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Interaction of low-energy induced gravity with quantized matter
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At a high energy scale the only quantum effect of any asymptotic-free and asymptotically confor-
mal invariant GUT is the trace anomaly of the energy-momentum tensor. The anomaly generates a
new degree of freedom, that is, the propagating conformal factor. At lower energies the conformal
factor starts to interact with the scalar field because of the violation of conformal invariance. We
estimate the effect of such an interaction and find the running of the nonminimal coupling from the
conformal value of —to 0. Then we discuss the possibility of the first order phase transition induced
by curvature in a region close to the stable fixed point and calculate the induced values of Newtonian
and cosmological constants.

PACS number(s): 04.62.+v

I. INTRODUCTION

The cosmological constant problem remains the most
mysterious one in modern high energy physics. A number
of different approaches have been proposed to solve this
problem (see, for example, [1—11] and references therein),
but no approach is able to give a completely consistent
scheme of which makes this constant vanish.

Here we shall consider the in8uence of vacuum quan-
tum effects of matter Gelds in curved space-time to the
value of the induced cosmological constant. In a region
of asymptotic &eedom, that is, in accordance with the
modern point of view, at energies beyond the grand uni-
fication scale, all interactions between matter field. s are
weakened and the only quantum effect is the appearance
of the trace anomaly of the energy-momentum tensor.
The purpose of the present paper is to explore the back
reaction of this vacuum effect to the matter fields with
respect to the induced value of the cosmological constant.
The trace anomaly generates a new dynamical degree of
freedom, which is usually named the conformal factor or
dilaton. Not so long ago Antoniadis and. Mottola con-
sidered the theory of the conformal factor as an infrared
version of quantum gravity [12], and found this theory a
useful tool for the exploration of the cosmological con-
stant problem. Since then this approach (with various
modifications) has been developed in a few papers (see,
for example, [13—20]). In particular, in Ref. [20] the con-
tributions of the quantized conformal factor to the effec-
tive potential of a scalar Geld were calculated. At the

same time in Ref. [20] the semiclassical approximation
has been used and the quantum effects of the matter
fields were not taken into account. A complete investiga-
tion of the system of interacting matter and dilaton Geld
meets some difhculties, because in the corresponding the-
ory there are fourth as well as second derivative terms.
Here we consider the complete case and derive one-loop
divergences with the use of the method proposed in [21]
(see also [22]). Then we point out the one-loop renor-
malizability of the theory and use renormalization-group
method to analyze the running of the coupling and to de-
rive the effective potential of the scalar Geld. After this
we consider the possibility of a first-order phase transi-
tion induced by curvature, and discuss a possible way to
fine-tune the scale parameter in order to provide a small
value of the induced cosmological constant.

The paper is organized as follows. In Sec. II we give an
overview of the basical concepts of [20] and formulate the
structure of the interaction between the conformal factor
and matter fields. Section III is devoted to the calcula-
tion of the one-loop counterterms and to the renormal-
ization structure. In Sec. IV the renormalization-group
method is applied for the analysis of the running of cou-
pling constants. Here we also obtain the expression for
the effective potential. In Sec. V the possibility of a Brst-
order phase transition is stated and the induced values
of Newtonian and cosmological constants are calculated.

II. ACTION OF THE CONFORMAL FACTOR
AND COUPLING STRUCTURE
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The starting point of our investigation is the theory
of asymptotically free massless fields of spin 0, 2, and
1 in an external gravitational Beld. One can find the
review of quantum field theory in an extermal gravita-
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tional field, for example, in Refs. [23,24,22]. In particu-
lar, in [22] it is the theory of interacting fields in curved
space-time is also presented. Multiplicative renormaliz-
ability requires nonminimal terms to be included into the
action as well as vacuum ones. When radiational correc-
tions are taken into account, the parameter of nonmin-
imal coupling obeys the corresponding renormalization-
group equations. As pointed out in [25,26] (see also [22]),
in some asymptotically kee models asymptotic conformal
invariance takes place. This means that the nonminimal
coupling ( (we suppose the nonminimal term to have the
form (RP ) is arbitrary at low energies while at high en-
ergies it has the conformal value 6.

