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Friedmann universes connected by Reissner-Nordstrom wormholes: Quantum effects
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In a model of a wormhole consisting of closed Friedmann regions connected by a Reissner-
Nordstrom black hole previously introduced, quantum effects developing in strong curvature regions
are investigated. The lack of appropriate theoretical instruments limits the analysis to a two-
dimensional section of the original model. We show that inside the wormhole, at the Cauchy
horizon, the two-dimensional curvature blows up stronger as compared to the classical case. The
resulting divergence is still mild enough for the tidal impulse to stay 6nite. The extension of this
result to four dimensions is, however, rather problematic.
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I. INTRODUCTION

In a previous paper [1] (hereafter referred to as paper
I) we introduced a simple model describing a wormhole
connecting two large cosmological regions having a closed
Friedmann geometry. The wormhole is represented as
a part of a Reissner-Nordstrom space-time. Unlike the
well-known Einstein-Rosen bridge, this wormhole does
not pinch off, allowing in principle an observer to travel
safely &om one universe to the other. As we have shown
in paper I, this eventuality is rather doubtful as the
Reissner-Nordstrom wormhole is highly unstable against
the accretion of cosmological matter onto the black hole.
This triggers the formation of a curvature singularity at
the Cauchy horizon of the wormhole. However, as the
tidal distortions acting near the Cauchy horizon on a
free falling observer remain finite, the character of the
singularity turns out to be very mild and the wormhole
appears to be traversable.

All our analysis, and therefore the conclusion, relied
on classical physics (general relativity). But as the cur-
vature grows up near the singularity, towards Planckian
values, one expects the infIuence of quantum effects to
become more and more relevant in this scenario. In the
absence of a coherent quantum theory of gravity, one
cannot hope to follow the evolution of the space-time up
to the point where the curvature actually reaches Planck
levels. One is confined to a study of quantum effects due
to fields other than gravity during the incipiently quan-
tum ("semiclassical" ) era when a classical description of
the space-time geometry still makes approximate sense
[2].

Even within this framework (i.e. , quantum field theory

in curved space-times) the study of vacuum polarization
and particle creation effects in our wormhole model (and
for black hole interiors in general) seems at the present
not yet feasible (see Refs. [3,4]) for a preliminary attempt
towards this direction).

In this paper we shall confine ourselves to an investi-
gation of quantum effects in a two-dimensional (2D) re-
duction (the so-called "s wave sector") of our wormhole
space-time, in the hope to get some insight on the real
theory. These kinds of 2D models are often proposed as
theoretical laboratory for investigating the fundamental
issues of black hole physics.

We shall in particular analyze the vacuum polariza-
tion induced in the wormhole by the presence of con-
formally invariant 2D fields coupled to gravity. This is
done by computing the expectation values of the associ-
ated stress-energy tensor operators which are shown to
be regular on the inner horizon but to diverge on the
Cauchy horizon of the wormhole.

Finally within the &amework of a 2D theory of semi-
classical gravity, we analyze in a self-consistent manner
the back reaction of the vacuum polarization onto the
space-time. Again the resulting geometry turns out to
be singular on the Cauchy horizon and the singularity
appears stronger than in the classical case.

II. THE WORMHOLE MODEL: CLASSICAL
THEORY

In this section we outline the classical analysis of
the Reissner-Nordstrom (RN) wormhole connecting two
Friedmann-Robertson-Walker (FRW) closed universes.
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ds = fpdt +—fp dr +r dO

fpdv —+ 2dvdr+ r dA (2 1)

The details can be found in paper I.
The space-time under investigation consists of a RN

black hole glued to a closed dust-filled FRW universe
along a spherical timelike thin shell Z comoving with re-
spect to the FRW geometry. The shell ends its trajectory
on the right-hand side (RHS) singularity r = 0 of the RN
metric (see Fig. 1).

The space-time admits a Cauchy horizon (CH) which
is located inside the inner horizon of the RN black hole,
both of them being regular and null hypersurfaces. As
Z is comoving with the cosmological matter there is no
energy flow &oxn the cosmological region onto the black
hole.

If one allows for the existence of an influx, here mod-
eled as a null fluid perturbation in the FRW region, the
RN geometry must be replaced by a charged Vaidya one
and dramatic efFects have been shown to occur at the
CH.

