
PHYSICAL REVIEW D VOLUME 51, NUMBER 6 15 MARCH 1995

Factorization and polarization in linearized gravity

S. Y. Choi
Theory Group, KEK, Tsukuba, Ibaraki 805, Japan

J. S. Shim
Department of Physics, Hanyang University, Seoul 188-791, Korea

H. S. Song
Center for Theoretical Physics and Department of Physics, Seoul 1Vational University, Seoul 151 7/2, -Korea

{Received 19 October 1994)

We investigate all the four-body graviton interaction processes: gX —+ pX, gX ~ gX, and gg ~
gg with X as an elementary particle of spin less than 2 in the context of linearized gravity except
the spin-3/2 case. We show explicitly that gravitational gauge invariance and Lorentz invariance
cause every four-body graviton scattering amplitude to be factorized. We explore the implications of
this factorization property by investigating polarization eKects through the covariant density matrix
formalism in each four-body graviton scattering process.
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I. INTRODUCTION

Among the four fundamental interactions in nature,
the gravitational interaction has not yet been success-
fully quantized but the challenge of combining the quan-
tum principle with the elegant theory of general relativ-
ity, based on general covariance, has been made cease-
lessly. While the very small gravitational coupling con-
stant might reduce the importance of theoretical and ex-
perimental investigation of quantum gravity, gravity be-
comes as strong as the other forces near the Planck scale,
and it is believed to be crucial in a consistent description
of the birth of the Universe according to the big bang
scenario. Furthermore, the successful uniGcation of elec-
tromagnetic and weak interactions in the standard model
makes unavoidable the thought that further unifications
might be realized for all other fundamental interactions.
Recent developments of supergravity [1] and superstring
theories [2] were inspired by the hope of constructing a
consistent uniGed quantum theory including gravity. In
all cases, any common aspect of gravity and other inter-
actions is very much worth exploring.

It has been established by several people [3] that the
Fierz-Pauli theory of a massless spin-2 particle in the
Minkowski flat space-time is inconsistent when coupled
to matter and the only consistent theory in the low fre-
quency domain is Einstein's general relativity. In the
light of this aspect, we use Einstein's general relativity
as a correct effective gravitational theory at low energies
compared to the Planck scale. Since we are interested
mainly in the weak Geld limit, we perform the weak field
expansion to get the linearized gravitational Lagrangian.
After the expansion, ordinary quantum Beld theoretical
methods are applied to the linearized gravity to obtain
the graviton-graviton and graviton-matter vertices. Sev-
eral graviton interaction processes have been studied pre-
viously [4—7] in this framework.

The formidable complexity in vertices with more than
three gravitons might render conventional Feynman dia-
gram techniques very much ineFicient. Recently we have
shown, however, that all the tree-level transition ampli-
tudes of ge ~ pe [8], elastic graviton-scalar, graviton-
electron, graviton-photon, and graviton-graviton scat-
tering processes [9,10], are completely factorized into
a simple form composed of a kinematic factor, QED-
like Compton scattering form, and other gauge invari-
ant terms. The factorization property can be used as a
powerful tool to investigate the gravitational interactions
and the polarization eKects. The factorization property
in the linearized gravity corresponds to a well-known fact
in the standard field theory [ll—14] that gauge symme-
try and Lorentz invariance enable all the lowest-order
amplitudes of four-particle interactions with an external
massless gauge boson to be always factorized into one
factor depending on the charge or the internal symmetry
indices, and the other depending on the spin or polariza-
tion indices. A natural question is whether or not all the
four-body graviton interactions exhibit the same factor-
ization property.

In this paper, we investigate in a more extensive way
the four-body graviton interactions like gX ~ pX and
gX ~ gX in the context of linearized gravity, where X
is any kind of particles with spin less than 2 or graviton
itself. Even though we do not consider the spin-3/2 case
in the present work, we considerably extend our previous
works [8—10] to show the presence of the factorization
property in the four-body graviton interactions includ-
ing the case with a massive vector boson W for X. In
addition, we investigate the polarization eKects to explore
the implications of the factorization property.

The paper is organized as follows. In Sec. II, we de-
scribe in detail the derivation of the gravitational La-
grangian for the graviton scattering process with mat-
ter, including graviton itself, and present its expanded
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form through the Gupta procedure [4] in the weak Beld
limit. Factorization in the linearized gravity is explained
in analogy with that of the standard gauge fi.eld theo-
ries in Sec. III. Section IV is devoted to investigating
polarization efI'ects in these graviton scattering processes
and to exploring the implications from the factorization
property to the polarization efI'ects. A brief summary
and discussion are given in Sec. V. Every Feynman rule
needed in the present work is listed in the Appendix.

II. INTERACTION LAGRANCIAN

In this section, we describe a general procedure to de-
rive the gravitational Lagrangian for a graviton scatter-
ing with a massive scalar, a massive fermion, and a mas-
sive vector boson in the presence of the electromagnetic
field. Without loss of generality it can be assumed that
all the massive particles have the same mass denoted by
m.

The natural starting point for the derivation is the
standard @ED Lagrangian in the absence of gravity:

CqED = (D„P)*(D"P)—m (P*P) +if'"D„Q —ming

——(D„W —D W„)*(D"W —D W")

+m W„*W" —ieW„*W„F""— F" F„„,—(2.1)
1

where P is a scalar field, @ is a fermion Beld, W is a vector
boson field, and A is a photon field, with which the field
strength F„„and the covariant derivative D„are defi.ned
as

where K = /32vrGiv with the Newtonian constant G~.
For the sake of discussion, the gravitational Lagrangian
8 has been separated into five parts, each of which de-
scribes an independent process under consideration. The
Lagrangian C~ describes pure gravitational interactions.
l:g, (A), Cgy(A), and l:g~(A) are for gravitational inter-
actions of a massive scalar s, a massive fermion f, and
a massive vector boson R' in the presence of the electro-
magnetic field, respectively. The final Lagrangian Zg~ is
for gravitational interactions of the electromagnetic field.

Now let us describe in detail the derivation procedure
of the gravitational Lagrangian 8 in the weak field limit
and expand the Lagrangian around the flat Minkowski
space to obtain the necessary interaction terms. The flat
space expansion of Eq. (2.3) usually can be carried out by
the Gupta procedure [4]. In the procedure one introduces
a symmetric tensor field h~„denoting the deviation of the
metric tensor g„ from the flat space Minkowski metric
tensor q„„=(+,—,—,—):

gpv —gpv + tChpv (2.9)

pv pv I gv + 2hpAhv 3hpAh hnv=77 —K K ) —K (2.10)

After the expansion any curved space geometrical object
is expressed as an infinite series in terms of h~ . For the
present work, however, only the terms up to O(h ) are
needed and therefore every expanded Lagrangian will be
presented including the terms up to that order.