The next important quantum effect, in an external
gravitational field, is the appearance of the anomaly trace
of the energy-momentum tensor which allows us to cal-
culate, with accuracy to some conformal invariant func-
tional, the effective action of the vacuum [27,28] (see also

[22]). This effective action originally arises as a nonlocal
functional, but it can be written in a local form with the
help of an extra dimensionless field, which is named the
dilaton, in analogy with string theory, or as the conformal
factor.

The anomaly trace of the energy-momentum tensor has
the form [29,23,24]

T = (T„")= k, |"'+ k, E + ks R,

where the values of k$ Q 3 are determined by the num-
ber of fields of different spin in a starting grand unified
theory (GUT) model. The trace anomaly (1) leads to an
equation for the effective action,

2 bW
gp~

Q—g 8gig~

which has the nonlocal solution [27,28]

~fg, -l = g. fg,-l+ f &'*4—g I
g3+ g21&'+ &'*v' —g. &'gg —g,

1 f 2 ) ( 2x kgC + —kg E ——oB Gx, y kg E —— B

where G(z, y) is the Green function for the Hermitian conformal covariant fourth-order operator (4), C is the square
of the Weyl tensor, and E is Gauss-Bonnet invariant. This effective action can be written in a local form with the
help of an auxiliary dimensionless field 0 [27]. It reads

k'
~fg...~l = g. fg,.l+ ~'~v' —g —«~+ ~ g)&'+ —'

I
@ —— &

I
+ (4+ -,*&')&')

2 ).

The conformally covariant self-adjoint operator L is de-
fined by

'+ 2R" V'„7'„——R + (V'"R)V'„. —
3 3 (4)

The values of kz ~ 3 differ &om k] p 3 because of the contri-
bution of 4 to the conformal trace (1) [27]. The solution
(3) contains an arbitrary conformal invariant functional
S„which is the integration constant for Eq. (2). This
functional is not essential for our purposes and we shall
not take it into account.

Our main supposition is that the quantum effects of
induced gravity, that is, of the field a, are relevant below
the scale of asymptotic freedom and asymptotic confor-
mal invariance, where coupling constants in the matter
Geld sector are not equal to zero. We are interested in the
cosmological applications, and therefore it is natural to
suppose that the transition to low energies (or long dis-

tances) corresponds to some conformal transformation in
the induced gravity action (3) and hence classical fields
and induced gravity appear in different conformal points
[32]. To realize this it is necessary to make a conformal
transformation of the metric in (3) and then to consider
the unified theory. At the same time it is more conve-
nient to make the conformal transformation of metric and
matter fields in the action of the last. Such a transforma-
tion corresponds to some change of variables in the path
integral for the unified theory.

The only source of conformal noninvariance in the ac-
tion of the fields of spin 0, q, 1 is the nonminimal term
in the scalar sector. In the framework of asymptotically
conformal invariant models the value of ( is not equal to
6 at low energies and hence the interaction of the con-
formal factor with the scalar field arises. Introducing the
scale parameter o. we obtain the following action for the
conformal factor coupled with the scalar field:

1 2 2 D P' 1 2 1g = W)g„, ~) + f g xg g —(1 —gi')pp (n'g" g—og a + uatT) + g" gag p+ gRpp — fp —), —
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where W[g„„,cr] is defined in (3). Thus the interaction
between the scalar field and conformal factor arises as
a result of the conformal transformation of the met-
ric g~„~ g' = g~„exp(2ncr) and the matter field
4 ~ 4' = @exp(dunno), where d@ is the conformal
weight of the field 4. The only kind of field which takes
part in such an interaction is the scalar one, where the
interaction with the conformal factor appears as a result
of nonconformal coupling at low energies. Hence the con-
tributions of other matter Belds to the effective potential
of the scalar Beld do not depend on the conformal factor
and can be calculated separately. In the next sections we
shall concentrate on the theory (5) and estimate the dila-
ton contributions to the e8'ective potential of the scalar
field P.