Let us first consider the RN-FRW junction along the
comoving shell Z as depicted in Fig. 1. The metric of
the RN region can be written as

or equivalently

ds, = a dv, (2dy —dv, ) + a sin ydA, (2.5)

where we have introduced a null advanced time v, as

df,
dvg = + dga(t, )

(2 6)

a is the scale factor and according to the Einstein equa-
tions it satisfies

(da, ) 2M
ddt) a (2.7)

with M = 47rp, as/3 = const and p, the energy density
of the cosmological fluid. The metric on the singular
hypersurface Z is

ds ~g
—— «+ —& (r)d& (2.8)

where 7 is the proper time along the shell and B(r) its
radius.

As the shell is comoving, y = yp ——const on E, and
the matching relations imply that

where

fp —1 —2mp/r + e /r (2.2)

R(r) = a(r) sin yp .

The advanced times v and v, are related on Z by

(2.9)

v is Eddington-Finkelstein advanced time, dO is the
usual line element on S, mp and e are the constant mass
and charge of the hole, respectively (mp ) ~e~). We shall
denote by rp the black hole inner horizon radius and by
kp its surface gravity:

(.
dv, fp(B) )

(2.10)

where an overdot means d/dr. Using the normalization
condition for the shell velocity this equation can also be
written as

rp ——mp —(mp —e ), kp ——2 2 1/2 (mp e )
Pp

The metric of the FRW region is

(2.3)

where

dv

dvA ~F —R
(2.11)

ds, = dt, + a—(t, )(dy + sin ydO ) (2 4) I' = [fp(R) + R']'~' (2.12)

and ~ = +1 such that

dt F= E'—
dr fp

(2.13)

We now allow for a null fluid flow from the FRW region
onto the black hole. Let us assume the influx to be small
enough so that it can be considered as a negligible per-
turbation in the FRW region, without any effect on its
geometry, and that it does not interact with the shell
which thus remains comoving (y = yp).

Relations (2.4)—(2.9) for the FRW and shell metrics
therefore still apply. However the RN geometry of the
black hole has to be replaced, because of the influx, by a
charged Vaidya solution: namely,

ds = dv(2dr —fdv) + r2d02, (2.14)

FIG. 1. Conformal diagram of part of the Reissner-
Nordstrom wormhole.

where now

f = 1 —2m(v)/r + e /r (2.15)
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The stress energy tensor of the in-going null fluid pertur-
bation is represented as

on the CH, the tidal distortion remains finite making the
wormhole traversable.

r*"=
4ma2 sin

(2.i6) III. QUANTUM EFFECTS: INNER HORIZON

where l* = —8 v, and L*(v„) is an unspecified luminos-
ity function (later to be taken as a constant for simplic-
ity).

The relation between the advanced times along Z is
now

dv 1 dB [1+gl + a f(dR/dv, ) ],dv, f dv,
(2.17)

where

dR (2M sinyp
dv, ( R (2.is)

It has been shown, in paper I, that the influx causes the
mass function m(v) entering Eq. (2.15) to cliverge to
—oo as one approaches the CH (v = vp or v, = 0). The
following relation can be obtained in the above limit for
a constant L, :

For the reason stressed in the Introduction, the study
of quantum effects is feasible only in a dimensional re-
duction of our model. We begin this study by consid-
ering the vacuum polarization associated with confor-
mally invariant massless matter fields propagating on a
2D section of our wormhole spacetime, obtained by set-
ting 0 = P = const in the line elements.

In this section we concentrate our attention to the re-
gion close to the inner horizon of the black hole where
the effect of the accretion can be considered small and
the space-time metric reasonably approximate by a RN
solution.

It is well known [2] that the inner horizon of a RN black
hole is suspected to be highly unstable under perturba-
tions of quantum origin. To show this, consider the 2D
section of the RN metric, Eq. (2.1), rewritten in terms
of two null Eddington-Finkelstein coordinates u, v:

m = —p*v, or m = —p(v —vp) (2.i9)
where

ds = —(1 —2mp/r + e /r )dudv, (3.1)

where p, = L2M sin yp and p = L, (24)
M sin

We quote also for later use the following relations valid
in the limit v, —+ 0:

and

u=t —r, , v =t+r, (3 2)

and

MB —sin ypv,
2

dv = Pv.'
dvc

(2.20)

(2.21)

Pg p dT o (3.3)

The expectation value (T b) of the stress-energy tensor
operator for conformally invariant matter field propagat-
ing on a 2D spacetime, described by a conformally flat
metric

or ds = —C(u, v) dudv, (3 4)

