " "PAn(P„„)o——4n (2R („R „) &&
—R („R „) &„

+R („„)pH ~ H~p ) . (6.5)

As follows from (A9) R „q„R ""„(i.e. , the fermionic
contribution) indeed vanishes for our backgrounds. As
for (6.5), it also vanishes when F = 1 but in general one
needs to choose a different scheme to avoid o.' corrections
(see [1)).

Given the scheme dependence of the P function, in the
heterotic 0-model context there may exist a scheme in
which the bosonic contribution to the a-model P function
(6.4) can be put in the following "left-right symmetric"
form:

Ih

(P„( ))o ——4n'(R+ „p„R+" „+R „),„R ""
) .

(6.6)

Including the gauge field contribution of the internal left
fermions the heterotic cr-model P function corresponding
to this "symmetric" scheme then is given by

(P„„)(,o) = 4a R+ „p„R+G(2) 1 "mnA

n'Fly' (-V)F (V) (6.7)

This rede6nition of G„~ could be thought of as induced
by Gp: G~ + 4 cl Hp&pH . It may also be related to the
noncovariant redefinition G~„= G~„+ —n'(u+
V„Vlg„) used in [40] in order to preserve world-sheet super-IJ
symmetry (there is only the v+e+ term if V = 0 and the
whole redefinition is trivial if V = u+).

This expression is consistent with the expectation that
the two-loop P function should vanish once we identify
the gauge field V„with ~+ since then the heterotic
o model becomes identical to the (1,1) supersymmetric
model (6.1). The two-loop contribution (6.7) with V„= 0
does not vanish for our backgrounds even in the simplest
plane-wave case E = 1. As already mentioned above, in
general, we cannot make it vanish by the identification
V = w+ since the holonomy group of u+ is noncompact.
Thus in this scheme our solutions will be modified by
higher order o.' corrections.

In the special case of F = 1, K = 0, A, = A, (x), the
only nonvanishing component of u+ is ~+,-. -.„———T,~ and
one finds that R+~„p„R+ "„in (6.7) has a nonvanishing
uu component equal to (BA,&;~-)2. If we set V„= 0 and
start with the leading-order solution K = 0, 0;T'~ = 0,
then K receives the n' correction It i satisfying [cf. (A27)]

20'O, Ki+ n'(—Bi,&~)-= 0, i.e. , Iti ——-n'(X;, )2. Such
modification can be thought of as a local field redefini-
tion corresponding to the transformation &om the chiral
"right" scheme (6.4) and (6.5) where It i ——0 to the "left-
right symmetric" scheme (6.7).

Since in this exceptional case the holonomy of u+ is
compact [SO(D —2)], there is also an alternative option
to introduce the gauge field background V„equal to
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w+ and in this way cancel the higher order correction.
This was suggested in [22] where (6.7) was assumed to
be the form of the o.' correction in the heterotic string
equation of motion. As we have mentioned, the idea
of embedding u+ into the gauge group does not have
consistent generalizations to other cases except the one
with F = 1, K = 0, A, = A, (x). The need to introduce
a nontrivial gauge field background in [30,23] was caused
by having implicitly taken the o.' term in the effective
action in a specific "symmetric scheme" (in which w+
appears in the "anomaly related" terms). As we have
explained above, the form of o.' corrections is scheme
dependent and in the natural chiral scheme there is no
need for an extra gauge field background at all.

The plane-wave model (4.10) with F = 1, K = 0,
A, = A;(x), and the gauge field background V„'~

w+,--„———X;z is equivalent to the (1,1) supersymmetric
superstring 0 model and thus represents an exact solu-
tion according to the discussion at the beginning of this
section. It is instructive to see explicitly why the result-
ing model remains conformally invariant. The fermionic
terms now are [gl are internal fermions; see also (A9)
and (A16)]

~(1,1) (~R~ @I) ~R~~R + ~R~~R + +~j(X)~X ~R~R

(6.8)

Integration over A& "freezes" out A&, while the term

X,~ (x)Bugl @J does not produce new divergencies in the
uu direction since the total action does not contain local
Du couplings [cf. (5.11)].

Finally, let us consider the (0,1) ("left" ) heterotic the-
ory. Here the superstring fermions are coupled to w+.
Since according to (A17) w+ has general holonomy, one
should expect nontrivial fermionic contributions to the
conformal anomaly. The gauge field background cannot
be consistently introduced since the (Abelian) holonomy
group of w is "null" (noncompact). The corresponding
leading-order solutions thus should have corrections to
all orders in n . Given that w+ (which in this theory ap-
pears also in the spacetime supersymmetry transforma-
tion laws) is of generic form, one should not also expect
to find Killing spinors, i.e. , a residual supersymmetry.