It is convenient to expand at first the contravariant
metric tensor g" and the afIine connection I'„, whose
expanded forms are given up to O(hs) by

E„=B„A„—0 A.„, D„=8„+ieA„. (2.2)
1

g = det(g„) = —1 —Kh+ ~ (h"hg —h )2

8 = Cg + Cg. (A) + l:gy(A) + Cg~(A) + Zg~,
(2.3)

(2.4)Cg ——2K g—gR,

( ) = v' — [ ""( &)*( -&) ™&*&] (2.5)

The gravitational Lagrangian l. is then obtained by
making the @ED Lagrangian in a general covariant form.
To begin with, we write down the general covariant grav-
itational Lagrangian without any detailed description of
the derivation:

+ —v (—2h" hg h~ + 3hh" hg —h ),
1 3

K
g—g = 1+ —h+ —(h' —2h,"h'„)

K+—(h' —6hh" h' + 8h"h'h'),
48 P P P '7 P

AcrI p~ ——g (Bpg» ~ + 0~9~1& —0~9~~)
2
1= —K(il" —Kh" + K h" h )2 CX

x(ct h +0 h „—0 h„„),

(2.11)

(2.12)

(2.13)

l:gf (A) = g—g [Qp"(9'„+ieA„—)@

Q(~„—ie A„)p"Q—]
—mug (2.6)

with the definition h, = 6"„.
Let us now consider the Lagrangian Zg for pure grav-

itational interactions. The scalar curvature in Eq. (2.4)
is defined in terms of the afFine connection I' as

~gA = V 99 9 Fj ~Fvp&
4

(2.8)

&gw(A) = 2v' 99" 9 (—DwW—- —D-W~)*

x(D„Wp —DpW„) + Q gg""m W„*W—
ieg gg""g PW„*W F —p, — (2.7)

a = g~ [a.r"„„—a„r"„„+r „„r".„—r „„r'.,I.
(2.14)

Taking the de Donder gauge 0 h,„= &0~6, the La-
grangian Cg can be expanded [15,16] around the Bat
Minkowski space and then reduced to the form
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Zg ——8 +~K +K 2 (2.15)

6cJV gp, 6g 4 (2.i6)

6~g+6pg 6 6~/ 6pgp6v 6~/ 6V gp/ p + Qgp6+g 6V + 6pg 6cxgp6v 6gv6g (2.17)

+ 6'6p&6-p~" 6..—-6& 6„.a&6-pa'6. p
—26'6„.a,6.pg. 6& + —66„'g,6-p g.6~

1 1 1

66pg 6cxpQA6 6v 6/xg 6ckpAI j 6+vg I cjpA6 6+6V g 6cxpgA6 66AQ 6cxpgp6

+—6 6 8 6 pB"6 —6 6 8 6 pB"6 + —66"8 60 6p ——6" 6 8 68 6p+ —6" 6 pOg68p6„
1 1 1 1

6pv6 g 6cxpg 6A 62' 6gA6 + 6pv6 g 6gA6 (2.is)

We emphasize that 2 and 2 have been proved to be
of the most compact form by a computer program [17].
While the difference is only a total derivative, the La-
grangian {2.15) is much simpler than that of Refs. [15,16].
The gravitational Lagrangian Zg, (A) of a scalar in the
presence of the electromagnetic Geld can be similarly ex-
panded:

&g, (A) = 8, + KZ', + r. 8', +
Zg, = (D"Q)*(D„P)—m (P*P),

8, = —hd, —h""(D„P)*(D„P),

8'. = —{h' —2h ~h p)go.gB

+(h~h —
—,'hh" ) (D„y)*(D.y).

(2.i9)
(2.2O)

(2.21)

(2.22)

Let us now consider the gravitational Lagrangian of
a fermion. In the absence of gravity a free fermion is
described by the Lagrangian

For the sake of discussion a difI'erent type of vierbein e
is introduced with the m index lowered to n with the
Minkowski metric tensor g, and also with the p index
raised upward to v with the metric tensor g~:

e„" = g „g" e„(x). (2.26)

Equation (2.24) shows that the vierbein e is nothing
but the inverse of the vierbein e„such that

$m m p,
n p n' (2.27)

—= e" (8„+-iiU„).

Another requirement from the equivalence principle is
that the special relativity should apply in locally inertial
frames, i.e. , should preserve Lorentz invariance locally.
As a way to accomplish the requirement a new covariant
derivative is introduced:

Cf = — A "8„$—0"g7„g —m@@. (2.23) Then the locally Lorentz invariant gravitational La-
grangian of a fermion is obtained as

Incidentally, the fermionic Lagrangian Zf deserves spe-
cial treatment when it is converted into a general co-
variant form. Mathematically, this is because the tensor
representations of the GL(4) of general linear 4 x 4 ma-
trices behave like tensors under the subgroup of Lorentz
transformations, but there is no representation of GL(4),
or even representations up to a sign, which behaves like
spinor under the Lorentz subgroup. One approach to
incorporate spinors into general relativity is the tetrad
formalism [18], which will be brieHy described below.

The formalism utilizes the fact that the equivalence
principle guarantees the introduction of a locally inertial
coordinate system y& at each space-time point P. In the
case, the metric tensor g&„ is expressed as

Zgf = Qp~e" (0„+in—)„)@ + H.c. —mug,

where the field connection iU„(x) is expressed in terms of
vierbeins as

m„(x) = —o "[e (B„e„—0 e„„)

+2e e (0 e&~
—B~eI~)e —(m ~ n)], (2.SQ)

" = ~[p, p ]/2 with the Dirac matrices p . It
now can be shown that the general covariant and U(].)EM
invariant Lagrangian Zy(A) of a fermion is

g„(x) = q „e„(x)e"(x), (2.24)

where the tetrad or vierbein e™(x)is defined as a coor-
dinate derivative of y& as

&gf(A) = v' g2{@~"(&~+'e—A~)4

g(~~ i eA„)p"Q)——mgg—(2.31)

e„ (x) = By/ (x)
Ox&

(2.25)
with the notation
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p" = p"e„", 9'„@= 8„@+ i~„g,
Q&„=0„$—igu)„. (2.32)

e [19], which is given by

e„=b„+ —h„——h. b„"h"„+O(~'). (2.33)
In order to expand the Lagrangian around the fIat
Minkowski space we Grst need to expand the vierbein

I

The resulting Lagrangian l:gf (A) [7] is of the form

&gx(A) 2 ~
—e@p gA„+ Kl: ~

— Ke(—hg„„—h„„)gp QA" + r 2 f +

[@7"Bpg B~g'y" g] ™gg
—hZ — h„„[g—p"8 @ —8"gp" Q],

—(h —2hp hP )2 ~ + —[3h„h„—2hh„„](gp"8"g —8"gp" @)

(2.34)

(2.35)

(2.36)

+—[h" & h„" —h"0 h" ](gp„g) + —[h 8"h" —h" 8"h ](gp„p„p g), (2.37)

where p" are the ordinary Dirac matrices and from now on every Greek index refers to the Bat Minkowskian space-time.
As in the scalar case, it is also possible to derive and expand the gravitational Lagrangian for a vector boson in the

presence of the electromagnetic field:

Cg~(A) = 2 ~+ rC ~+ r 2 ~
(D„W ——D W„)*(D"W —D"W") + m W„*W" —ieW*W„F"",1

(2.38)

(2.39)

l: ~ = h" (D„W —D W„)*(D„W —D W ) —m W„*W + —hd ~+ ie[g" h P + g Ph" ]W„*W F„p,

(2.4O)

C ~ —— (h —2h—" h„„)Z ~+ (hh ~ ——2h„h"~) qP (D Wp —DpW )*(DpW —D Wp) —m W*Wp

h~ h —z(D„W —D W„)"(D Wp —DpW„) +ieW„*W F p

-ie[&"(h-"hP„——,'hh. P) + &-P (h."h„" —,'hh~")]W„*W—.F.p (2.41}

Finally, the gravitational Lagrangian of the electromag-
netic field is shown to be expanded as

obtain all the Feynman rules of propagators and vertices
up to O(K2). We present all the Feynman rules needed
in the present work in the Appendix.

g~ ~ A++~ A+K ~ A+

gA 4 p~& (2.43) III. FACTQKIZATIDN

gl h7F Pv ~ + hgo
2 " 2

(h —2h„h")2—~+ FpFp [hh ~gP-

—2h h"~g~ —h ~6~ ~.
P

(2.44)

(2.45)

h"" w h" + t9"X + 0"X", (2.46)

with an arbitrary nonsingular function X". The latter
invariance will be called gravitational gauge invariance
in the present work. It is now rather straightforward to

To summarize, we have described in detail how to de-
rive the general covariant Lagrangian for gravitational
interactions with a scalar, a fermion, and a vector bo-
son in the presence of the electromagnetic field. Then we
have expanded the Lagrangian around the fIat Minkowski
space through the Gupta procedure. The expanded La-
grangian is not only Lorentz invariant at any order of h
but also invariant under the transformation:

(3 1)

In the standard gauge theory every four-body Born
amplitude with a massless gauge boson as an external
particle has been well known to be factorizable [ll—14]
into one factor which depends only on charge or other
internal-symmetry indices and the other factor which de-
pends on spin or polarization indices.

