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Astrophysical shock-wave solutions of the Einstein equations
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We construct exact, spherically symmetric, shock-wave solutions of the Einstein equations for a
perfect fluid. The solutions are obtained by matching a Friedmann-Robertson-Walker metric (a cos-
mological model for the Universe) to a static Oppenheimer-Tolman metric (a model for the interior
of a star) across a shock-wave interface. This is in the spirit of Oppenheimer and Snyder, except, in
contrast with the Oppenheimer-Snyder model, the pressure p is nonzero. Our shock-wave solutions
model the general relativistic version of an explosion into a static, singular, isothermal sphere. Shock
waves introduce time irreversibility, loss of information, decay, dissipation, and increase of entropy
into the dynamics of a perfect Quid in general relativity. As a corollary, we also obtain a difFerent
Oppenheimer-Snyder model for the case p = 0.

PACS number(s): 04.20.Jb, 04.40.Nr

I. INTRODUCTION

In a recent paper [1], the authors constructed a class
of exact, shack-wave solutions of the Einstein equa-
tions of general relativity. The paper [1] concluded with
the derivation of a set of ordinary difFerential equations
(ODE's) that describe the matching of a Friedmann-
Robertson-Walker- (FRW cf. [2], p. 412) type metric to
an Oppenheimer-Tolman- (OT-)type metric, such that
the interface between the two metrics defines a spher-
ically symmetric, fluid dynamical shock wave. In this
paper we give an explicit solution of these equations that
models a shock wave exploding into the general relativis-
tic version of a static, singular, isothermal sphere.

The FRW metric is a uniformly expanding (or con-
tracting) solution of the Einstein gravitational field equa-
tions, which is generally accepted as a cosmological model
for the universe. The OT solution is a time-independent
solution, which models the interior of a star. Both met-
rics are spherically symmetric, and both are determined
by a system of ODE's that close when an equation of
state p = p(p) for the fiuid is specified. In our dynam-
ically matched solution, we imagine the FRW metric as
an exploding inner core (of a star or the Universe as a
whole), and the boundary of this inner core is a shock
surface that is driven by the expansion behind the shock
into the outer, static, OT solution, which we imagine as

We choose this as a name for static, spherically symmetric
metrics that solve the Einstein equations for a perfect Quid.
It appears that OT solutions have not been given a name in
the literature, and we consider this name to be appropriate,
cf. [3]. In the special case when the density is constant, this
metric is commonly referred to as the interior Schmarzschild
metric.

the outer layers of a star, or the outer regions of the Uni-
verse. In the exact solution constructed here, the shock
wave emerges from r = 0 at the initial (big bang) singu-
larity in the FRW metric, and thus, our model provides a
scenario by which the big bang begins with a shock-trave
explosion.

The outer static solution is called a static isothermal
sphere because the metric entries are time independent,
and the constant sound speed models a gas at constant
temperature. It is singular because it has an inverse-
square density profile, and thus the density and pres-
sure tend to oo at the center of the sphere. The Newto-
nian version of a static singular isothermal sphere is well
known and is important in theories of how stars form
from gaseous clouds [4]. The idea in the Newtonian case
goes as follows: a star begins as a disuse cloud of gas,
which slowly contracts under its own gravitational force
by radiating energy out through the gas cloud as gravi-
tational potential energy is converted into kinetic energy.
This contraction continues until the gas cloud reaches
the point where the mean free path for transmission of
light is small enough that light is scattered, instead of
transmitted, through the cloud. The scattering of light
within the gas cloud has the eKect of equalizing the tem-
perature within the cloud. At this point the gas begins
to drift toward the most compact configuration of the
density that balances the pressure when the equation of
state is isothermal; namely, it drifts toward the configu-
ration of a static, singular, isothermal sphere. Since this
solution in the Newtonian case is also an inverse square
in density and pressure, the density tends to infinity at
the center of the sphere, and this ignites thermonuclear
reactions. The result is a shock-wave explosion emanat-
ing from the center of the sphere, and this signifies the
birth of the star. The explicit solution, which we present
here, is an exact, general relativistic version of such a
shock-wave explosion.
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Our explicit solution applies to a perfect fluid with an
isothermal equation of state p = O.p in the FRW solu-
tion, and p = o p in the OT solution, where both the
inner FRW sound speed ~a and the outer OT sound
speed v o are assumed to be constant. Here p denotes
the Quid pressure and p the mass-energy density, and we
let the unbarred and barred variables refer to the stan-
dard coordinate systems for the FRW and OT metrics,
respectively. We assume throughout that the speed of
light c = 1. Our shock-wave solution is constructed from
exact solutions of the FRW and OT metrics that exist for
these special equations of state. In [1] we showed that, in
general, the shock position r' = r(t) is given implicitly by
the equation M(r ) = (4m/3) p(t)P, where M(r) denotes
the total OT mass inside radius r, and p(t) is the FRW
density at the shock. For the exact solution with constant
sound speeds constructed here, the shock surface condi-
tion implies that p = 3p across the shock. Moreover, in
order that conservation of energy and momentum hold
across the shock, we show that the sound speeds must be
related by an algebraic equation of the form cr = H(o),
where H'(o) ) 0, H(0) = 0, and H(cr) & 0, cf. Fig. 1.
Since, at the shock, the inner FRW sound speed and den-
sity exceed. the outer OT sound speed and density, respec-
tively, we conclude that the outgoing shock wave is the
stable one, and the larger sound speed in the FRW met-
ric is interpreted as modeling an isothermal equation of
state at a higher temperature (consistent with the heat-
ing of the fluid by the shock wave). In the limit o ~ 0,
our model recovers the Newtonian limit of low velocities
and weak gravitational fields.