V —Vp = —V~ )
6 (2.22)

where P = M sinyp(4L, )
In spite of the divergence of the curvature at the CH

induced by Eq. (2.19), the metric is regular there and
can be approximated as

(T==) = —(»~) 'C'~'(C '~'), ==+ f(u) (3.5a)

(T„-„-) = —(12m.) 'C' (C '
) „-„-+g(v), (3.5b)

is determined by the conservation equations (Tb )=0.
and the trace anomaly. Namely in the conformal gauge
of Eq. (3.4) we have (see Ref. [2])

2
d82 = — d~dv + P2dQ2

r(u, v)
(2.23)

where we have introduced the null retarded coordinate u
such that

(r„-„-) = (r„-„-)= —(06~)-'cR .

B here is the 2D scalar curvature

(3.5c)

du = —m(v)dv —rdr . (2.24) R+ 4C (CC, „-„- —C,„-C,„-) .

Integration of this leads to

2
X/3—= 3p(v —vp) ' —u .

2
(2.25)

The regular behavior of the metric is an indication of the
mildness of the singularity: although tidal forces diverge

f and g are arbitrary functions of their arguments, re-
flecting the nonlocal character of (T b): they depend on
the choice of the quantum state in which the expectation
values are to be taken.

If the expectation values are taken in a state ~u, v), f
and g represent the expectation values of T-„- and T--,
respectively, evaluated in the ~uv) state, but normal or-
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dered with respect to the Iu, v) state. One can show that
f (g) can be simply expressed in terms of the Schwarzian
derivative of u (v) with respect to u (v).

For the 2D RN metric of Eq. (3.1) we have

(T„„)= (24~)-'I —,'+ ™;+2' 2'
+—,

I
+ f(u)

e4 )

3mo~2
p5

(3.7a)

(T„„)= (24vr) 2' 2

+—.
I
+ g(v)

3moe
p5

(3.7b)

(3.7c)

U = —exp( —kpu), (3.8a)

V = —exp( —kpv) . (3.8b)

One then finds that for both the above choices of quan-
tum state, the stress tensor behaves on rp(V = 0) as

Quantum states that appear to contain no quanta ac-
cording to inertial asymptotic observers in the past are
characterized by g(v) = 0. This because v modes e'
agree asymptotically with standard Minkowski ingoing
wave.

The quantum state describing black hole evaporation
(Unruh state) has g(v) = 0 and f(u) = (k+) (487r)
where k+ is the surface gravity of the event (exterior)
horizon of the black hole. If one is dealing instead with
black hole in thermal equilibrium with its own quan-
tum radiation (neglecting spontaneous discharge) one has
f (v) = g(u) = (48ir) (k+), which characterizes the
Hartle-Hawking state.

In order to investigate the behavior of (T r,) on the
inner horizon (r = rp), one needs to express the stress
tensor components in coordinates well behaved on this
horizon, namely, Kruskal U, V coordinates related to the
u, v one as follows:

(T„„) regular function . (3.10c)

From Eqs. (3.9) one concludes that a free-falling observer
measures an (exponential) infinite flux of negative-energy
radiation propagating inwards the hole along the inner
horizon of the RN black hole. This flux can be regarded.
as negative-energy Hawking radiation at a temperature
proportional to the surface gravity ko of the inner hori-
zon.

In general one can show that, for an arbitrary state,
(T b) is regular on the inner horizon if the following condi-
tion is are satisfied (Ref. [5]): (i) (T„„)vanishes at least
as (r —rp) for r -+ rp, (ii) (T„„)vanishes as (r —rp)
for r M rp, (iii) (T„„)regular as r -+ rp. It is evident
that condition (i) is not satisfied by the Unruh and the
Hartle-Hawking state and therefore the inner horizon for
an asymptotically flat RN spacetime is highly patholog-
ical.

Let us come back to our original model. Asymptotic
flatness is not a characteristic of our space-time, as the
RN wormhole is immersed in a closed FRW universe.
We thus have to decide which is the appropriate state for
discussing the quantum matter fields in the wormhole. A
careful analysis of the boundary conditions will help us to
answer this question. We shall show that for a large class
of quantum state, which we argue to contain the relevant
one for our model, the corresponding (T g), unlike the
previous cases, satisfy all the above requirements.