B. Extended world-sheet supersymmetry

It is clear that the Abelian gauge Gelds of the four-
dimensional solutions (4.6) have a Kaluza-Klein and not
a heterotic Yang-Mills origin. In general, given a D = 4
leading-order bosonic background, its embedding into the
heterotic string theory is not unique. The embeddings of
extremal D = 4 dilatonic black holes in which the U(1)
gauge fields have a Kaluza-Klein (i.e. , % = 4 supergrav-
ity) and not a heterotic Yang-Mills origin have extended
(e.g. , N = 2, D = 4) spacetiine supersymmetry [46].
Since our general bosonic D & 10 backgrounds have ex-
tended spacetime supersymmetry when embedded into
D = 10 supergravity theory [6,9,22,23,13] one may also
try to invoke supersymmetry to argue that they are exact
superstring solutions.

In fact, the presence of extended spacetime supersym-
metry suggests (cf. [47,42]) that the corresponding (1,0)
supersymmetric 0. models may have extended world-sheet
supersymmetry. If the latter supersymmetry is large
enough, one may use the fact that there exists a scheme
in which the (4, n) supersymmetric a models are confor-
mal to all orders [48].

In contrast to our approach described in Sec. V and
in the previous subsection, any argument based on ex-
tended world-sheet supersymmetry is bound to have a
limited applicability. The standard discussions of ex-
tended world-sheet supersymmetry apply to the case of
Euclidean target space signature. To have (2, n) super-
symmetry the dimension D must be even; the (4, n) su-
persymmetry is possible only when D is a multiple of 4.
Most of our models (e.g. , all with odd spacetime dimen-
sion) do not admit extended world-sheet supersymmetry
since they do not admit a complex structure when ana-
lytically continued to Euclidean signature.

The generic chiral null model (2.6) does not have a nat-
ural analytic continuation with a real Euclidean target
space metric. For example, if one analytically continues
u+ v keeping u —v real, so that u and v become complex
conjugates (v = u), then the metric is no longer real un-
less K and A; in (2.6) are taken to be zero. There may
exist a well-defined Euclidean analogue of (2.6) for some
special choice of A; but we shall ignore this possibility
here. In the special case of the F model (2.3) one gets a
real action on the Euclidean world sheet (but thus a com-
plex string action in the Minkowski world sheet signature
case:

I = F(x)BuOu+ Bx;Dx*+ a'RP(x) . (6.9)

While the efFective action considerations in [22,23) are not
sufBcient to demonstrate the exactness of the solutions to all
orders in o.' since they were ignoring "anomaly unrelated"
terms [in particular, no explanation was given of why these
backgrounds are superstring solutions, i.e., why the corre-
sponding (1,1) supersymmetric o model should be confor-
mally invariant), this is possible within our direct world-sheet
approach. Although the approach of [22,23,37) is incomplete,
our present work was much motivated and inHuenced by these
interesting papers.

ds = F(iv, ru)dudu+ div, Ckv, ,

B„„-=2F,
(6.10)

The corresponding (1,0) supersymmetric o model admits

The corresponding Euclidean metric ds = F(x)du du +
dx;dx is real but the antisymmetric tensor is imaginary.
If the dimension is even, D = 2N, the metric is Her-
mitian. Replacing x' by a set of complex coordinates
zv, (s = 1, . . . , % —1) the metric and the antisymmetric
tensor are
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(2,0) extended supersymmetry. This is clear from the
comparison with the conditions on geometry implied by
(2,0) supersymmetry [36], as reviewed, e.g. , in [49] (for
some earlier discussions of related complex geometries,
see [50,51]). Provided 8 E = 0 the generalized con-
nection with torsion has special [not U(W) but SU(%)]
holonomy and satisfies the generalized quasi Ricci Bat-
ness condition (see Appendix A)

B„„=D„V, V„= —B„lnF . (6.11)

C. Relation to other D = 4 heterotic solutions

What about nonsupersymmetric solutions of D = 4
heterotic string theory? For example, the charged dila-
tonic black hole may be considered as a nonsupersym-
metric leading-order solution [12] of the D = 4 heterotic
string theory with the charge being that of the U(l) sub-
group of the Yang-Mills gauge group. This solution must
have an extension to higher orders in o.' which, in gen-
eral, may not be the same as the above supersymmetric

In the simplest case of D = 4 and F = F(~w[) the metric
becomes conformal to a Kahler metric; cf. [42,49].

