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Boundary terms in the Nambu-Goto string action
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We investigate classical strings defined by the Nambu-Goto action with the boundary term added.
We demonstrate that the latter term has a significant bearing on the string dynamics. It is con-
firmed that new action terms that depend on higher order derivatives of string coordinates cannot
be considered as continuous perturbations from the starting string functional. In the case when
the boundary term reduces to the Gauss-Bonnet term, a stability analysis is performed on the ro-
tating rigid string solution. We determine the most generic solution that the Auctuations grow to.
Longitudinal string excitations are found. The Regge trajectories are nonlinear.

PACS number(s): 11.25.—w

If some physically motivated open string model is con-
structed, one of the first problems we are faced with
is to postulate properly the boundary conditions. In
general, open string boundary conditions are dynamical
equations to be held at string ends and follow from the
self-interaction between the string and its ends. Their
analysis can play a profound role in the understanding
of open string dynamics. Referring to the context of
hadronic physics, it is the question of how quarks cou-
ple with the string that approximates here an infinitely
thin color Aux tube. A naive way is to try to put some
additional pointlike objects at the string ends, but we
must remember that in the fundamental model quarks
are sources of the chromoelectric field. Then, in the ef-
fective string description it is natural to expect also some
reparametrization-invariant boundary string terms in the
e8'ective string action functional that describes the self-
interaction between the string and its ends, without re-
ferring to any additional objects inserted on the string.
In this paper, we consider the case of the Nambu-Goto
string with self-interactions with string ends taken into
account.

A simple noninteracting Nambu-Goto string sweeps
out a timelike surface of minimal area in four-dimensional
Minkowski spacetime. The minimal surface can be
parametrized in such a way that nonlinear equations of
motion turn into linear wave equations, and the string
model becomes mathematically tractable. It was found

[1] that the most general model of strings, which gives
critical world sheets of minimal area, is defined by the
action

~ = —p& ——~cB —P~ch,
2

where p is string tension, A denotes world sheet area,
and n and P are dimensionless parameters (p, n ) 0).

Sc,B and Sch are pseudo Euclidean Gauss-Bonnet and
Chem terms (related to Euler characteristics and surface
self-intersections in Euclidean geometry).

String equations of motion derived from (1) are
Nambu-Goto equations supplemented by some edge con-
ditions, which depend on the action parameters. We see
that additional terms in (1) do not modify bulk string
equations, so that the string interacts only with its end
points.

The string action (1), which depends on two arbitrary
dimensionless parameters, represents a generic form al-
lowed by reparametrization and Poincare symmetries [1]
and the requirement that the variational problem results
in minimal surfaces. This statement is true as long as we
do not consider additional objects that could couple to
strings, such as internal fields existing on the world sheet
or constant external fields in the target spacetime. Obvi-
ously, there exist also "pointlike" actions, being function-
als of the trajectories of string end points. The simplest
example is given by [2—6]

Sp ———mLi —mL2,

where I i and L2 are invariant lengths of the trajectories
of string ends. We have here two massive pointlike par-
ticles attached to the string. Such "nonstringy" terms
modify edge conditions in the variational problem for
critical string world sheets, but they cannot be repre-
sented as reparametrization-invariant surface terms aiid
do not modify local distributions of energies, momenta,
and angular momenta along strings. Let us recall again
the following statement [1]: for the Nambu-Goto string,
if we do not introduce additional dynamical objects to
couple with the string then there are only two possible
invariant terms that can describe the (self-)interaction
between the string and its ends. This interaction is char-
acterized by two dimensionless couplings n and P.

The choice of the world sheet parametrization can be
de6ned by the conditions [5]
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(x + x')' = 0,

(x+ x') = ——q,4
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where the overdot and the prime stand for derivatives
of world sheet coordinates X„(T,o) with respect to in-
ternal string parameters w and o. The parameter q can
be considered as a momentum scale unit. This param-
eter is freely adjustable. In the above parametrization,
bulk equations of motion get linearized and their general
solution reads

X„(T,o.) = Xl.„(T+ 0) + XR„(7.—o).

To solve the boundary problem at the string ends o =
+ 2, we make use of the correspondence between minimal
surfaces X„parametrized according to (3) and solutions
C of the complex Liouville equation

C —C =2q c

The real part of the Liouville field is related to the only
independent component of the induced world sheet met-
ric (conformal mode) in the orthonormal gauge, while the
complex part describes external geometry, i.e. , an immer-
sion of the world sheet in four-dimensional flat spacetime.
A detailed analysis of the geometric approach to four-
dimensional string models together with a derivation of
all formulas used throughout this paper can be found in

Ill
The correspondence between solutions of Nambu-Goto

string equations and solutions of the complex Liouville
equation provides us a very useful framework to study
minimal surfaces. To visualize this correspondence, we
present general solutions both to Nambu-Goto equations
together with (3) and to complex Liouville equation (5)
in the common form

4 fr', (T + &)fR(T ~)
V' [f~(T+ &) —fR(T —&)]' '

(I+
l
fL„Rl', 2« fL„R, 2Im fr„R, I —lfL„Rl'),

I,R

1
e

—i8e

where fr, and fR are arbitrary complex functions.
As the derivatives of left and right movers are lightlike

vectors, we can interprete fl, and fR as their coordinates
on the complex plane, on which the stereographical pro-
jection of the sphere of null directions in four-dimensional
spacetime has been performed. Let us also note that
modular transformations of fr, R induce Lorentz trans-
formations of world sheet coordinates while the Liouville
field 4 remains unchanged.