The basic point to note is that in our spacetime the
ingoing modes entering the wormhole originate in the
cosmological region and then propagate through Z in the
wormhole. It appears therefore quite natural to assume
that the relevant quantum state for the matter fields in
our model should be one of the conformal vacuum defined
in the cosmological region.

As a first try let us consider the "v, vacuum, " i.e.,
the one constructed in terms of ingoing v, modes. This
implies that the corresponding g(v) function specifying
the state in Eq. (3.7b) should be expressed in terms of
the Schwarzian derivative of V, with respect to v.

For computational reasons it appears easier to intro-
duce the inverse function v = B(v, ) and to use well-
known properties of the Schwarzian derivative. We write
g(v) as

(Tv il) —o.V (3.9a) f Bll ) Bill
g(v) = —(24~) ' -I B, I

—
B, (B') '

2 qB') B' (3.11)

(Trav. ) regular function, (3.9b)

(Trr~) regular function, (3.9c)

(T-) = —~ (3.10a)

(3.10b)

where o; is a positive constant, taking the value (48vr) kp2

for the Unruh state and (487r) (kp2 —k+) for the Hartle-
Hawking one.

Rewritten in terms of the original u, v coordinates the
limiting behaviors are

@ll
= H(eF —R) —(eF —R), (3.12a)

=
I

—+ H
I
(eF —R) —3H(eF —R)(eF —R)

(R
gR

+2 (eF —R) —(eF —R) (eF —R), (3.12b)

where a prime means d/dv, .
All quantities appearing in Eq. (3.11) should be calcu-

lated on the shell Z separating the RN region from the
cosmological one. In particular B' is given by Eq. (2.11).
Explicit calculation then yields
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where we have introduced the Hubble parameter H =
a/a.

The complete expression of (T s) is thus given by Eqs.
(3.7) where g(v) is determined by (3.11) and (3.12) and
f (u) can be chosen such that (T g) is regular on the event
horizon f+ like in the Unruh and Hartle-Hawking state,
i.e. , f(u) = (48vr) k+. The striking feature is that the
quantum state so defined gives a (T &) which is regular
on the inner horizon rp, as we shall see.

Taking the limit r ~ ro in Eq. (3.7b), we have that
the first term in (T„„)approaches —(48~) iko. In order
to take the same limit in g(v), one has to note that since

fo ( 0 and e = —1, eE —B -+ 0, then B"/B'z -+ ko
and B"'(B') + 2ko. It follows that g(v) ~ (48vr) ko
which cancels exactly the contribution of the other term.
One can then show that (T„„) + 0 like (r —ro)

As also (T„„)~ 0 like (r —ro) and (T„„)is regular
in the above limit, we can conclude that (T g) calculated
in the above state is regular on the inner horizon of the
wormhole as the regularity conditions (i), (ii), and (iii)
are all satisfied. This should not be regarded as a mirac-
ulous cancellation which makes the "v, vacuum" rather
peculiar. The same result holds for any conformal vac-
uum defined in the cosmological region.

Suppose for instance that we deGne a "cosmological
vacuum state" with respect some other null advanced
time v in the FRW region related to v, by v, = C(v),
where C is a function of its argument regular for r m rp.
This state differs from the previous v, one by the contri-
bution of a conserved massless radiation flowing inwards.
The function g(v), entering (T„„), which characterizes
this state is now given by

(Bnz q
Bnt- f Cfl2 $ CIII

g(v) = —(24~) ' -I
I

— (B') ' —(24~) ' -I
I

— (C') '(B') '
2 g

B' ) B' 2 q
C' ) C' (3.13)

In the limit r ~ ro, (B') ~ 0 and the additional term
vanishes, recovering the previous result.

(T„„)= (16~)-'r-' + y(u),

(T„„)= (12') 'm/—r4,

(4.4b)

(4.4c)
IV. QUANTUM EFFECTS: CAUCHY HORIZON

In the previous section we established the regular be-
havior of (T &) on the inner horizon for a large variety
of quantum states. Here we make a similar analysis for
the Cauchy horizon of the wormhole and the disappoint-
ing conclusion we reach is that quantum effects will not
remove the singular behavior existing in classical theory.