In this section we show that gravitational gauge in-
variance and Lorentz invariance in the linearized gravity
force all the transition amplitudes of four-body graviton
interactions to be factorized as well.

First of all let us explain factorization in a
(non-)Abelian gauge theory following the procedure by
Ref. [12]. The crucial point is that any amplitude with
an incoming gauge boson is always arranged as a sum
of terms of which each one consists of three distinctive
parts —a charge factor A, , a polarization-dependent part
B;, and a propagator C, ,

).A;8;
C;
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Then each group factor is summed up to vanish,

N N N

) A, =) B, =) C, =O, (3.2)
(b)

due to charge conservation (gauge invariance), energy-
momentum conservation (Lorentz invariance)

N

) Sp, =k, (3.3)

FIG. 1. Feynman diagrams for the gluon-gluon scattering
process G G' ~ G G". The wavy line represents a gluon but
not a photon.

and transversality (k . e = 0), where e~ and k+ are the
polarization vector and four-momentum of the massless
gauge boson, respectively, and 6'; = 1(—1) is for an out-
going (incoming) particle. Every amplitude M for 1V = 3
is then written in a factorized form as

C1C2 ( Ai
C, iC,

(Bi B21
C2) ' (3.4)

or in equivalent forms with the indices (1,2,3) permuted.
It is now clear that the expression (3.4) exhibits factoriza-
tion of the transition amplitude into a charge-dependent
part and a polarization-dependent part.

As an example, let us consider the gluon-gluon elastic
scattering process G G + G G" where the superscripts
denote color indices. The factorization theorem enables
the transition amplitude to be factorized as [12,13]

G G -+GG"

(pi ki)(pi k2) f-'f"'~s 1 ~ I I ~ 2
II

ace ~d e

kl ~2 I 1 kl
fadef bce

Pl ' 2

Bl B2M~„= e (3.6)

where

(3 5)
where ki(pi) are four-momenta of the incident gluon
G (G'), k2 (p2) are four-momenta of the final gluon
G (G"), and v stands for a massless vector boson with a
positive electric charge (see Fig. 1). Here, f ' are the
structure constants of the SU(3) color-gauge group. The
amplitude M~, which is of the same form as the Comp-
ton scattering amplitude of a charged massless vector bo-
son, is given by

Bi — &1&2 ~] (pl)~2 (p2)[Cp h(kl pl ql)C p ( k2 p2 qi) + 2pl ' kl(n~ g p nppn )],
B2 el e2 si (pl)s2 (p2)[Cppb(kl p2 q2)C ( k2 pl q2) 2pl ' k2(np n p ngk gp)]'
B3 = el e2"si (» i)s2 (p2)[C~.b(ki, —k2 q3)C p'(pi, —» 2, q3) —2ki . k2(n„n p

—n„pn )],
Ci —2(pl ' kl) )I C2 2(pl ' k2) )1 C3 2(kl ' k2) &1

(3.7)

(3.8)

with the definition

C~~-(p q r) = (p —q)-n~~+ (q —&)~n~-

+(r —p) n.i. (3.9)

The transferred momenta ql, q2, and q3 are given in terms
of external momenta by

ql P1 + ~1) g2 —Pl ~2) q3 —kl k2 ~ (3.10)

It is a simple matter to determine the A; factors for the
process G G ~ G G" by the use of the Jacobi identity
of the structure functions:

Lorentz invariance of the theory. Since the linearized
gravity is gravitational gauge invariant as well as Lorentz
invariant, it is expected to have a similar factorization
property in the linearized gravity. In the present work
we show explicitly that every amplitude of a graviton
scattering with a scalar, a fermion, a vector boson, or a
graviton itself indeed exhibits such a remarkable factor-
ization.

In order to prove factorization in the linearized gravity,
we first note that gravitational gauge invariance guar-
antees the decomposition [20] of a graviton wave tensor

(2A) into a multiplication of two spin-1 wave vectors,

facefdbe g fadefbce g fabefcde (3 11)

We emphasize that the factorization in an ordinary
gauge field theory stems &om gauge invariance and

e""(2A) = e"(A)e"(A),

where the wave vector e~(A) satisfies

k . e(A) = 0, c(A) e(A') = —hg

(3.12)

(3.13)
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so that the wave tensor e~" (2A) satisfies
/.t V

k„e""(2A) = e""(2A)k„= 0) e"„(2A) = 0, (3.i4)

+1 —2(pl ' kl) +2 2(pl ' k2)

C3 = —2(ki k2),

(3.i5)

which are the same as Eq. (3.8). For simplicity, we will no
longer write down this kinematical set in the following.

A. Graviton conversion into a photon

In this subsection, we consider the process of a gravi-
ton scattering oK a particle X for the photon production,
where X can be a scalar s, a fermion f, or a vector boson
R'. The graviton conversion into a photon can be con-
sidered as a means [21] to detect a gravitational wave.
As mentioned before, k~ and ej are the incident graviton

I

with the graviton four-momentum k.
In order to show clearly the common features of four-

body graviton processes, we organize the presentation of
our results in the following. First, we introduce X as a
generic notation for a scalar s, a fermion f, or a vector
boson W. Second, the k, (i = 1, 2) are for the four-
momenta of the incident g and the final g(p) in the pro-
cess gX ~ g(p)X, and p; (i = 1, 2) for the four-momenta
of the initial X and the final X, respectively. We note
that there are four Feynman diagrams for every process
(see Figs. 2 and 3). The last diagram in each figure set is
a so-called contact term, which can be always absorbed
into the other parts. We present only the results after
absorbing the contact term and rearranging the ampli-
tude according to the factorization theorem. Finally, we
mention that all the processes under consideration have
the same set of the kinematical factors C;, denoting the
s, t, and u channel momentum transfers,

momentum and a wave vector for the graviton wave ten-
sor, while k2 and e2 are the final photon momentum and
the photon wave vector, respectively. pi(p2) denote the
four-momentum of the incident(final) X particle.

f. gs -+ fs

The simplest nontrivial process is the graviton scatter-
ing oK a scalar particle for a photon production gs —+ ps.
The process is of order e and K, in both the gravitational
and the electromagnetic interactions and therefore the
relevant Lagrangian consists of four parts as

l:~1' = 2', (A) + rZ'. (A) + Zo~ + vC'„. (3.16)

The Feynman diagrams are shown in Fig. 2, where the
solid line is for the scalar particle. After absorbing the
contact term denoted by the last diagram, we obtain the
resulting transition amplitude for the process gs ~ ps
divided into three parts:

FIG. 2. Feynman diagrams for the process gX ~ pX. The
curly line is for a graviton and the wavy line for a photon.
Here X, represented by a solid line, can be a scalar s, a
fermion f, or a vector boson W.

b

C

JH' +M
(» ' '1)

(q,™)(El E2) —4(P2 E2)(Pl ' El)2 qi —rn

(» '1)
[(q2 —m ) (el ' e2) 4(P2 ' &1) (Pl &2)

(k2'1) - .
(qi —q2)( i '*,) + (» 2 ' 1) (pl ' 2) (p2 ' e2) (pl ' &1)

2g3

(3.17)

(3.18)

(3.19)

(3.20)

After extracting the kinematical factors 1 „it is straightforward to determine A,
' and B~' (i = 1, 2, 3) as

'41 +( 1 ' pl)~ +2 — +(sl ' p2) +3 e+(el k2)
= (» ' ki)('1 ' '2) —2(» '2)(» '1)

B2 —(p2 ki) (El ' E2) + 2(p2 ' El ) (p ei2),

B3 [(p2 + pl) ki] (ei e2) —2(p2 ei) (pi . e2) + 2(p2 ' e2) (pl ' ei).