The conclusion about extended supersymmetry of the I"
models is consistent with the fact that some of them corre-
spond to special nilpotently gauged WZW models [5]. The
latter are formulated essentially in terms of the WZW model
on a (maximally noncompact) group G and thus their Eu-
clidean versions should admit (2,0) or (2,2) supersymmetry
[51,52].

A somewhat related remark was made in [53], where it was
pointed out that since the cr model on a Calabi-Yau space has
a special holonomy it thus has an extra in6nite-dimensional
nonlinear classical symmetry. That symmetry (if it were not
anomalous at the quantum level) would rule out all higher-
loop corrections to the P function [53]. In our case, the analo-
gous symmetry is linear and is the afEne symmetry generated
by the null chiral current.

If the dimension D is a multiple of 4, i.e. , N = 2N,
a (2,0) supersymmetric o model may admit (4,0) ex-
tended supersymmetry. In fact, the Euclidean F model
(6.9) does have it, as is clear again from the comparison
with the expressions in [49]. In particular, the holonomy
of the generalized connection is a Sp(1V') subgroup of
SU(K). Given that (4,0) supersymmetric o models are
conformally invariant to all orders (in a properly chosen
scheme) [48] we get (for D = 4N') an independent proof
of the fact that the E model corresponds to an exact
solution of heterotic string theory.

It should be stressed again that our explicit proof given
in [1] and in the present paper is more direct and applies
for any D as well as to a more general class of models
(2.6). In general, a relevant property which is impor-
tant for the proof of exactness is the special holonomy of
the generalized connection with torsion and not an ex-
tended supersymmetry (which is just a consequence of
the special holonomy under certain additional conditions
like existence of a complex structure).

"Kaluza-Klein" solution obtained by dimensional reduc-
tion from D = 5. Even though the leading-order terms
in the compactified (from D = 5 to D = 4) bosonic
string theory and D = 4 heterotic string theory with a
U(1) gauge field background look the same, the a' cor-
rections are difFerent, so that our bosonic result does not
automatically imply that the extremal electric black hole
considered as a D = 4 heterotic string solution is also
exact. In fact, it is known that the nonsupersymmetric
extremal magnetic solution of the D = 4 heterotic string
has n' corrections [54]. The same is likely to be true for
the nonsupersymmetric extremal electric solution.

To explain this difference between "supersymmetric"
and "nonsupersymmetric" solutions it is useful to con-
sider the spacetime effective action approach. Our ex-
act D = 4 solutions (4.7) obtained by dimensional re-
duction are actually D = 5 bosonic or heterotic string
solutions. This means that there exists a choice of (five-
dimensional) field redefinitions in which the D = 5 eKec-
tive equations evaluated on our background contain no
o.' corrections. As shown in Sec. III, the dimensional
reduction of the D = 5 action includes two gauge fields
(as well as an extra scalar modulus field). Even though
these two gauge fields are equal for our solution (4.7), the
general field redefinition treats them independently. In
contrast, the D = 4 nonsupersymmetric heterotic action
contains a single gauge field and thus a smaller group of
field redefinitions. Thus the fact that nontrivial o, ' cor-
rections inevitably arise in this case (for the magnetically
charged black hole [54] and, most likely, for the electri-
cally charged case as well) does not contradict our claim
that the supersymmetric electrically charged solution ob-
tained from dimensional reduction is exact.

In general, the starting point is the D = 10 heterotic
string with the leading-order term in the effective action
being represented by the N = 1, D = 10 supergravity
coupled to D = 10 super Yang-Mills theory. Compact-
ified on a six-torus, this effective action becomes that
of N = 4, D = 4 supergravity coupled to a number of
Abelian % = 4 vector multiplets and N = 4 super Yang-
Mills. The simplest charged dilatonic black hole solution
may be embedded in this theory in several inequivalent
ways, depending on which vector field(s) is kept nonva-
nishing. The dependence of higher order o, ' terms in the
full efFective action on different vector fields is different,
so it should not be surprising that the solutions that hap-
pen to coincide at the leading-order level may turn out
to receive difFerent o.' corrections.