It has been shown in Sec. II that the influx from the
cosmological region has a dramatic effect on the gravita-
tional Geld near the CH: it drives the mass function of
the metric to diverge to minus infinity. Nevertheless the
metric is regular there and the 2D section is given by

V —Vp = —V
6

6

Using Eq. (3.11) one gets, for this quantum state,

(4 5)

g(v) = — p v, ' (4.6)

where m' = dm/dv.
I et us evaluate the expectation values in the v, vac-

uum. One then needs the Schwarzian derivative of v,
with respect to v. The relation between the two can be
approximated near the CH by Eq. (2.22): namely,

ds = — dudv,2= — 2

r(u, v)

where Isee Eqs. (1.23)—(2.25)j

r2 = 3p(v —vo)'~ —u
2

and the mass function behaves as

(4.1)

(4.2)

and the stress tensor has the expression

(T-„) = (24~)-' —*, I „+
35 1

48vr Pzvi~ '

(T„„)= (16~)-'r-'+ y(u),

(4.7a)

(4.7b)

m(v) = —p(v —vo)
(T„„)= (12vr) ' —p.v. 4 . (4.7c)

(T-) =(24 ) 'I . + . I+g( )
, t'm' 3m')

2r4 j (4.4a)

v = vp being the location of the CH.
It is now straightforward to evaluate, with the tech-

niques of the previous section, (T s) using Eqs. (3.5) and
(3.6). One finds, as leading behavior,

The function f(u) differs from the value given in the
previous section by some finite normal ordering term,
since the coordinate u here introduced differs &om the
Eddington-Finkelstein one used in Sec. III. This fact will
not affect our conclusions.

The leading behavior on the CH v = vp is therefore
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(T„„) D—(v —vp)

(T „) regular function,

(T„„) G(v —vp)

(4.8a)

(4.8b)

(4.8c)

1S = — d xg g—e '~[R + 4(V'P) ' + 4A'],2'

2S, = —— d zg ge— ~FbF2'

(5.2a)

(5.2b)

with D and G some positive constants. These results
indicate that an observer crossing the horizon measures
an infinite negative-energy ingoing flux and also an in-
Bnite energy density. By comparing naively this to the
classical value T„'„' m' (v —vp) ~ we see that the
divergence induced by the quantum fluctuations in the
v, vacuum is stronger than the classical one. Note also
the sign difference in the vv component (classical versus
quantum). Is this divergence strong enough to destroy
an observer traveling through the wormhole' ?

We cannot answer this question on the basis of the
previous material. As all our analysis was performed in
the framework of quantum field theory in a fixed (mass
inflation type) space-time, one cannot evaluate the back-
reaction of these large quantum fluctuations on the space-
time geometry. The fate (and the traversability) of the
wormhole remains therefore undetermined.

We will examine in the next paragraph a 2D model of
"quantum gravity" which allows the backreaction of the
quantum fields on the space-time to be evaluated, at least
at the semiclassical level. In this way an answer, though
not definitive, to the above question can be given.

V. BACKREACTION IN 2D: A TOY MODEL

Two-dimensional theories of gravity are presently quite
popular theoretical laboratories for the investigation of
the fundamental issues of quantum gravity. These the-
ories aEord considerable simplification for the study of
semiclassical problems, since in 2D, as we have seen, the
trace anomaly and the conservation law allow a complete
determination of the expectation values of (T b) [5] [see
Eqs. (3.5)].

The basic idea is to use these objects as a source in
some kind of 2D analogue of Einstein equations. This
will then account for the backreaction of the quantum
field on the geometry.

We do not claim that the following material necessarily
bears on a real 4D theory of quantum gravity; however,
it provides a useful model in which we can investigate
the effects of the quantum fluctuations on our wormhole
space-time (and on the inner structure of black holes in
general). There are a number of classical actions which
have been investigated in 2D gravity, all of which take
a similar form. We use here a model inspired by string
theory which, as we shall see, leads to a space-time which
possesses the same basic features of the one discussed in
the previous section. The classical action is given by [6]

(5.2c)

R —4(V'P) +4A —2F bF +4 $ = 0, (5.3b)

f; =0, (5.3c)

2PFba)— (5.3d)

The solutions of these equations have been discussed in
detail in Ref. [8]. Here we just review some basic material
for later use.

Equations (5.3) admit charged black hole solutions.
They are best understood in the light cone gauge

ds = B(o,v)dv + 2dvd—o, (5.4)

where v is an advanced time. The electromagnetic Beld
tensor solution of Eq. (5.3d) is

In the standard notation, R is the Ricci scalar of the
2D metric g g, A is the cosmological constant, F b the
electromagnetic field tensor. The "matter Belds" are 2D
conformally coupled scalar fields f, , P is the dilaton.