(3.21)

(3.22)

The transition amplitude is reduced to the factorized form

pxMg, ~~, ———eKE
px

p2

pi -k2
(El pl)(E2 ' p2) (el ' p2)(E2 ' pl)«x &2) — +

pi -ki pg k2
(3.23)
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where ez and e2 are two wave vectors for a graviton and a
photon, respectively. Here, the overall kinematical factor
E is

amplitude Ms, ~~, completely factorized into a quite
simple form:

(».kl)(» k2)

(kl k2)
(3.24)

K (P2 El I~s ~ = —+
I I

[~~ l.
2e (p2 kl )

(3.27)

We note that the last factor is of the same form as the
scalar-Compton scattering amplitude.

Before proceeding further, let us note here that the
introduction of a manifestly gauge invariant four-vector
e; (i=1,2):

(pl. k;)
(3.25)

~,s = 2e'(el e2). (3.26)

Along with this simplification, gravitational gauge invari-
ance and graviton transversality render the transition

renders the expression of the scalar Compton scattering
amplitude ~~, greatly simplified:

&. gf ~of
The next simplest case is the process gf -+ p f with

a graviton in place of the incident photon in the ordi-
nary fermion-Compton scattering process. The relevant
Lagrangian for the process gf + pf is composed of four
parts:

——l: ~(A) + KZ ~(A) + 8 ~ + Kl: ~. (3.2S)

The Feynman diagrams for the process can be drawn in
the same way as for the process gs —+ ps. The only diKer-
ence is that in the present case the solid line in Fig. 2 is
for a fermion. After absorbing the contact term denoted
by the last diagram in Fig. 2, we obtain the transition
amplitude Mg f~p f.

w»+ m", + w:f,
eK (El pl ). -(p. ")[P(4.+ )&.] (p. , )

er. ( 1 p2)

(
2 2 u(p2 S2) [gl($2 + m) gp] u(pl Sl)

g2
—m

eK—2(k2 &1)u(p2) S2) (61 e2) g2 —(el . k2) Pg
—(e2 kl) $1 u(pl) Sl).

g3

(3.29)

(3.31)

(3.32)

Now the factors A, and B; (i = 1, 2, 3) for the process
gf + pf are

3. gWmpW

A~~ = A~' (i = 1, 2, 3),
1

u(P2 s2) [K2(/1 + m) 4] u(Pl sl)

f 1
26(P2 s2) [fl($2 + m) 'g] u(P1 sl)

Bs ——u(p2, S2) [pl (62 ' kl)+ p2 (el ' k2)
—(el ' e2) $2]u(pl, Sl) ~

(3.33)

(3.34)

Since the process gW ~ pl% involves three vector par-
ticles and one graviton, Feynman rules are complicated
and as a result the expression of the amplitude is compli-
cated as well. Without any new insight of the amplitude
structure, any conventional method will require a lot of
time to calculate the cross section. This formidable al-
gebra can be avoided by a simple reorganization of the
amplitude due to the factorization as described below.

First we write down the relevant Lagrangian for the
process gR' —+ pW, which consist of four parts:

r'p2. e, )
I [~~a]2e (p2 kl ) (3.35)

where the transition amplitude M~f is of the same form
as the standard Compton scattering amplitude:

1 1~g f e u(p2 S2) Q2 f1+ fl
1 —m 2 m

xu(pl, sl). (3.36)

As mentioned before the C; factors are the same as those
for the process gs ~ ps. Consequently we are led to the
factorized transition amplitude

= &sW(&) + «s~(&) + &s~ + «s~. (3.37)

Through the same procedure as in the process gf -+ p f
we find

~gw

gnaw1

~pW

X,". ('=1,2, 3),
—[Bl —m'(el Sl)(e2'. S2)],

[B2 + m (el s2) (e2 ' el)] ) Bs

(3.38)

B3
2

'

(3.39)

where B, (i = 1, 2, 3) are given in Eq. (3.7). Then the
amplitude reduces to the factorized form as
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t ( .'.)(".")
Mgw'~&w = etcF

l l
(el &2)(sl s2) —(ki k2) p'k

((e2 sl)(p2 el)(k2'E2) + (61 E2)(p2'e2)(k2'~1)
p1 k2

—(E2 s2)(p2'el)(k2 sl)) + ( i &i)(p2 2)(k2's2)
p1.k1

(~~ ~i)(~l '~)
)p1.k2

(3.40)

where pl(p2) and sl(s2) are the four-momentum and wave vector of the initial(final) vector boson, respectively. The
2; (i = 1,2) is a polarization vector defined in a manifestly gauge invariant form as

(kl s;)
'R 4

(k )Pl (3.41)

The introduction of the gauge invariant wave vector considerably simplifies the amplitude form and directly justifies
gauge invariance. The second bracketed term of Eq. (3.40) can be shown to be the same as the Compton scattering
amplitude of a charged vector boson given by

Mpw 2e (~1 ~2)(&1 ~2) (kl'k2)
P1' 1

1 E2 62 6'1

p1 k2

((e2 El)(p2 61)(k2 s2) + (el s2)(p2 e2)(k2 81) —(e2 s2)(p2 El)(k2 sl)) + (El 'El)(p2 ez)(k2 s2)
p1.k2 p1 k1

(3.42)

Consequently, the amplitude Mg~~~lv is expressed in a factorized form as

K )tP2 El 1
Muv( ~~ = —F

I I [M~lv].
2e (p2 ki)

(3.43)

H. Cravitatienal Campten scattering

In this subsection we investigate the factorization property of the gravitational elastic processes gX ~ gX for X = s,
f, or W. The Feynman diagrams for these processes are shown in Fig. 3, where the solid line is for X. Through
this subsection the kl (k2) denote four-momenta of the incident(final) graviton and pl (p2) denote four-momenta of the
incident(final) X particle.

1. gs~gs

The relevant Lagrangian of the process gs ~ gs consists of five parts:

The transition amplitude after absorbing the contact term denoted by the last diagram in Fig. 3 becomes

Ms, ——Ms'+ Mss'+ Ms',

(3.44)

(3.45)

a

~gS
C

2K 1 2
[pl ' kl(el ' e2) —2(p2 E2)(pl El)]

4 (q12 —m2)
2K

[p2 ' kl (61 e2) + 2(p2 El)(pl ' 62)]
4 ((h2 —m2)

K 1
2 ([(p2 + pl) kl](cl e2) + 2(p2 el)(pl 62) 2(p2 62)(pl ' El))

(3.46)

(3.47)

(3.48)

It is now straightforward to determine the corresponding factors A~' and B; ' with the same C~' (i = 1, 2, 3) as in

Eq. (3.8):
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7e
As' = ~ B~', Bs' = — ' (i = 1, 2, 3).

4

Consequently we obtain the factorized transition amplitude as

(3.49)

K
JHS, —— I"[JH~, ] .

8e4

Note that the resulting amplitude is exactly the square of the standard scalar-Compoton scattering amplitude.