Now, we can present edge conditions following from
the string action (1) as [1]

the velocity of light and tends to it in the limit a —+ 0
(A ~ 1).

We can compute the energy and the angular momen-
tum of the rotating string (9) (for relevant general for-
mulas see Ref. [1]):

pIIIr f sin IrA l

pq vr sin 7rA sin 2vrA1+2
2A3 mA 2~A

The total momentum and other components of the total
angular momentum vanish.

The pertinent Regge trajectory is plotted in Fig. 1.

ImC'=0 for o = +—,
2

'

where the angle parameter 0 C [
—vr, Ir] is defined by

0 Ptan —=—
2 o.'

(7)

(8)

c)

In this paper we consider only the case 0 = 0 (P = 0).
This model has been investigated earlier in papers [4, 7, 8].
Then, there exists a well known solution corresponding
to a rotating rigid rod,

X = —(AT COS AT Sill Acr Sill AT Sill AO 0),

where the angular frequency A satisfies the relation

A2

cos 2

Note that the velocity of the string ends is smaller than

E2

FIG. 1. Regge trajectories for various string models: (a)
Nambu-Goto string, (b) Rebbi- Thorn-Chodos string with
massive ends, and (c) string model with Gauss-Bonnet bound-
ary term.
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Regge trajectories represent the angular momentum J
versus the squared mass E relationships for given string
configurations. We have compared trajectories for a ro-
tating rigid rod obtained (a) in the standard Nambu-
Goto open string model and (b) for the Nambu-Goto
string with massive ends (due to the pointlike terms
(2)—see Ref. I2]). Asymptotically, in the region of large
masses, the trajectory can be approximated by the for-
mula

( 1/4

2~p 4 qvrspsp

We see that it is slightly raised in comparison with the
Nambu-Goto open string trajectory. At low masses, un-
like the case (b) where the appearance of pointlike masses
at string ends curves the trajectory downwards and the
intercept is lowered, we find here approximately a linear
dependence:

One can prove that the imaginary part of Ci'z must vanish
at any world sheet point. Thus the Liouville field 4z is
real. We can separate variables to find a solution sat-
isfying Eq. (16) together with the boundary conditions
(is):

@i(r, o.) = T(r)Z(cr).

We obtain a system of ordinary differential equations,

T+tT=0,
( d'

+V(cr)
~

Z=EZ,

(20)

(21)

2A2
V o.) =

cos2 Acr

The solution C ~ is subject to the following boundary con-
ditions at o. = +2.

4i ——0,
Im4' = 0.

It is interesting to note that the energy distribution along
the string has also been changed. For the Nambu-Goto
rotating rigid string the energy density is constant. In
the modified model, the energy density (plotted in Fig.
2) is given by the formula

pq 4 A7r f 3 2p' = —i+ cos'
A 2 (cos4 Ao. cos2 Ao. )

(14)

We now turn to study small fluctuations around the solu-
tion (9). This solution is associated with a static solution
of Liouville equation (5):

1 A2
e

q2 cos2 Ao.

A small perturbation C i from the static solution Co sat-
isfies the linear equation

together with the boundary conditions

7r
Z = 0 for o. = +—.

2
(22)

The Schrodinger equation (21) with the potential (17)
can be exactly solved. The solutions exist only for dis-
crete values of the separation constant cu = w (n
1, 2, . . .), being roots of the equation (see Fig. 3)

The solutions of the Schrodinger equation (21) that obey
periodic boundary conditions (22) can exist only if F )
2A2, where 2A is the minimal value of the potential V(cr).
It implies that the separation constant F must be pos-
itive. For convenience we introduce a new variable u
defined as

4i —4"i = —V(cr)4i, (i6)

vr(~„+ n) vrA~„tan " = %tan
2

'
2

(23)

where we have denoted

3.5

2. 5

2
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FIG. 2. The shape of energy density distribution along
the string.