The gravitational action Sg differs from the standard
Einstein-Hilbert 4D action dimensionally reduced to a 2D
integral under the assumption of spherical symmetry (in-
tegrating over the angles 8, p; in this case e 2~:—r2), by
the term representing the dilaton potential. The Maxwell
part of the action, S, is the same as the dimensionally
reduced one. The matter part S on the contrary does
not derive &om dimensional reduction. It describes the
"natural" coupling of 2D matter fields to 2D gravity.

We prefer to work with the action (5.1) instead of the
dimensionally reduced one, simply because the former,
when quantum corrections are included, admits (when
F b = 0) solutions to be obtained in analytic form. The
results obtained &om both theories for the problem we
are interested in (Cauchy horizon structure) are in com-
plete agreement as indicated by numerical computations
[7]. The field equations following from Eq. (5.1) are

e ~[29 V'bQ —F,Fb + 2g bR]

S=Sg+S +S (5.1)
F~b=Qe' e b, (5.5)

where
where e b = e~ b~

and epi ——g—g. Q is a constant rep-
resenting the charge of the hole.
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A purely ingoing f wave is solution of Eq. (5.3c) which
is independent of o and allows an exact solution to the
equations of motion to be found: namely,

e
—2P mp + gamp' —Q'

A
(5.10)

B(~,v) = 1 — e'~+, e ~,2mv 2 Q 4 (5.6)

(5 7)

where m(v) satisfies

dm 1 fdf1
dv 4 (dv)

(5.8)

(VP) = A —2mAe ~+ Q e ~ (5 9)

so that it can be regarded as the mass function of the
black hole. When f;(v) = 0, the solution describes a
static charged black hole with mass m(v) = mp ——const.
The causal structure of this space-time (see Fig. 2) is the
same as the 2D section of the RN solution discussed in
the previous section. There are two horizons, located at
values of P for which B(cr, v) = 0, i.e. ,

We assume m(v) & ~Q~, so that the space-time is that of
a black hole and not a naked singularity. The function
m(v) is such that

where a plus sign refers to the outer horizon and a minus
sign to the inner. Let us define k = (A/4)~B@B~; this
corresponds to the "surface gravity" of the event horizon
when evaluated at P = P+ for a static black hole. One
easily checks that k = k~y ) k+ = I"~y+ provided
mp ) [Q/.

The timelike (curvature) singularity is located at P =
+oo whereas the asymptotic flat regions are at
—oc. The role of the dilaton as a gravitational coupling
strength is evident from Eqs. (5.2a) and (5.2b). The sin-
gularities appear in the strong-coupling region where a
full quantum treatment is necessary, whereas the asymp-
totic regions are in the weak-coupling regime.

The analogy with 4D charged black hole can be further
pursued by showing that in this theory the Cauchy hori-
zon P is unstable against perturbations and this trig-
gers a mass inflation behavior [9]. We think it is there-
fore reasonable to regard the space-time of Eq. (5.6),
the charged dilatonic black hole, as a 2D version of our
wormhole spacetime.

The cosmological setting is taken into account by re-
quiring that the mass function m(v) of Eq. (5.8) behaves,
according to Eqs. (2.16)—(2.19), as the CH (v = vp) is
approached like

m = —p(v —vp) (5.11)

and diverges as a consequence of the inHow of cosmologi-
cal radiation. Despite this divergence, the dilaton (which
is obtained by integrating twice the ingoing flux [9]) is
regular in the above limit [compare this to Eq. (2.25)];
hence the 2D scalar curvature diverges like m.

Now that we have a reasonable 2D model for our worm-
hole spacetime metric one can easily compute the quan-
tum (semiclassical) corrections to this classical theory by
including in the action a term describing the backreaction
of the quantum fields on the geometry. If we assume the
number N of matter fields (the scalars) to be very large,
in leading 1/N order, the quantum fluctuations of the
dilaton and the metric can be ignored and one needs only
to include one-loop corrections to the energy-momentum
tensor of the scalars (there is no analogous contribution
from the Maxwell Beld). This can be computed from the
trace anomaly [see Eq. (3.5)]. Equivalently one can add
to the classical action, Eq. (5.1), the Polyakov-Liouville
term [6]

Sl, = —— d xQ—gR R,K 2

Sar
(5.12)