Some remarks are in order. The renormalizability of
the theory requires the action of matter fields in an ex-
ternal gravitational field to be supplemented by the vac-
uum terms (see, for example, [22] for an introduction to
renormalization in an external gravitational field). Since
renormalization of the vacuum action has been already
taken into account in (1)—(3) we shall not consider the
details of renormalization in the vacuum sector, but only
make some comment after calculations. Our goal is to
evaluate the in8uence of the quantum conformal factor
on the physical effects of the ordinary scalar field. That
is why we can restrict ourselves to consideration of renor-
malization in the only sector of the field P.

III. CALCULATION OF ONE-LOOP
DIVERGENCES

0 Mo =o+7 4~0'=4+@.

The one-loop effective action is defined as

I. = —Tr ln H,
2

where H is the bilinear (with respect to the quantum
fields r, q) form of the classical action (5). After some
algebra we get the self-adjoint bilinear form

where

7T T17

(H~- H„„) '

The calculation of the one-loop divergences of the the-
ory (5) is not a trivial problem because the classical ac-
tion contains second derivative terms as well as fourth
derivative ones. Here we shall use the method of Ref.
[21], where the one-loop divergences have been calculated
for higher derivative quantum gravity coupled with mat-
ter fields. According to [21], we shall use the background
field method and hence we start with the separation of
fields into background cr, P and quantum w, g ones, by

H = '+ 2R" V'„V'„——R + (V'"R)V'„+—(6( —1) n'P'o+ n'(V"P')V„

H „=—(6( —1)(ng + 2a(V'"P)V'„+ n( P) —2n P(V'"o)V'„—2a [V'„(P'7"o)]),

H„= —(6t! —1) nP + 2n P(V''cr)V'„

H„„=— +(R ——fgP —(6( —1) a( o.)+a (T"o)(V'„o.)

After the change of variables g ~ i g we arrive at the following structure of H:

r + 2V""9'„V' + N"V„+ U
I Pi + P~"7'„+Ps

Qi + QzV&+ Qs
+ E" 7„+D )~

(10)

where the values of V, N, U, Q, , P;, E, D follow from (9). They read

V" = 2R"" ——Rg" +(6( —1)P n g"",2

3

N" = —(V'"R) +. (6( —1)n (V'"P ), U=O,

Qi ———i(6( —1)gn, Q2 = —2i(6( —1) (V'"@)n —P(V'"o)n ], .

Q = —(« —1)( ( &) —2 '[& (&&" )]) P, = —i(6( —1)gn,

P2" = —2i(6( —1)P(7"o)n. P3 ——0, E" =0,

1D = —(R+ f4" +(6& —1) —[ ( )+ '(&" )(& )] .
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Expressions (10) enable us to use the method and partially also the results of [21] in a direct way. After some
algebra we obtain the following general form for the one-loop divergences of the effective action (7):

2 4 1 „1 1 1 1 1I'; = — d Q g —P"—Q2 + —PgQs — 'V"—PgQg —DPgQg + —(PgQg) + —Q"& Py — R—P Q4 2 P P 2 6

1( 1 ) 1 ( „1l 1+—
~

D+ R~ —+ —
~

R" R„„—R~—— —R + (surface terms)
2 q 6 20 q

"" 3 y 36 (12)

Substituting (11) into (12) we arrive at an explicit expression for rg, .

d xv —g Q 3f +. 12(6( —1) fn —432(6( —1) n (4 2

(R —6n o —6n 7'"oV' a) —(6( —1)f +2n ((6( —1)
2 P

7, 1r 2

120 2 ( 6)+ —
~

t' ——
~

(R —6rsrte —6rr Vsetrsrr)
)

+ (surface terms) (13)

where s = (4m) (n —4) is a parameter of dimensional
regularization.