FIG. 3. Graphical solution of the equation A tan ( 2 )
stan [

i + l] for eigenfrequencies w of fluctuation modes.
The parameter A is a 6xed value of angular frequency the
rigid rod rotates with.
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The general solution of Eq. (16) satisfying boundary con-
ditions (18) and (19) reads

pqvr ( sin vr A )1+
A g ~A )

n7r
Ci ——2) D sin(w r+ p ) tanAo cos w o +

2

Sin &710 + ) (24)

OO
pq7r 2 2 sin 7r A+ p3 n~n ~ +

sin 7r~
+2(—1)"+ cos sr A

fL, R = e

and the relations (6) go over into

4 +L R
2 Fl. —F~

2

(1,cos Fl, ~, sin FI, R, 0).g

2+L R

(25)

(26)

The static field Co corresponds to

(27)

while the first order fluctuations 4'1 are associated with
the corrections

F~l ~l = +) D„sin ~„(r+ rT) + (p„+, (28)
n=1

where plus and minus signs correspond to left and right
movers, respectively.

In contrast with the Nambu-Goto case, there appear
longitudinal excitations of the string. Moreover, only
such kind of fluctuations come out at the first order.
With the help of the formulas above, the total string
length L can be evaluated at some fixed time X:

A2L

2g

vrA . D„. (Au)„
sin — sin X + p

2 - cu2 —A2 ( q

, FirAi
x ur„+A +2A tan k2)

7r(cu„+ n) |'~A l
x cos cos

2 (2) (29)

Let us now calculate the contribution to the energy
coming from fluctuations. The general formula for the
total string energy reads

~0
2

1 1 l
do. , +

sin(FI, —FR)
L R

Straightforward calculations lead to the result

where D and p„are arbitrary real constants.
To visualize string world sheets that correspond to

Liouville fields 4 = 4'o + 41 we must employ the re-
lations (6). Taking into account that e is real, we can
make functions fl, and f~ unimodular (by some mod-
ular transformation it is equivalent to specifying some
reference frame in Minkowski spacetime). Then, it is
convenient to introduce new real fields I"L and I"R

One can easily check that the energy of fluctuations is
always positive. It means that the solution (9) is stable
against small perturbations. In fact, to calculate the total
string energy (31) up to the second order we need also
to consider second order corrections to the zero order
solution. It can be proved by straightforward calculations
that they do not contribute to the energy at the second
order.

Finally, we want to summarize our results. We
examined a classical string model in four-dimensional
Minkowski spacetime defined by the Nambu-Goto action
with some boundary term added. It warrants that criti-
cal world sheets are minimal surfaces, but some nonlinear
equations that are third order in time derivatives hold
at the string ends. It is evident from this paper that
additional terms to the action functional depending on
the second order derivatives of string coordinates cannot
be regarded as higher order corrections to the starting
Nambu-Goto action. In the limit of vanishing coupling
constants (n, P ~ 0) our model does not revert to the
original Nambu-Goto string model. There are still higher
order Eqs. (7) to be satisfied. This is an unavoidable
consequence of employing the theoretical framework for
string actions with second order derivatives. The num-
ber of boundary conditions for dynamical equations of
motion is doubled. The same is true for the number of
initial data necessary to formulate properly the Cauchy
problem. Roughly speaking, passing to dynamical mod-
els that are governed by the variational principle with
actions depending on second order derivatives of dynam-
ical variables doubles the number of independent degrees
of freedom.

A generic minimal world sheet model (1) has been in-
vestigated for P = 0. We have found a classical ground
state solution that corresponds to a rotating rigid rod.
Unlike the case for the analogous Nambu-Goto configu-
ration, the string ends move with a velocity smaller than
the velocity of light and the nonrelativistic limit can be
defined. It has been shown that the mass distribution
along the string has been changed. Regge trajectories in
this model are nonlinear. The ground state solution is
stable against small perturbations. Eigenfrequencies for
each fluctuation mode are found to be solutions of some
simple transcendental equation. The excitations give a
positive contribution to the total energy of the string.
Another interesting property is that perturbations do not
disturb the string from the planar motion; the shape of
the string lies in a plane. But its total length measured
in the laboratory frame oscillates, in contrast with other
classical string models [91.

This work was supported in part by the KBN under
Grant No. 2 P302 049 05.



51 BOUNDARY TERMS IN THE NAMBU-GOTO STRING ACTION 2895

[1] P. Wqgrzyn, Phys. Rev. D 50, 2769 (1994).
[2] A. Chodos and C.B. Thorn, Nucl. Phys. B72, 509 (1974).
[3] P.H. Frampton, Phys. Rev. D 12, 538 (1975).
[4] B.M. Barbashov and A.L. Koshkarov, Lett. Math. Phys.

8, 39 (1979).
[5] B. Barbashov and V.V. Nesterenko, Introduction to the

Relativistic String Theory (World Scientific, Singapore,

1990).
[6] B.M. Barbashov and A.M. Chervyakov, J. Phys. A 24,

2443 (1991).
[7] A.A. Zheltukhin, Sov. J. Nucl. Phys. 84, 311 (1981).
[8] B.M. Barbashov and A.M. Chervyakov, Dubna Report

No. P2-86-572 (unpublished) (in Russian).
[9] V.V. Nesterenko, Z. Phys. C 47, ill (1990).