Finally, let us note that it may be possible to utilize
some of our D ) 4 exact bosonic solutions to construct
other D = 4 heterotic string solutions. The idea is to

To establish a relation between heterotic and bosonic mod-
els one can use the following strategy: start with a leading-
order heterotic string solution, write down the corresponding
heterotic ~ model, and then try to bosonize it to put it in a
form of a bosonic cr model for which it may be possible to
prove the conformal invariance directly.
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start with an exact higher dimensional bosonic solution
and then fermionize the "internal" coordinates in an ap-
propriate way to obtain a heterotic 0 model. A similar
method was used in [55] to find the heterotic solution rep-
resenting a D = 2 monopole theory (which was related
to the throat limit of the D = 4 extreme magnetically
charged black hole) and in [56] to describe a nontrivial
throat limit of the D = 4 dilatonic Taub-NUT solution
[IB,I4].

VII. CONCLUDING REMARKS

To obtain exact solutions in string theory, it is rather
hopeless to start with the field equations expressed as
a power series in o.', and try to solve them explicitly.
One must first make an Ansotz which simplifies the form
of these equations. We have studied such an Ansatz,
the chiral models (2.6), and shown that they have the
property that there exists a scheme in which the leading-
order string solutions are exact. This generalizes a num-
ber of previous results. The chiral null models include
the plane-wave-type solutions and the fundamental string
background which were previously shown to be exact.
But, as we have seen, they also include, e.g. , the solu-
tion describing traveling waves along the fundamental
string, and, after a dimensional reduction, the extremal
electrically charged dilaton black holes and the dilaton
IWP solutions. Moreover, there are interesting solutions
describing magnetic fi.eld configurations. It is rather sur-
prising that such a large class of leading-order solutions
turn out to be exact in bosonic, superstring, and heterotic
string theories.

One can, in fact, turn the argument around. Even the
leading-order string equations (analogous to Einstein's
equations) can be rather complicated when the dilaton
and antisymmetric tensor are nontrivial. By choosing an
Ansatz at the level of the string world-sheet action which
yields simple equations for the cr-model P functions, one
can easily find new solutions of even the leading-order
equations. The chiral null models are an example of this.
Some of the solutions we have discussed, e.g. , (4.6) with
a general K, appear to be new.

However, it is clear that not all of the solutions of
the leading-order equations can be obtained from chi-
ral null models. The chiral coupling, which is an impor-
tant feature of these models, leads to a no-force condition
on the solutions, and the possibility of linear superposi-
tion. This happens only for a certain charge to mass
ratio which typically characterizes extreme black holes
or black strings. Furthermore, we have obtained only
four-dimensional black-hole-type solutions with electric
charge. Extreme magnetically charge black holes do not
appear to be described by chiral null models.

We have considered examples of chiral null models
with a flat transverse space. As we have remarked, it
is straightforward to extend this class of models to any
transverse space which is itself an exact conformal field
theory. It may be interesting to explore the new solutions
(with nontrivial mixing of "spacetime" and "internal" di-
rections) which can be obtained in this way.

An important open problem is to study string propaga-

tion in the backgrounds discussed here. This will improve
our understanding of the physical properties of these so-
lutions in string theory.
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APPENDIX A: GEOMETRICAL QUANTITIES
FOR THE CHIRAL NULL MODEL

1. Generalized connection

The classical string equations for a o model,

L = C„„(x)Ox"Bx, C„„=G„„+B„ (Al)

are naturally expressed in terms of the generalized con-
nection with torsion:

BBx"+ I'" „(x)Ox"Bx"= 0

or (A2)

OBx + I'+„„(x)Bx Bx" = 0,

(A3)

In the case of our model (2.7) x~ = (u, v, x') and

Guv ——2F, G„; = FA;, G„„=FK
G.v =0, G;, =b;, ,
Gtl, v 2F—1 Gtc2 Gtctc 0 Gvi

G"" = 4(A, A* —P K) G'~ = h'~

Gv; =0,

= —2A',
(A4)

C„v=F,
C,„=O,

C.„=O, C„, =2FA;,
C„„=FK,

Cv;=C;„=0, C =0, C~ =b~. (A5)

We shall use the definitions

h(x) = zlnE(x), X,~ = O, A,. —B,A;,
(A6)

K = K(x, u), A; = A;(x, u) .