Let us now make some remarks concerning the renor-
malization structure in the theory under consideration.
One can easily see that in this theory a wide cancellation
of divergences takes place in both vacuum and matter
G.eld sectors. As a result the theory is renormalizable in
the matter field sector, at least at the one-loop level. The
renormalizability in the vacuum sector is realized in the
following sense. As was already pointed out we have to
introduce vacuum terms of the form

(14)

Thus the vacuum counterterms have a structure which
difFers from the one of the classical action (14) by the
same conformal transformation that we have performed
when deriving the action (5). If one make this transfor-
mation in (14), it will have the same structure as the
vacuum divergences in (13), and the last ones can be re-
moved by the renormalization of aq and a2. At the same
time the above scheme is not completely consistent, and
formally one can provide renormalizability only on the
background of constant o, when the forms of the vac-
uum terms in (14) and (13) coincide. Note that for our
purposes this is quite enough. To construct an entirely

renormalizable theory it is necessary to start with the
general dilaton gravity [41] taking into account all possi-
ble dilaton interactions.

The next point is related to the renormalization in the
sector of the scalar field P. One can see that there are
no divergences which lead to renormalization of P. All
the divergences can be removed by a renormalization of
the couplings, including aq, a2, and the renormalization-
group equations include only P, but not p functions.
Then it follows that the effective potential of the theory
depends on P functions only, and therefore it is &ee of
ambiguities which arise, for instance, in gauge theories
(see, for example, the discussion in [30] on the higher
derivative gravity corrections to the eR'ective potential of
the scalar field).

IV. RENORMALIZATION GROUP EQUATIONS

Since the theory defined by Eq. (5) is multiplicatively
renormalizable, one can use the renormalization-group
method for its study. For our purposes it is more con-
venient to deal with an arbitrary background metric g„
and therefore we must use the approach described in [22]
(see also the original papers [25,26,31]). The general so-
lution of the renormalization-group equations for the ef-
fective action,

d d d b b
V—+Pf —+Pq ——

Vq
——

W
—r[4»o f (,g~„, I ] = 0,

dp df d( hP ho.
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where p is the dimensional parameter of renormalization.
Effective fields and coupling constants obey the equations

dP(t) = (~~+1)& &(0) =&

der(t)
dt

= '7a0) o.(0) = 0,

(t)
dt/ Pf 7 f(o) = f

d((t)

Here t' = (47r) t, while the p and P functions are de-
fined as usual. Note that in our case there is no need to
renormalize the fields P, o and therefore all p functions
are equal to zero. The P functions for the effective cou-
plings f(t), ((t) = 1 —6((t) can be easily obtained from
(13). One has

(4vr) Pt = 3f + 12fn ( + 12n ( (( —1)

(4 )'P& =([f+2-'((~ —1)]

Here we introduce ( instead of ( for compactness. Let us
now consider the asymptotics of the effective couplings
f(t), g(t). It is easy to see that both P functions (18)
vanish in the physically relevant points f = 0, ( = 0 and

f = 0, ( = 1. There are also three more solutions with
negative f, but they do not look so interesting, because
the classical potential for P in these cases is not bounded
&om below. The first solution corresponds to the confor-
mal fixed point while the second one corresponds to the
minimal fixed point. The last means that within this so-
lution ( is equal to zero. One can easily make the analysis
of the stability of the minimal fixed point in the frame-
work of standard Lyapunov's method and find it stable
in the IR limit t ~ —oo. Moreover, one can easily obtain
that in this limit f ( -+ 0 and therefore f (( $.