I"IG. 2. Conformal diagram of the dilatonic charged black
hole.

where K = N/24. Along with this usual nonlocal term
we add a local covariant counterterm [10],which will sim-
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plify the subsequent analysis (when Q = 0 the theory can
be solved exactly)

K8„=—— d xg —g2$R .
8m

(5.13)

ds = —e ~dUdV . (5.14)

We now perform the field redefinition

~K e
—'4'

+ (5.15a)

~K e-'4'
(2S —4) + (5.15b)

and the effective action is

The theory is therefore described by an effective action
S = S,~ + SL, + S,t, which includes the backreaction of
the scalar fields. We now look for classical solutions of
this theory which will describe the "quantum corrected"
geometry of the 2D wormhole spacetime.

Introducing null coordinates U, V one can write the
metric in the conformal gauge

y—,~y, U + MKy rrU + 0 ~O rr + Kf (U) = 0 . (5.20b)

I (V) is the classical radiation influx, coming from the
cosmological region. The functions f and g reflect as
before the nonlocality of the quantum theory and are
determined by the choice of quantum state for the scalar
fields. The choice f = g = 0 corresponds to a "Kruskal
vacuum. " As discussed in the previous paragraph, the
natural choice for the quantum state of the matter fields
is restricted to the conformal vacua in the cosmological
region. With the choice of the v, vacuum as used earlier,
the function g(V) is given in terms of the Schwarzian
derivative of v, with respect to V. The details of the
boundary conditions will be given later.

Let us first find a solution of the field equations plus
the constraints in the region near the CH. When Q = 0,
this system can be exactly integrated and the solution in
the Kruskal gauge is

Ul

UV —v IC f dU' f dU"f(U")

dv' dv"
~

' '+g(v")
~

.

(5.21)

S = — d x[ B~yOvy —j c)UOc)vO+ A e x ) ~]1

(5.16)

In our case Q g 0, but we shall see that the solution
describing the quantum corrected geometry has near the
CH (v = vo) the same form as Eq. (5.21), the contri-
bution of the terms which contain the charge becoming
negligible. We start by formally integrating Eq. (5.18b):

When Q = 0 there is a residual conformal gauge in-
variance in Eq. (5.16). In this case one fixes it by the
"Kruskal gauge" choice 0 = y. The Kruskal coordinate
V is related to the usual asymptotic Minkowskian ad-
vanced time v by

AV =+e (5.17)

and a similar relation for U and u.
Corning back to our case, Q P 0, we Find the equations

of motion for the effective action S,

,2(x-~)/~~
(X),« = ~ (Q'e'~ —&') (5.18a)

( fl) 2(x—(2)/~K 4p (5.18b)

I dO

d
(5.19)

The constraints which correspond to the equations of mo-
tion of gUU and g~~ are

—y, vy, v + v Ky, vv + A, vA v + I (V) + Kg(V) = 0,
(5.20a)

where the solution (5.5) for the Maxwell Field has been
introduced and

Q2 2(~ ri)/V ICe4$-
dV' 0' (5.22)

The integral diverges if the dilaton reaches the critical
value P„;&, determined by 0' = 0 and a curvature sin-
gularity will result. This singular behavior occurs deep
inside the strong-coupling region [P„;t ———

2 ln(K/4)]
where a semiclassical analysis seems no longer trust
worthy. Nevertheless, it has been suggested [10] that

P„;i should be regarded as a boundary of space-
time, the analogue of the origin of the radial coordinate.
As long as this boundary is timelike, boundary condi-
tions on the fields can be imposed but if the boundary
becomes spacelike, it is no longer sensible to do so. Thus
our asymptotic analysis of the equations of motion makes
little sense unless one can show that P = P„;i is not en-
countered before the CH. We shall give later an argument
suggesting that such a scenario can be arranged. Let us
first discuss in some detail the boundary conditions on
the quantum state for the matter in our wormhole As
said before, our choice of v, vacuum leads, by evaluating
the Schwarzian derivative using Eqs. (4.5) and (5.17), to