(3.50)

& ef ~gf
The relevant Lagrangian for the process gf ~ gf is made up of five parts:

+ l: +8 + l: + l'. (3.51)

The transition amplitude Msy for the process in Fig. 3 is reorganized after absorbing the contact term into other
three parts as

(s.52)

[2(&1 ' pl) (&2 ' p2) (&1 &2) (pl ' Irl)] [u(p2) s2) [Q2( $1 + m) pl] &(pl sl)] &8 ql —m2 (s.5s)

8 2 2 [2(el ' p2)(e2 pl) + (el ' e2)(pl ' k2)] [u(p2 s2) [A(k ™)6]u(pl »)18 q2
—m

K
2 [ ('1»)('2») ('1'»)('2'»)+('1 '2)(»+»)

4q3
x [tc(P2) s2) [fl(e2 kl)+ P2(el ' k2) —(el ' e2) g2] u(Pl, sl)] . (3.54)

We obtain the factors As~ and Bs~ (i = 1, 2, 3) as

(3.55)

I

scattering amplitude and the fermion-Compton scatter-
ing amplitude.

As a result the transition amplitude is reduced to the
factorized form

(s.56)

3. gR' m gW'

The relevant Lagrangian for the process glV —+ gW is
composed of five parts up to O(+2):

where the expressions of M~, and M~y are given in
Eqs. (3.26) and (3.36), respectively. Note that the tran-
sition amplitude of graviton-fermion scattering is fac-
torized into the transition amplitude of scalar-Compton

——l'. +]cl'. + 8 ~+ Kl: ~+ K 8 ~.

The amplitude expression of the process is so complicated
that the explicit presentation will be omitted. Instead,
we write down just the factors As and Bs (i = 1,2, 3)
given by the relations

(b)

B~w
~gW 2~ye ~g R'

4
(3.58)

It is now clear that the amplitude of graviton scattering
with a vector boson can be written in a factorized form
as

(c) K I" [JH~, ] [JH~~], (3.59)

FIG. 3. Feynman diagrams for the process gX ~ gX. The
curly line is for a graviton. X, denoted by a solid line, can be
a scalar s, a fermion f, or a vector boson W.

where JH~, and M~~ are the same as Eqs. (3.26) and
(3.42), respectively.
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pn
1 2

0000

p& p2

(pg kg) (pg . k2)

(kg . k2)
(3.65)

FIG. 4. Feynman diagrams for the process gg ~ gg. The
curly line is for a graviton.

(5) The other factors are exactly of the same form as
the amplitudes M~„M~y, and M~~ except for their
overall coupling constants according to the number of
involved gravitons.

(6) While the form of Eq. (3.26) is independent of the
choice of e, , the form of the photon-vector boson scat-
tering amplitude M~ can be modified if the i, and e;
are defined in a different way. Nevertheless, we find that
the transiton amplitude M~~ satisfies Bose and crossing
symmetries as expected from the cyclic property of the
factorization. The completely symmetric expression of
the amplitude M~~ can be found in Ref. [22].

C. Graviton-graviton elastic scattering IV. POLARIZATION

The process gg ~ gg is a pure gravitational process
of order of K, . The relevant Lagrangian for the process
gg ~ gg is made up of three terms as

Z» = Z'+ Kc'+ K'Z'.
a 9 (3.60)

As in other cases, after absorbing the contact term de-
noted by the last diagram in Fig. 4, we obtain the factors
A, , B,. ~, and C,. for the process gg m gg as

A~ = KB, Bs— = (i=1 2, 3).
16 (3.61)

Likewise, the transition amplitude of graviton-graviton
scattering [22] is factorized as

(3.62)

Here, pq(p2) and sz (sz) are the four-momentum and
wave vector of another initial(final) graviton, respec-
tively.

D. Summary

(p,
(» k, ) (3.63)

(2) The transition amplitudes JHg ~g JHgf~gf and
W~~~~~ have as a common factor

M~. = 2e (~~ ~2) . (3.64)

(3) On the other hand, the graviton-graviton scattering
amplitude ~&&~&& is proportional to the square of the
amplitude M~ .

(4) All the transition amplitudes have as a common
kinematical factor

In the present subsection, we summarize our results for
the transition amplitudes obtained from the factorization
procedure.

(1) The transition amplitudes JH~, ~~„M~y~~y and
M~~~~~ have a common factor

Clearly factorization will allow us to describe every
four-body graviton interaction with a scalar, a fermion,
a photon, a vector boson, or a graviton itself through
well-known four-body photon interaction processes in the
ordinary QED. One noteworthy advantage from factor-
ization is a simple explanation for polarization phenom-
ena in the graviton processes.

A natural Cartesian basis for a polarization vector
e"(A) with a momentum kq can be given in terms of two
arbitrary four momenta p1 and p~. For simplicity, we
use k2, p1, and p2 satisfying the constraints k2 ——0 and
p1

——p2
——m . Then we can choose the basis consist-

ing of two orthonomal four-vectors n1 and n2 such that
[23,24]

pq (kg + k2)
ni = —(p~+»)"— (kg + kz)"1 2 k1. k2

~pl k2~k1p
(4.1)

1.~(A) = [n", + iA~", ],
2

(4 3)

where A = +1 is for the right- and left-handed polariza-
tion, respectively. Note that the scalar product (nj e) of
the polarization vector eI'(A) and the four-vector nz is in-
dependent of the helicity value A. Certainly one can take
another set of (nz, nz) as a basis, but it is different from
the set (nq, n2) simply by a complex phase, which can be
neglected without any change in physical observables.

Factorization allows us to use the well-known polariza-
tion effects in the ordinary QED for the investigation of
polarization effects in the graviton processes. As a pre-
liminary part, we consider the process ps —+ Ys where
Y is a massless scalar. The transition amplitude of the
process ps ~ Ys is

with the conditions

k, n~ =0, p, n2 ——. 0, n, n~ = —h~ (i j= 12),
(4.2)

and the normalization factor N = 1//2I" —m2. In the
basis we can introduce, as a polarization vector,
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M(pgs -+ Ys) = e e"(A)
ki pi

P2

ki p2

1

+2FN
(4.4)

where the coupling constant of the Yss vertex is assumed
to be e. Note that the amplitude is completely indepen-
dent of photon helicity A.

One can now show that the process gX ~ pX with
M(ps -+ Ys) as a factor exhibits the same polarization
property as pX + pX with X a scalar, a fermion, or
a vector boson. However, the kinematical factor in the
center-of-mass kame takes the form

m2

~2FN 2

0
cot —, 8 = Z(g, p), (4.5)

= 2(
pi ki

+ (p2 El ) (pl e2)
p2- ki

(4.6)

so that it makes the angular distribution of the graviton
process different &om the corresponding QED process.
The former is more forwardly peaked than the latter. In
addition, the graviton cross section increases and might
violate unitarity at very high energy due to the ~s factor
in Eq. (4.5).

Let us now consider the elastic photon-scalar scattering
process ps + ps. The transition amplitude is given by

yields an interesting fact that in the massless case the
final graviton helicity should be the same as the initial
graviton helicity irrespective of the spin configuration of
matter fields.

On the other hand, the transition amplitude for the
process gg ~ gg has neither M(ps -+ Ys) nor M(ps ~
ps). As a result graviton helicity in the process gg -+ gg
might be not preserved unlike in the processes gX ~ pX
and gX —+ gX.

From now on we investigate in more detail polarization
effects in the graviton scattering processes. As shown
above, the helicity formalism permits a simple and gen-
eral understanding of the polarization effects in the gravi-
ton scattering processes. However, it is often convenient
to employ the so-called covariant polarization density
matrix formalism, especially for a mixed state. In the
massive case, the helicity formalism requires fixing the
reference frame and has more complicated crossing sym-
metries. These problems can be avoided by the covariant
density matrix formalism. In the light of these advanta-
geous aspects the covariant density matrix formalism is
employed in the present work to get general information
on polarization effects in arbitrary reference frame.