The corresponding components of the connection are
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i"„,=20,I, i"„=r"., =i"„„=r"„„=0,

I" „„= FB—*h,, I" „„=FB„A' —-8'(FK),

r'„, = —A, a'F —FW,-, r'„„=I",„=0,

I', = 28,h,

i', = 20,A~ + 4A~O, h,

1';„=B,K+ 2KB;6,

I'" „;= 0;K —2KB,6 + 2A, A~ 0.F —2FA~ T;

i'" „„=A'8;F,

turns out that the holonomy group of I' „ is an Abelian
(D—2)-dimensional "null" subgroup of the Lorentz group
SO(1, D —1). The holonomy group of I'+„ is not spe-
cial for generic functions F, K, A, . It becomes the Eu-
clidean group in D —2 dimensions when F = 1 and re-
duces further to its rotational subgroup SO(D —2) when
F =K= I, A; =A;(x).

It is easy to argue that a special holonomy of the gener-
alized connection I' „„in (A2) is a direct consequence of
the presence of a chiral current in the o' model (Al) (for
a related more general discussion, see [53] and references
there) .

If one introduces the vierbeins and de6nes the di8er-
entials (or "currents" )

8 = e„Bx", 8 = e„Bx", G„„=g „e„e", (A10)

where g „ is the tangent space metric, then the string
equation {A2) can be written in the form

00 +~ „„Ox"0"= 0 or 00 +~~„„Ox"0"= 0,
(All)

where u+ „are the generalized Lorentz connections

I'" „„=B„K—2FA*0 A; + A'B, (FK), I'" „„=0. u+ „——e& F+ „e"„+e& 0 e„. (A12)

{A7)

It is straightforward to compute the curvature tensor cor-
responding I +„„(note that the torsion here is a closed
form):

In the case of (2.7) one may choose [the tangent space
indices take the values m = (u, v, i)]

8" = FOu, 0 = Ov+ KOu+ 2A;Ox', 0' = Ox',

(A13)
"A "A "A

pup pvp( +pv) & &p~p +~p~p

We get

so the Lagrangian (2.7) takes the form
~As~

I. = 8"8"+ 8'8' + o.'7ZQ(x) . (A14)R"„=0,

R—ivy
= 2F R—ujv = —20~0&k,

R',„,=0, R"„„.=0, R"„„,=0,
Then the existence of the null v isometry implying 00" =
0 tells us that w" = 0, i.e. , that the connection w has
a reduced holonomy.

Defining the connection one-forms (iI„-„- = —,iI-,.-. = 8;-)

R"„„-= —2FA'O, t9~h, ~+mn = gmp~y „~& = —~+am & (A15)

B;„-= 2F B'„-„
= 20;O„A~ + 40,hO„A~ —2KB,O~h —0;0~K

—28,.hB~ K,

R; -„=—2F R' „.„=20,&~g + 40;h&~I, + 4AI, O~B,h
—4A. OI, O.h (A9)

we And ~ - = ~;.-. = 0, and

„-;. = 8;hdtv+ (20;K —B„A, + KO;h)du

+(X;, + 2A, B;I )dx', (A16)

Note that the product of the curvatures R & R
vanishes.

2. Special holonomy

The expressions for the curvature (AQ) reflect holon-

omy properties of the generalized connections I'+„. It

In the case of the E model [1] one has two null chiral cur-
rents (u and v are on an equal footing) and so both "left" and
"right" connections should have the same properties. Note,
however, that our choice of vierbein in (A13) is not symmetric
in u and v so an extra Lorentz transformation will be needed
to relate ~ to w+.
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(A17) 3. Parallelizable spaces and connection to WZW
models based on nonsemisimple groups

„;.= (-'B,K —B„A,)du, ~~„;. = FB;hdu .

Since the algebra of the Lorentz group SO(1, D —1) is
generated by M = M„-„-, I-. = M-=, 8- = M--. , M-. -.

ua& a ex~
satisfying, in particular,

[M, M;-.] = 0, [M, L;]= L.;, [M, R;]= . R;—
[L; , R ].= 2-b. ;.-.M + M;.;. ,

(A18)
[M;.-. , L„-] = 4Lg l;i.)„, [M-;-. , R„-] = 4R(, il ,)„-. -.

[L;L-]= .[R;., R ]=0,-.

—D,2
= B,hdv+ (W;,. + 2A, B,h)dx~, .

t9, 6 dx', ~+-,--- ———ET;~du,
—E 8;hdu, ~+,-. ——EB,hdu .

(A19)

When A; = 0 the holonomy algebra of ~+ becomes the
(2D —3)-dimensional nonsemisimple subalgebra of the
Lorentz algebra generated by L;. and B;..