The problem of stability of the first solution cannot be
solved in such a way, because if we make an infinitesimal
variations of the couplings (, f, the linear corrections to
this fixed point in P functions are equal to zero. Rejecting
the infinitesimal terms of higher order we find

dhf = 3(hf )
' + 12n (h() ',

dh( = 8((h f + 2n ht, ),
where h(, 8f are infinitesimal variations of the couplings.
Since we are only interested in the infinitesimal varia-
tions, there are three possible cases: (i) h( and h f are
of the same order, (ii) hg is smaller than bf, or (iii)h f

has the form

r[y, , f, g, g„„.",~] = r[y(t), (t), f(t), g(t), ~„„,~],

(16)

is smaller than ht,'. A detailed analysis shows that all of
these three situations are not possible, and therefore a
conformal fixed point is not stable in the IR limit. More-
over, one can easily see that both fixed points are not sta-
ble in the UV limit. Note that in case (ii) in the IR limit
one formally obtains that h( tends to zero. However,
condition (ii) does not hold, and therefore this version is
also inconsistent.

Some remarks are in order. We start our considera-
tion with some asymptotically &ee and asymptotically
conformal invariant GUT, and consider the scalar field

P as part of this GUT. Formally the contribution of the
quantum field 0 to Py contradicts the asymptotic freedom
and therefore the whole approach looks quite ambiguous,
but this is not the case. We suppose the value of o. to
be close to zero and hence the contributions of the quan-
tum conformal factor are small at short distances. On
the other hand, at long distances, the scaling parameter
n has some finite value and this leads to some nontrivial
dynamics in the far IR. Note that the IR dynamics of n
has been recently studied in [41].

V. EFFECTIVE POTENTIAL FOR THE SCALAR
FIELD AND PHASE TRANSITION

INDUCED BY CURVATURE

Now we follow [31,22] and use the renormalization-
group method for the derivation of the effective potential
for the scalar field P. According to [31,22] the solution of
Eq. (15) for the potential part of the efFective action has
the form

25
in ———

@2 6V.e = (&4 + ——4—' + Py4—
2 24 48

p2——PgqPR ln ——3
4 p2

(20)

where p is a dimensional parameter of renormalization
and both P functions have been defined in Eq. (18).

Here we shall restrict ourselves to consider only the
first-order phase transition. Then the equations for the
critical values of the curvature B and order parameter
P, have the form

V,ir(R„Q,) = 0,

V,'~(B„Q,) ) 0.
V,'ir(R„g, ) = 0,

(21)

Here primes stand for derivatives of V with respect to
The effective potential in Eq. (20) has a rather

complicated form and therefore any relevant analysis of
Eqs. (21) needs some restrictions on the values of f, (
to be imposed. Since we are interested in the phase
transition, which has to take place in the far infrared,
it is natural to suppose that these couplings obey the
renormalization-group equations and have values which
are close to the IR stable fixed point f = 0, ( = 0.

Then the first two equations in (21) have two nontrivial
solutions for critical values of the curvature and P. They
read
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p, = qi 2/R, [, 18n4(4 '

18n +1

(p~ l) =p exp
~

(22)
q 6 )

where P, ' correspond to qi 2 and s = R/]R~ is the sign
of the scalar curvature. For q2 the third condition in
Eq. (21) reads as (+ O((2) ( 0, which contradicts the
initial condition ( ——& 0, which must hold at high en-
ergies. For qi the third condition in Eq. (21) has the form

~s2 + 0(( ) & 0 and so the initial condition is satisfied.
Therefore in the &amework of the approximation used
here the first-order phase transition takes place at criti-
cal values of P, and ~R,

~

which correspond to the choice
qi in Eq. (22).