The polarization of a photon (or a massless spin-1 par-
ticle) beam is completely described [24,26] in terms of the
so-called Stokes parameters (SP's) (~ (i = 1, 2, 3). In the
helicity basis, (2 is the degree of circular polarization and
the others are degrees of linear polarization. Because a
graviton has only two helicity values, one can introduce
the so-called graviton SP's (, (i = 1, 2, 3) [27]. Similarly,
(2g is for the degree of graviton circular polarization and
the others are for degrees of graviton linear polarization.
On the whole, the photon or graviton polarization den-
sity matrix pv (V = p, g) is given in the helicity basis
by

While in general two different helicity bases are needed
for two photons, only one helicity basis can be employed
in the present case:

1 + (V
PV 2 gV &gV

(V + (~V

gV (4.1O)

1
e", (A) = e", (A) = (n", + iAn,"). (4.7) and, for a given polarization density matrix, the SP's are

determined by the relations

These enable us to derive the result [25]

( m'i
M (p s m p s) = 2e

~

b„„ (4.8)

= —Tr(o2pv)) (, = Tr(ospv),

= —Tr(o g pv), (4.11)

Despite scattering the photon helicity is preserved in the
massless case.

Combined with the factorization property in the pre-
vious section, Eq. (4.8) leads to

where o'; (i = 1, 2, 3) are the Pauli matrices.
In the covariant density matrix formalism the photon

projection operator e"(A)e*"(A') for an incident photon
beam is replaced by its photon covariant density matrix

p- 1p"" = —[(n", n", + n2n2) —(n~nz + n2n", )(,
m~&

M(ggX -+ gg X) oc F
~

bye 2F)
x [M(ppX -+ pg X)], (4.9)

with X a scalar, a fermion, or a vector boson. The result

+i(nznz —nznz)(z + (n2nz —nznj )(s]. (4.12)

In the graviton case the covariant density matrix p"
which should substitute for the graviton projection op-
erator e~ (A)e*"~(A'), is written in terms of the graviton
SP's (g (i = 1, 2, 3) [27] as
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p" '"p = ) ~" (p, A) ppg e* p(p, A')
AA'

1

4
= —((n~z ni + n~znz ) (ni ni + n2 nz ) —(n~zni —ni nz ) (n2 ni —ni n2 )

+i[(n~ini + n~2nz)(n2npi —ninp2) + (n2ni —nin2)(nini + n2nz)](z
—[(n2n~ —nini) (ninp2 + n2 npi) —(nin2 + n2ni) (n2 n2 —ni ni )](i). (4.i3)

In a process with an incident graviton the transition
amplitude can be written as

I

F~~' = 1+2f + 2f + 2f(1+ f)(f, F~~' = (1+2f)(~~,

F~~' = (1 + 2f )(~~, Fg' = (1 + 2f + 2f )(f + 2f(1 + f),
Mg = e„A~, (4.i4) (4.19)

and then the absolute square of the amplitude is given
by

= e" ~* ~Az„Az„p. (4.i5)

Polarization efFects of an incident graviton beam are de-
termined by replacing e" e* P in Eq. (4.15) by the co-
variant density matrix p" ' P in Eq. (4.13).

On the other hand, the scattering amplitude for a
graviton production is in general written as

M~(A) = e„*„(p,A)A~". (4.16)

Then the Anal spin-2 polarization density matrix ppp is
determined through the relation

M~(A) M~(A')
Q„„,M~(A)M~(A')

(4.17)

After such manipulation, Eq. (4.11) is used to obtain the
Anal graviton SP.

In the following we present the differential cross sec-
tions in a 2 x 2 matrix form in order to consider the beam
interference eR'ects and to relate directly those expres-
sions with the final polarization density matrices through
the relation (4.17).

A. Graviton conversion into a photon

In this subsection, we use the factorized amplitudes for
the processes gX ~ pX obtained in Sec. III A in order
to consider the polarization eEects. Since those processes
have the amplitude M~, ~~, as a common factor, it is
obvious that the polarization eKects of the initial graviton
beam should be identical to those of the initial photon
beam in the process pX ~ pX.

where we have introduced the notations

Q
2—

)4'
K

4a'
m'
2F'

(pl + ~1) 1
a (pl ~2) 1 t (pl p2) . (4.20)

Here the y; (i = 1, 2, 3) are three 2 x 2 matrices related
with the Pauli matrices o.; as

X1 = 02) X2 =03) X3 = 01 ~ (4.2i)

Then the final photon SP can be obtained from Eq. (4.19)
as

F $8

F fs'
0

(4.22)

The polarization of the final photon depends on that of
the incident graviton in general. One can now check that
the final photon SP's are identical to those of the ini-
tial graviton beam in the massless case, i.e., (,.
(i = 1, 2, 3). This result is due to the fact that the ampli-
tude has not only the factor M~, ~y., but also the factor

~ ~

~. gf -+ ~f

In the process gf ~ pf we can in principle consider
the case where all the particles are polarized. But in
order to look into the implications from factorization to
the polarizations, it will be sufhcient to consider the case
where all the other particles except the final fermion are
polarized.

For notational convenience we first introduce the in-
variants

(AA') =
4 3

KQo.g sQ, —m ps ~ ys
4 (s —m2)2t ( )

(4»)

d. gs -+ ps

First of all, we consider the simplest process gs ~ ps.
Following the procedure described before, we obtain the
di8'erential cross section of the process gs —+ ps in a 2 x 2
matrix form as

(sl ~1) (sl ~2)
Q2

&PvPcr 1 1P1
m s —m2

(4.2S)

where s1 is the incident fermion spin four-vector and m
is the fermion mass. A:; and p; (i = 1, 2) are defined in
the same way as in Sec. III.

The differential cross section of the process gf ~ p f
is obtained in a 2 x 2 matrix form as
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(4.24)

F~~ = 6(1 + (ss) f (1 +. f) +. 3 + 4hi + 2hi,
F~~ = —3(1+2f)(si, F~~ = (1+2f)(5+ 4hi)(2,

= 3(1+2f + 2f')(.'+ 6f(1+ f) (4.»)

Fo ' = —"i + 4f (1+ f) (1 —4)
2f—[(1+ 2f)ai + a2](2s,

Fi ~ = 2(1+ 2f)(is —4fh2e(2s,

F ~ = —(1+2f) [h ( + 2(l —( )f ]
—2

h2

4fe(is-,

F~~ = 4f (1—+ f) + 2 [1 + 2f (1 + f )] (ss

+2f[(1+2f)ai + h2a2](„ (4.25)

( 3 l s
h', +4h, +3

( 4h, +5
4h +3)
3

q2h, + 4h, + 3)

(4.30)

Note that even in the massless limit the final photon
helicity is not equal to the initial graviton helicity.

In the massless case where f=0, the final photon SP's
are shown to be

where in addition to f we introduce two I.orentz invariant
functions

s —m 2 2

+
u —m

u m
s —m ) 2

s —m 2

u —m2 (4.26)

(s2 + ii2 )

0"+ u') (4.27)

As a result, the degree of circular polarization is pre-
served despite scattering even in the graviton-fermion
scattering process. However, the degrees of linear po-
larization are reduced according to the scattering angle.