A special holonomy is known [50,51,48] to be related to
the presence of extended world-sheet supersymmetry in
the supersymmetric extensions of the 0 models. In fact,
some of the models (2.7) (which, in particular, admit a
complex structure) have extended supersymmetry (see
Sec. VI). Let us note also that special holonomy does
not guarantee, by itself, conformal invariance, since for
that the dilaton is crucial as well. Still, it is related (in a
proper renorinalization scheme) to the on-shell finiteness
of our models on a Hat world sheet.

we conclude that the holonomy group of ~ is equiva-
lent to the noncompact Abelian subgroup of the Lorentz
group generated by M~,-. (it is "null, " having zero norm
associated with it). The holonomy of ~+ is not special
in general.

Let us now consider some particular cases. When
E =const we And that u+„-- ——u+„,-. ——0 and thus the
holonomy algebra of w+ reduces to the Euclidean alge-
bra generated by M;. -. and M„-;-. It reduces further to the
algebra of SO(D —2) when K = 1, A; = A;(x) [i.e. , in
the case of the model (4.10)].

In the case of the generalized FS solution related to
the black-hole-type solutions (4.7) we have K = F
A, = A;(x) in (4.4) so that the nonvanishing components
of the connections are

One may be interested in which of our spaces are paral-
lelizable with respect to the generalized connection, i.e. ,
have R"„„=0 [and thus R+„„——0; see (A8)]. One ex-
pects parallelizable spaces to be related to group spaces
and indeed this is what we find.

Since the string naturally "feels" the generalized con-
nection with torsion, the vanishing of the generalized cur-
vature is the analogue of the fatness condition in the
point-particle theory. In particular, B~ = 0 means that
locally I'+ ——f+„"Bf+ . Then (A2) implies the ex-
istence of D chiral and D antichiral conserved currents
f"„(x)Bx"and f+„(x)Bx"

As follows from (A9), a necessary condition for paral-
lelizability is t9;Bjh = 0, i.e. , 6 = 60+p;x'. Then the two
remaining conditions take the form

jI" + 2p'+jIc

(A20)

B",.„=2t9, B„A~ + 4p;8„A~ —O, 0~K —2p;0~K = 0 .

E= 1, K=O, A; = —2T;,-x (A21)

These spaces can be interpreted as boosted products of
group spaces, or, equivalently, as spaces corresponding
to WZW models for nonsemisimple groups. To show this
one should first put T,~ into the block-diagonal form by
a coordinate x' rotation, so that its elements are rep-
resented by constants 'Hq, . . . , QIDy2 ~j and the corre-
sponding Lagrangian (4.10) is (we split x into pairs rep-
resenting two-planes; a, 6 = 1, 2)

[D/2 —1]

L = BuBv+ ) ( R, e gz, BuB'z, + Bz,Bz .) . (A22)
s=1

The erst nontrivial case is that of D = 4, i.e. , T b ——'Re b.
The corresponding model (xi —r cos 0, x2 ——r sing)

In view of the gauge freedom (2.8) we may set K = 0.
If p, g 0 the solution is A; = C;(u)exp( —2p~z~). By
redefining the coordinates v' = v + exp( —2p;x')g(u),
x" = x' + tv'(u), the corresponding model can be trans-
formed into the product of the SL(2, R) WZW model [cf.
(B7)] and RD

The case of p; = 0, i.e. , E =const, is more subtle.
The solution is A; = C;(u) ——X;~x~, W;~. =const. One
can further eliminate C, by a coordinate transformation
v' = v + q(u) + s, (u)x', x'* = x' + tv'(u). We are finally
left with the model [cf. (4.10)]

L = &univ + +E'obx Bx 0u + Ox Bx~
= BuBv + Hr 808u+ BrBr + r 8000, (A23)

"ln the absence of torsion the irreducible holonomy groups
(or "special geometries") on nonsymmetric spaces have been
classified [57]. No systematic classification seems to be known
in the torsionful case. We thank J. De Boer and G. Pa-
padopoulos for helpful comments on this subject.

is equivalent to the Ez WZW model of Ref. [19] (note that
'R can be set equal to —1 by a rescaling of u, v). In fact,
the coordinate transformation [19,58] xi ——yi + y2 cos u,
x2 ——y2 sinu, v = v' + yiy2 sinu puts (A23) in the form

L = BuBv' + ByiByi + By2By2 + 2 cos uBy2Byi i (A24)
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I = BuBv+ OrBr + r'(Bg+ A)(BO+ A)
+'Rr Ou(OO+ A) + ABO —ABO, (A25)

where 0 is the dual coordinate and A, A are components
of the two-dimensional (2D) gauge field. Shifting A by
—'RBu and v by 'Be we get a model which is equivalent
to the flat space one. The same transformation can be
done independently for each plane. The original 0. model
(A21) is thus related to a flat space one by a combina-
tion of duality, coordinate transformation, and "inverse"
duality. If, however, the true starting point is the "dou-
bled" or "gauged" model (A25), then the transformation
to the model corresponding to the flat space is just a
coordinate transformation on the extended configuration
space of (u, v, r, 8, 0, A, A).