Substituting the values of P, and qi from Eq. (22)(~)

into the effective potential (20), we obtain an estimate
for Vg at the critical point. The corresponding action
has the form of the Hilbert-Einstein action

S;„g = — d xg—g(R —2A;„g),16' (23)

where induced values of the Newtonian and cosmological
constants are defined from Eqs. (20)—(22) to be

(24)16~G;„,
1 9n'

(25)
16mG;„d 4(1 2n2)

If we substitute into (25) the critical value for the order
parameter P~il, the induced Newtonian and cosmological
constants are expressed via the dimensional parameter of
the renormalization p and in place of (24) we get

1 (18n' + 1)= —((1 —2n ) p exp
~

~

. (26)16' G;„g 6n2

To estimate the induced values of A;„g and G;„g we
must remove some arbitrariness related to the value of
p. There are two different ways to do this. One can fol-
low [31,33] and fix the induced value of the Newtonian
constant to be equal to its classical value. This means
that one chooses p to be of the same order of the Planck
mass m~ = (8mG) . At the same time we are deal-
ing here not with Planck energies as in Ref. [33], but
with some energy scale below the unification point M .
On the other hand we have not any grounds to suppose
that the induced values of the Newtonian and cosmolog-
ical constants were the same at the M scale and at the
modern epoch. On the contrary, there are some reasons
in favor of the effective running of these constants at en-
ergies above (see, for example, [34,35]) and below [11]
this scale. Therefore it is more reasonable to choose a
value of p close to M and thus obtain the values of con-
stants, which are induced by the quantum effects of the
conformal factor discussed above. Note that the absence
of a cosmological constant in modern observational data
needs independent suppression in any part of the energy
scale [1]. If one takes the value of n to be close to zero,
then the induced value of the cosmological constant will

be very small. In fact we suppose that the energy scale
of strong matter effects in an external gravitational Geld
is some pz and that the quantum effects of the confor-
mal factor is relevant at another scale pq & pq. Since
the close scales correspond to a small value of the scale
factor o., we obtain that, if the difference between p2 and
p~ is small enough, the induced value of the cosmological
constant is small too. So, if we suppose that the point
of the phase transition discussed above is close to M,
then the induced value of A is in good agreement with
the observational data.

VI. CONCLUSION
We have considered the interaction between the con-

formal factor and matter fields in a region close to the
scale of asymptotic &eedom. In fact the only nontriv-
ial contributions to V,~ come &om the quantized scalar
field. All other Gelds decouple &om the conformal factor
and therefore give additive contributions to V,g. These
contributions are not so essential, because in the region
of asymptotic &eedom all interactions between matter
Gelds are weak. The results of our analysis are in good
agreement with previous semiclassical results derived in
Ref. [20], where the scalar field was treated as pure back-
ground. At the same time the physical picture in the
considered case is more sophisticated. We meet here the
nontrivial scale dependence of the effective nonminimal
coupling, which changes &om the conformal value df 6 to
the IR stable minimal value. The phase transition occurs
at a scale close to the stable fixed point, and the result-
ing induced constants do not depend on (, as in the more
simple case of Ref. [20].

Now let us briefIy discuss some possible ways to ex-
tend the above considerations. First of all it would be
very interesting to incorporate Gnite temperature effects
into the theory, which have to be very important in the
early Universe [35—38]. Thermodynamics properties of
quantum fields in static space-times have been studied
by many authors [39]. This can be usefully done with
the help of a finite-temperature generating functional in
"imaginary time" formalism [40]. Unfortunately, in the
theory we are considering one encounters some techni-
cal difFiculties due to the fact that the small disturbance
operator is of fourth order.

Next, it is possible to estimate quantum effects of
the conformal factor above the uniGcation scale. Since
this region is close to Planck energies, it is necessary to
take into account the quantum effects of the metric. To
achieve renormalizability it is necessary to consider gen-
eral dilaton gravity [41],which is the direct generalization
of higher derivative gravity theory [42—46]. In this case
the interaction between gravity (including the conformal
factor) and matter fields takes place even without a con-
formal shift of the induced action. Generally speaking,
such an investigation is possible at least at the one-loop
level [47], but it is related to a very big volume of calcu-
lations.
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