3. gal% m gW

In order to describe the process with all polarized par-
ticles, we have to introduce four diferent sets of Stokes
parameters. For simplicity, we consider the case where
the initial and final massive vector bosons are unpolar-
ized. Then in a 2 x 2 matrix form, the differential cross
section of the process gW —+ plV is given by

do'~, 7rnns (su —m )
dt 12 (s —rn2) 2t

x F~~ + ) F,
)),~

(4.28)

When averaged over the initial spin states, Eq. (4.24)
gives the same results as in Ref. [7]. From the ratio of
F, ~to Fo . in Eq. (4.25) similar to Eq. (4.22), we can
obtain the SP of the final photon beam. We note that
when the initial graviton SP's are used in place of the
photon SP's, the final photon polarization is identical to
that [24] of the QED Compton scattering process. This
is a result expected from the factorization property. For
the case of massless and unpolarized fermion, we obtain
the photon SP's as

B. Gravitational Compton scattering

In this subsection we consider polarization efFects in
elastic graviton scattering processes gX ~ gX, by using
the results obtained in Sec. III B. Since the factorization
forces every amplitude to have the amplitude ~~,~~, as
a factor, the graviton helicity should be preserved when
the particle L is massless. At first, we present the results
in the massive case and then discuss the massless limit
to check graviton helicity preservation.

4» gs ~ gs

The simplest one of elastic graviton-matter scattering
processes is the graviton-scalar scattering process gs —+
gs. The differential cross section is written in a 2 x 2
matrix form as

(AA') =
16 ( t ) (

- ' ')
(4.31)

Fos' = —(1+2f) + f (1+f) (1+(ss),

F"= —(1+2f)(1+ f)'('

F = —,(1+»)(1+f)'(:
Fss' = —(1+2f) (ss + f (1+ f) (1+ (s).

(4.32)

We can see the difFerence in the polarization of the outgo-
ing graviton from the polarization of the outgoing photon
in the process gs -+ ps by comparison of Eq. (4.19) with
Eq. (4.32). When interacting gravitons are unpolarized,
the difFerential cross section of Eq. (4.31) gives the same
results as in Ref. [15 . In the massless case, where f van-
ishes, we find that (,'s = (s (i = 1, 2, 3) as in the process
gs ~ ps so that graviton polarization is preserved in
spite of scattering.
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&. Qf ~Sf
The next simplest process is gf ~ gf T. he differential cross section of a 2 x 2 matrix form is given by

do-gf". (»)= ~ . -
~

'E:~+)'-E" '
dt 16 g t (4.33)

(4.34)

Eo = —f(1+ f)(3h1 —2) —h1+ 4f (1+f) (1+(s) — (1+2f + 2f ) ((1+2f)a1+ a2) + 2(1+ 2f)e f(z
Es~ = 2 (1+f) —f (s + 4(1+ f)f'h, e(s,

E2s = — (1+2f + 2f ) ((1+2f)a1+ a2)+ 2(1+ 2f)h2e f —(1+2f) f h1+ (h1 —2f)(1+ f)
—2(1+ f)f 2ep~ — (1+2f)a1+—

2

Ess~ = 4f (1+ f) ((ss —1) + 2(1+ 2f + 2f )(ss+ 2f (1+f) ((1+2f)a1+ h2a2)(2s,

where the spin states of the final fermion are summed.
When averaged over the initial spin states, Eq. (4.33)
gives the same results as in Ref. [7]. Then the SP of the
outgoing graviton can be obtained from Eq. (4.34):

gf
i Fgf

0
(4.35)

One can see the polarization of the outgoing graviton is
influenced by the polarization of the incident graviton as
well as incident fermion. In the massless case, the final
graviton SP reduces to

In the massless limit the final graviton SP's become

4' = 4 O' =
I h2

1 1

(4.39)

Clearly graviton helicity is preserved in the massless case
as shown in Eq. (4.39).

&"+ u')

(S +tL )
(4.3o) (AA') = ~n' (Es'Y + ) Esw+.

328
(4.4O)

The differential cross section of the process gp ~ gp is
written in a 2 x 2 matrix form as

It is straightforward to show that graviton helicity is pre-
served in the massless case as in the process gf -+ p f

8. gWmgW

We consider only the case where the massive vector
boson TV is unpolarized. The differential cross section of
the process gR' ~ gR' is written in a 2 x 2 matrix form
as

F9'7
0

Fw'
2

1„, (1+44)"+ (1 —44)~'

F9'7

1„, (c+c)"+ u:-~:)-',
(4.41)

d~gw
(AA') =

FgR'
0

FgR
1

FgR'

Fg%'
3

)
(4.37)

of + 12f + 2f (h1 —3) + 2f(h1 —2h1 —2)

+(h,' —1) + Of'(1+ f)'(,',
—3(1+4f + of + 4f )(, ,

[2f (2h1 + 1)(2f + 3) —2f (h1 —2h1 —2)
+(h1 —1)14
of'(1+ f)'+ 3[f'+ (1 + f)']4 (4.38)

F93'
~g i

Fg'Y '

0
(4.42)

Similarly, we can obtain the change of polarization of the
photon colliding with a graviton. After taking an average
over the initial photon polarization, we obtain the final
graviton SP's as

where (, and (, (i = 1, 2, 3) are the SP's of the inci-
dent photon beam and the incident graviton beam, re-
spectively, and the final photon polarization is summed.
When interacting gravitons and photons are unpolarized,
the differential cross section of the Eq. (4.40) gives the
same results as in Ref. [15]. Then the explicit form of the
outgoing graviton SP can be obtained as
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2'' ( 2s'u'
1 ( 4+ 4) i 2 2 3 4+ 4 3'

(4.43)

C. Graviton-graviton scattering

In the elastic graviton-graviton scat tering process,
three-graviton vertices and a four-graviton vertex are in-
volved. Even though the vertices are so complicated as
shown explicitly in the Appendix, we obtain the very
simple differential cross section of the process gg ~ gg
as

(
(AA') = '

Fg g + ) F,gg~, , (4.44)
dt 32s4u2t2 )»

F =-(1+( ( )"+ —,(1 —( ( )( '+t')
+((gl (g2 + (gl (g2 )u4t4

Fgg ((g2 u4 + (gl t4) s4

= 2(( —~ )(" —t )+ —(( +~ )'
Fgg ((g2 4 + (gl t4) 4 (4.45)

Here (g ((g ) are the incident graviton SP's with mo-
mentum ki(pi) and the polarization of one of two final
graviton beams is summed. When interacting gravitons
and photons are unpolarized, the differential cross section
of the Eq. (4.44) gives the same results as in Ref. [15]. In
contrast to all the other processes under consideration in
the present section, the graviton helicity in the process
gg ~ gg is not preserved. This reflects that the transi-
tion amplitude contains neither M~, ~~, nor M~, ~~, as
a common factor, which can lead to the graviton helicity
preservation.

V. SUMMARY AND DISCUSSION

Gravitational gauge invariance and graviton transver-
sality force the transition amplitudes of four-body gravi-
ton interactions to be factorized:

~g8~+8

, ~gw~~n

'll

,F [M~, i..] x &

2e3
, ~~w,

(5 1)
f

Mg,
~gy

, ~gw,
K F [M~.] x ~ (5 2)

We also find that the graviton helicity is preserved for the
unpolarized incident and final photon beams, but in gen-
eral the final graviton SP depends on both initial photon
and graviton SP's.

The introduction of manifestly gauge invariant four-
vectors i, and 2; (i = 1, 2) renders each amplitude ex-
pression simplified. This simplification with the factor-
ization property justifies why, with all the very compli-
cated three-graviton and four-graviton vertices [15,16],
the final form of transition amplitudes is so simple.