4. Leading-order conformal invariance equations

The standard leading-order conformal invariance con-
ditions are

R „+2D „D /=0, (A26)

where R~~ = R+ ~
——R+„& and D~„are the Ricci

tensor and covariant derivative for the connection I'+ „

which is obtained from the RxSU(2) WZW action by
a singular boost and rescaling of the level k or n' (see
[59]). If s is a timelike coordinate of the R factor and g
is an angle of SU(2) one should set s = u, g = u + ev,
rescale k and y,. by powers of e, and take e to zero. The
D = 5 model (A23) is equivalent to the product of the
D = 4 model and a free spacelike direction. The D = 6
model (which contains two sets of planar coordinates x, ,

s = 1, 2) is equivalent to the nonsemisimple or boosted
version of the SL(2, R) ~, xSU(2)i„WZW model (see
Eq. (4.16) in [59]). The required coordinate transforma-
tion is @i ——u, g2 ——u+ev, etc. The nontrivial parameter
'Ri/'R2 is equal to the ratio of the levels ki/k2.

The next nontrivial model is with D = 8. It can be
obtained by boosting the SL(2,R) g, xSU(2)g, xSU(2)i„.,
WZW model (@i ——u, g2 ——u + ev —eA, gs ——u + eA)
with the direction A decoupling in the limit e ~ G. All
higher D models are related to similar WZW models
based on direct products of SL(2, R) A, , SU(2)A, , and R
factors, or, equivalently, on corresponding nonsemisimple
groups. The parameters 'R, are essentially equivalent to
the rescaled levels A: of the factors.

Finally, it is interesting to note that all the models
(A21), like the D = 4 model (A23), can be formally
related to the flat space model in the same way as this
was shown [60,58] for the D = 4 model of [19]. In fact, let
us consider one pair of planar coordinates x and gauge
the rotational symmetry in the plane. We get the model

[the symmetric and antisymmetric parts of (A26) give
equations for G„„and B„„].Computing the Ricci tensor
from (A9) one finds

R

R

R

R

—FB'B,h, , R;.= —2t9;B.h,
R zv=R —vp, =p

F(—O'O;-K+ B'hB;K+ KO*O;h

—O*O„A; —2B*hB„A,),
F(—B,X~; .+ 2O, h&'; + 2A;O'0, h) . .

(A27)

Then (A26) implies

B;B,—h+ B. ,B,Q = 0, O;B„P = 0,

P(x, u) = P(u) + b;x' + h(x),
(A28)

and finally we get the same relations as in (5.16) and
(5.17):

1g2F—1 + gzg F—1 P 1g yzg + b yzg G

(A29)

APPENDIX B: GENERAL D = 3 CHIRAL NULL
MODEL

As was shown in [1] the generic D = 3 F model (2.3)
is equivalent to a special [SL(2, R) x R]/R gauged WZW
model and can also be identified with the extremal limit
of the charged black string solution of [61]. Here we shall
consider the generic D = 3 model belonging to the class
(2 7):

Ls ——F(x)Bu[Ov + K(x, u) Bu + 2A(x, u) Ox]

+BxBx + o.' 7ZQ(x, v) (Bl)

Since the transverse space here is one dimensional, one
can set A = 0 by a transformation of v [see (2.8)]. The
functions F, K, and P are then subject to [see (2.10)—
(2.12)]

BE =2bB F B K=2bOK —4E B P

P = P(u) + bx + —,'lnF(x) . (B2)

Assuming for simplicity that K and P do not depend on
u we get the solutions

i =a+me, K =a'+m'e =c+nF (x),
(B3)

—2B K + b*O;K + O'B„A, —2b*B„A, + 2F B„p = 0 .

(A30)

This relation is only a forrnal one since v is assumed to be
noncompact while 8 has period 2'.

so that by shifting v we finish with the conformal D = 3
model

Ls = E(x)OuOv + nBuOu + BxOx + n'7ZQ(x), (B4)
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= a+ me, P(x) = Po —&in(ae + m) .