1 35/' V) 1
g(V) = — —+ —

~

ln —~, , (5.23)
72 ~ vo~ v

where Vo is the location of the Cauchy horizon (v = vo).
a similar relation can be given for f{U), but the details
can be once more ignored since it is suKcient to mention
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that f (U) remains bounded all the way up to the CH.
Inspection of the constraint (5.20a) shows that the ef'-

fect of this boundary condition is to introduce an influx
of negative energy streaming along the CH. This quan-
tum influx dominates over the classical part L(V) [see
Eq. (4.8a) and the following discussion] and produces
a strong "defocusing" eKect on outgoing geodesics. One
therefore expects, if the charge is not small compared to
the mass, that e 24' (the analogue of the radial coordi-
nate) starting &om a value P «P„;q inflates very rapidly
and the condition e 4'

&& e ~ "' to be satisfied on a por-
tion of the CH which is removed &om the cosmological
singularity. In other words we investigate the solution of
our theory in the so-called "string theory branch. "

Coming back to Eq. (5.22), in the region we are in-
terested in 0' && 0 and we need not worry about the
vanishing of the denominator. It can be shown that it
is consistent to treat the LHS of Eq. (5.22) as vanish-
ing. To leading order as v -+ vp (V ~ Vp), the CH, the
solution to Eqs. (5.18)—(5.20), is

35
y = 0 ——v K in[A]V —Vp]]72

U U'

-JJCf dU f dU-f[U-)

V'
J' dv'f dv"1,(v")+ (5.24)

Despite the fact that e2& —+ 0, one finds that the scalar
curvature diverges on the CH, the sign depending on the
choice of the function I'(U). Comparing this result with
the classical value of the curvature, which is proportional
to the mass function

R - —(v —vp) (5.26)

we see that the singularity along the CH appearing in
the quantum corrected geometry is, as expected, stronger
than the classical one. The disappointing aspect is that
this curvature singularity appears in the weak-coupling
region (e4' m 0). Therefore it is very unlikely that it will
be removed in the full (quantization of metric and dila-

Inparticular 0 e ~/~K ~ oo as V ~ Vp (the ln term
diverging and the others being regular), indicating that
the integrand in Eq. (5.22) tends to zero as we approach
the CH. This justifies our previous assumption.

At this point it is interesting to examine the Ricci
scalar of the quantum corrected wormhole geometry.
Keeping only the leading term as V —+ Vo, we find

U

B const x dU' f (U') +
0

ton) quantum theory. However, as before, the singularity
is mild in the sense that although the tidal forces felt by
a free falling observer blow up at the CH, the distortions
obtained by twice integrating the curvature stay finite,
making the 2D wormhole still traversable.

VI. CONCLUSIONS

The Reissner-Nordstrom space-time has been used
here as a wormhole connecting two diferent universes
(closed FRW universes in the case investigated in this
work). This wormhole is, unlike the Einstein-Rosen
bridge of the Schwarzschild geometry, eKcient in the
sense that observers can go safely from one universe to
the other by traveling through it. This is true classically
since although (classical) perturbations cause a null sin-
gularity to form inside the wormhole, this singularity is
mild enough for the tidal distortion to remain finite.

Our aim in this paper was to examine whether the
same conclusion holds when one allows perturbation of
the wormhole space-time of quantum origin. Up to now
this study cannot be performed in the full 4D context.
Quantum field theory in black hole interiors is a rather
diKcult and almost unexplored subject, not to speak
about the backreaction problem, and very little is known
about it. Here we only developed a minor program,
namely, the study of quantum e8'ects and their backreac-
tion in a simple 2D version of our original model, in the
hope to gain some insight into the real 4D problem.

Our analysis reveals that the rise of curvature on the
CH of the wormhole which is induced by quantum fluc-
tuations can become quite large as compared to the one
caused by classical perturbations. However the curva-
ture singularity that arises on the CH is always mild in
the above sense, making the 2D wormhole traversable.
The extension of this positive conclusion to 4D is how-
ever rather dubious. It is suKcient to say that if the
metric and the dilaton are regarded as components of a
spherically symmetric metric in 4D, there exist compo-
nents of the tidal distortion that blow up (although only
logarithmically) at the CH. This seems to suggest that
a 4D wormhole of the RN type might behave di8'erently.
Traversability (hence efficiency) of the wormhole would
probably require a very restricted choice of possible quan-
tum states for the matter sector, diferent from our v,
vacuum, such that the corresponding Schwarzian deriva-
tive with respect to v [i.e., the g(V) function entering
Eq. (5.20a)] behaves on the CH milder than (v —vp)
But of course until a reasonable approach to the back
reaction in 4D can be found, no definite answer to the
wormhole traversability problem can be given.
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