The factorized transition amplitudes facilitate the in-
vestigation of polarization effects in the four-body gravi-
ton interactions. The transition amplitudes for the gravi-
ton interactions with a photon or a matter field, gX ~
pX, where X is a scalar, a fermion, or a vector boson,
have essentially the same transition amplitude structure
as those involving a photon instead of the graviton, apart
from a simple overall kinematical factor. As a result,
the polarization effects involving the graviton are id.enti-
cal to those for the corresponding photon if the graviton
Stokes parameters are used in place of the photon Stokes
parameters. But the kinematical factor makes the an-
gular distribution of the graviton process different from
that of the corresponding photon process. On the other
hand, the processes gX ~ gX have as a common fac-
tor the elastic photon-scalar scattering amplitude ~~,
with the scalar mass equal to the X mass in their am-
plitude expressions. This leads to the conclusion that,
when the particle X is massless, the graviton helicity is
preserved due to the photon helicity conservation of the
process ps ~ p8 in the massless limit. Only the mass
terms cause the graviton helicity to be flipped.

The process gg + gg does not contain ~~, as a com-
mon factor. This point is reflected in the fact that the
graviton helicity is not preserved in the process gg —+ gg
in spite of the masslessness of graviton.

The validity of factorization can become more concrete
through further extensive investigation. We point out
a few aspects worth further investigating. (i) A formal
proof of factorization might be presented. There is a
factorization property of the same type in closed string
theories [28]. From the fact that a closed string theory
reduces to a supergravity theory in the infinite string ten-
sion limit [29], one can conclude that this is a real proof of
the factorization in the linearized gravity. However, fac-
torization in the string theory is due to the independence
of left-moving modes and right-moving modes, while only
gravitational gauge invariance and Lorentz invariance are
imposed in the linearized gravity. Still, the relationship
between two concepts are to be established. (ii) Factor-
ization is expected. to hold even if matter particles have
different masses. As an example, the process ge ~ TVv,
can be considered to check this point. (iii) It will be an in-
teresting question whether factorization survives against
any loop effects [30].

To conclude, factorization has such a generic property
in any Lorentz-invariant gauge theory that its more inten-
sive and extensive investigation is expected to provide us
with some clues for the unification of gravity with other
interactions.
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APPENDIX

In this appendix we present all the Feynman rules for
propagators and vertices needed in the present work. The
Landau gauge is chosen for the photon propagator and
the de Donder gauge for the graviton propagator. A
dashed line is for a scalar and a directed solid line for
a ferrnion. A vector boson is denoted by a wiggly line

and a graviton by a curly line.
In the ffgg vertex [Sym] represents symmetrization

between p and v and between A and K while the sym-
bol [Per] indicates permutation among both (kIpv) and
(k3AK).

In the last two vertices, the symbol [Sym] means sym-
metrization between p and o., between v and P, and
between a and p, respectively, for the three-graviton
vertex, or between p, and o. , between v and P, be-
tween cr and p, and between p and A, respectively, for
the four-graviton vertex. The P indicates permutation
among (kqpo. ), (kqvP), (kscrp) for the three-graviton ver-
tex, or among (kI pa), (kqvP), (ksop), and (k4pA) for
the four-graviton vertex, and each subscript in P is for
the number of independent permutations. As an exam-
ple, P3(kI ' k&9v Qap 7-w) (k& ' k2)~wv lap+ v + (
k3) gvcr gPpgpa + (k3 ' kl) gapgpa9vP

Feynman Rules

Scalar propagator: 2

p2 —m2

Fermion propagator:

W boson propagatol': ll ~ II ;(„vv v"v
)

p2 —m2

Photon propagator: %WWIA lr
p2

Graviton propagator: P& ~10001lll~ cyP ; qp ~ P+qI P~v~ qp v~~P
2 p2

ssp vertex:

8spp vertex: 2ze

ffp vertex:
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t'1 H'; vert. ex:
771 P2

tV+
/3

~2 s

+(p2 —7 );77„3
+(& —P, )„77„„,

tt:tk: q-, vertex: 2(p
( 77I.cu77nI'I 77@.s 77vI, H 'I7Ig~377vcl )

le+
/3

~,~g vc rtcx:
7I, P

Pr
771 772

271 Ir 772u 7 '1 u772 p ]-

s ~gyvertex:

771 P2

K pv Av, p, ,~~ && /cr vA 1 2

+77uA (plvp2 + pl p2p ) + 77@K (7 Ap2v + pl pv2A)

+77v A(plvp2r. + plrp2u) + 77vr (plAp2v. + pip p2A)

'% u(prlAp2r, + plrp2A) 77 A (rpl tpI2u + plvp2Ic)

f / yver'tex: K[&g„,(P,+ P, —27-II. )

1 2 /c v /.c 1 2 v

ffyy vertex:
i~2 Sym Per] —, 77„Ap„.(pl + p2)„

1 1+ 16 7yA~2u 7r. + „/, rA / 2('Yr 7u 7v 7r)

W Wg vertex:

K
I

Pl P2

W+

2X
2K 77Arr7pv(Pl

' P2 m ) 77ArPlvP2p.

+77rvPlvP2A 77vvPlKP2A + 77AvPlrP2IJ.

v 7A (Pl ' P2 m ) + 77 P1AP2v

77vvPlAP2r + 77AvPl vP2r.

77„77A„(P1 P2——m')

WWgg vertex:
4K Ar po. Ap ro pv 1 '

2 ~ 1v 2p.

77Ar(Tyvpo + Tvvop) 77po(TpvAr, + TIJvrA)

+277rr, p (T~uAo + TpuoA ) + 2'gAo (Tp, up~ + Tv, ur„p )
+2(77pp77voPl AP2r r7vA77vcrPl pP2r. 77@p77vrP1AP2 o

+77po77vpPlrrP2A 77vegvpPloP2A 77vor7vAPlrP2p

+77pA77vr Pl pP2o + 77v, r. 77vAPloP2p)]

where

Tpupo —77puPlpP2o 77vpPlvP2o
2~-PlpP2~+ ~-~-(Pl P2 —m )
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swag vertex:
1'

p

2t K

-~..(» +».).
—~.-(» +».)„

ver ex:
2

4&K p~ ~ n'p, v av p

WWpg vertex:
/pv(gpa (»1 + p2) /aap2p r/npplcr)

-~,-((» +».)„~-+(» +».).~.-)
1 2 ~ pa vp va pp

+r/, (», + k, )„r/..+ (», + k, ).r/„. ]

+V-I(»2 —k2)„~-p + (»2 —k2).~-)
+(» + k.).(~:~., + ~-~.,)

+(». —k.),(~.-~-+ ~-~.-))

ggg vertex:

/I, A
k)

i r'[Sym] -P6(k,& k2r/„r/ r/p )

+ ,'P3(kg k2r/„-g pr/ ~) + P6(k) k2,„r/ „r/p~)
—

—.'P. (k~ - »~.-~-p~-. ))

gggg vertex:
ir. '[Sym) [-,'P6(kg kyar/„. r/ pr/, r/pp)

1+2P.(k .k,~.-~-,~p ) —,P.(k-
—4R2(ki-4. ~.

-happ~»)

+ -', (2k~-k ~2-~p. ~'~)
—P»(k~ . k2V~-n- Vp~Vp~) + 4P6(k~ k2V~-V-nppV»)

Pz 2 (kz '
k72/ ~pr~/~ 'g& rp/pp ) + 2P6 ( k& . k2 T/„o r/~ p Q&p r/p p )

P»(k~-k»~" —~--p~p~) + P»( ~-»p~. -~-p~~~)

2P&2(kl~k2p /P~9~3 /p&) + 4P24(k& k2 lp~ /&& /w'9P&)
1 1

1P6 ( k& kp p r/ pr/ p gyp ) 8 P6 (kJ k2 r/p f/ p g ~7/pp )

+-,'P6(kg k2r/„r/ pr/ p7/~p)]
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