(B5)

a, n, m are arbitrary constants which take only two non-
trivial values: 0 and 1 (the —1 case is related to the +1
one by an analytic continuation). In what follows we
shall set m = 1. The n = 0 model is the E model dis-
cussed in [1]. In what follows we shall keep n general,
thus treating both n = 0 and n = 1 cases at the same
time.

The solution (B3) with a = 0 has a constant dilaton
and thus the corresponding model must be equivalent
to the SL(2, R) WZW model (since there are no other
P =const solutions in D = 3 in a properly chosen scheme
[1]). In fact, the a = 0 model

dimensional gauge field, one gets the n = 0 model (B4)
with a = p [1]. The subgroup which is to be gauged to
get the n = 1 model is

u -+ e'~'u, v -+ v + e, r ~ r + ~ne, y ~ y+ pe .

(810)

In view of (B8) this is just the translational symmetry
(B9) (with e ~ b e) of the action (B6) (with ByBy
added). Since (B6) is a coordinate transformation of the
WZW action (B7) we can start directly with (B6) in the
gauging procedure:

Lawzw = e *(Bu + A) (Bv + A) + n(Ou + A) (Ou + A)
+BxDx + (Oy + pA) (Oy + pA) . (B11)

Ls ——e BuOv + nBuBu+ OxOx + n'Rgo, (B6) Fixing y = 0 as a gauge and integrating out A, A we get

Lwzw = I (e '"auav + arar), (B7)

by the coordinate transformation [u', v' stand for the co-
ordinates in (B7)]

is related to the SL(2, R) WZW Lagrangian written in
the Gauss decomposition parametrization (we follow the
notation of [1] and set a' = 1),

p2~ —2b~ ~p2
LGwzw = OtGOv + t9tLt9'llp2+ n+ e —2b~ p2+ ~+ ~—2b~

+Bx8x+ o'R[P', + —,'ln(p'+ n+ e "*)].
(B12)

The redefinition

1 2b~nu i
b ~ 2b~

2~n
v' = (1+np ')'~'

~
v+, u

[p'+ n
(B13)

r = bx+b~nu, b = 1/k .
(B8) puts this action into the desired form (B4) and (B5) with

a=(p'+n)

1. Gauged WZW model interpretation

Like the n = 0 model, the n = 1 one (B6) can be re-
lated to a special [SL(2, R) x R]/R gauged WZW model.
This provides an explicit illustration of our claim that the
chiral null backgrounds are exact conformal models.
The SL(2, R) x R WZW model written in the Gauss
decomposition parametrization, i.e. , (B7) with an ad-
ditional B term Byway, has the following obvious global
symmetries: independent shifts of u, v, y and shifts of r
combined with rescalings of u and (or) v. Gauging the
translational subgroup

2. Extremal black string interpretation

ds' = —fi(r')dt '+ f2(r')dy '+ h(r')dr ', (B14)

The generic D = 3 I" model [i.e. , (B4) with n = 0] can
be considered as an extremal limit of the charged black
string solution of [61]. Here we point out that a similar
statement is true for the n = 1 model (B4). This is a
particular case of the relation between the model (2.21)
and the charged black string solution discussed in Sec.
IID [see (2.22)]. Starting with the nonextremal charged
black string o. model which has the metric

u M u + e, v ~ v + e y ~ y+ pe p+ const (B9)

fixing the gauge y = 0, and integrating out the two-
(B15)

h = (4r fif2), Mi ——M, M2 ——

It is very likely that there exists a generalization of the
nilpotent gauging procedure of Ref. [5] which makes it possible
to identify not just one D = 3 model but a whole subclass
of the chiral null models with F = g. e " (n, are the
simple roots of the algebra of a maximally noncompact Lie
group of rank d = D —2) with the gauged WZW models.

It may be useful to recall that the subgroup that leads
to the charged black string of [61] is [1] u m e'u, v ~ e'v,
P ~P+6, @~@+PE
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boosting the solution

X/2

t=Av+(2A —A )u, y=A u, A—=
~

—1
~

1 1 1 ™1
qM, )

(B16)

the model (B4) with the metric

( Ml
ds = 2

~

1 —,
~

dudv + du + h(r')dr

= F(x)du dv + du + dz (B17)

and then taking the extremal limit M -+ Q, i.e. , Mi -+
M2 or A ~ 0 in the resulting 0 model, one finishes with

So the generic u-independent D = 3 chiral null model
can be obtained as an extremal limit of a black string
solution.
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