We verify that there exist two distinguished values of
o. , oq = 0.458 & o'2 ——~5/3 = 0.745, such that, if
0 & 0 & 1, then the Lax characteristic condition (that
characteristics impinge on the shock [5]), is satisfied if
and only if 0 & o & u~, and the shock speed is less than
the speed of light if and only if 0 & a & 0.2. A calculation
gives crq = H(o'q) —0.161, and o'2 = H(cr2) 0.236. We
conclude that, for cr between 0~ and o2, a difFerent type
of shock wave appears in which the shock is supersonic
relative to the fluid on both sides of the shock. Thus,
in this theory, a Quid with a sound speed. no larger than
~o'2 +0.745 can drive shock waves with speeds all
the way up to the speed of light. The time reversal and

II. PRELIMINARIES

We consider the Einstein gravitational field equations

(2.1)

where G denotes the Einstein curvature tensor for the
spacetime metric g, T denotes the stress-energy tensor
for a perfect fluid,

T = (p+ p)~ ~+ pq, (2.2)

and v = 8ag. (We assume the speed of light c = 1.) Here
u is the four-velocity of the fluid, Q is Newton's gravita-
tional constant, and we assume a baryotropic equation of
state of the form p = p(p). In a given coordinate system,
T takes the form

stability properties of these shocks when oq & o. & o.2
remains to be investigated.

Since Lax-type shock waves are time-irreversible solu-
tions of the equations because of the increase of entropy
(in a generalized sense, cf. [6]) and consequent loss of
information (eff'ected by the impinging of characteristics
on the shock), we infer from the mathematical theory of
shock waves that when 0 & 0. & o ~, many solutions must
decay time asymptotically to the same shock wave. Thus,
in contrast to the pure FRW solution, in our model we
should not expect a unique time reversal of the solution
all the way back to the initial big bang singularity when
the sound speeds lie in the range 0 & 0 & oq.

We note that the OT solution when p = op is, by
itself, of limited physical value because p = oo at r = 0.
We interpret this as saying that this exact solution'is
unstable because it requires an infinite pressure at r = 0
to "hold it up. " In contrast, our shock-wave solution here
removes the singularity at r' = 0 (for times after some
initial time) and thus demonstrates that a shock wave in
the core can supply the pressure required to stabilize an
OT solution by holding it up.

As a final comment, we note that in Sec. VII we
also construct a diferent Oppenheimer-Snyder-type so-
lution [7] having p—:0 that models gravitational col-
lapse to a black hole. This model is based on Friedmann-
Robertson-Walker metrics that are flat at each time t.

&', = pa, + (» + p) ~,~, , (2 3)
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where i, j are assumed to run from 0 to 3, and we use the
Einstein summation convention throughout. The Ein-
stein tensor G is constructed from the Riemann curva-
ture tensor so as to satisfy divG = 0. Thus, on solutions
of (2.1), divT = 0, and this is the relativistic version of
the classical Euler equations for compressible fluid flow.
The compressible Euler equations provide the setting for
the mathematical theory of shock waves. We now briefly
recall the FRW and OT metrics, and the results of [1].

The FRW metric describes a spherically symmetric
spacetime that is homogeneous and maximally symmet-

FIG. 1. A plot of 0 vs o.
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ric at each fixed. time. In coordinates, the FRW metric
is given by [2]

1
ds = dt, '+—R*(t) dr + r'dA

)1 —kr2 (2.4)

where t = x, r:—x, 0 = x, p = x, R:—R(t) is the
"cosmological scale factor, " and dO = d0 + sin Odp
denotes the standard metric on the unit 2 sphere. The
constant k can be chosen to be +1, —1, or 0 by appropri-
ately rescaling the radial variable, and each of the three
cases is qualitatively difFerent. We assume that the fluid
is perfect, and that the fluid is comoving with the metric.
The fluid is said to be comoving relative to a background
diagonal metric g,~ if u' = 0, i = 1, 2, 3, so that g diago-
nal and u having length one imply [8]

(2.13)

where M—:M(r), p = p(p), and p = p(p) satisfy the
following system of ordinary difFerential equations in the
unknown functions (p(p), p(p), M(r)):

dM = 4vrr p,dr
(2.14)

the matching of metrics below. Assuming the stress ten-
sor is that of a perfect fluid, which is comoving with the
metric, and substituting (2.12) into the field equations
(2.1), yields (cf. [2])

0 —goo . (2.5) (2.15)

3R = —4vr g (p + 3p)R, (2.6)

RR+ 2R + 2k = 4vrg(p —p)R (2.7)

Substituting (2.4) into the field equations, and making
the assumption that the fluid is perfect and comoving
with the metric, yields the following constraints on the
unknown functions R(t), p(t), and p(t) [2,1]:

Equation (2.15) is called the Oppenheimer-Volkov equa-
tion, and is referred to by Weinberg as "the fundamen-
tal equation of Newtonian astrophysics, with general-
relativistic corrections supplied by the last three factors"
( [2], p. 301). Assuming the equation of state p = p(p),
Eqs. (2.14) and (2.15) yield a system of two ODE's in the
two unknowns (p, M). The total mass M inside radius r
is then defined by

together with
r

M(p) = 4vr( p(()d( .
0

(2.16)

pR' = —(R'(p+ p)) .
dt

Equation (2.8) is equivalent to

Rpp= p 3R

Substituting (2.6) into (2.7), we get

R +a= pR3'

(2 8)

(2.9)

(2.10)

The metric component B = B(p) is determined from p
and M through the equation

B'(r)
2

p'(P)
B 'p+ p

(2.17)

In [1], we described a procedure for constructing a co-
ordinate transformation (t,p) ~ (t, r) such that the FRW
metric (2.4) matches the OT metric (2.12) Lipschitz con-
tinuously across a shock surface E. This shock surface is
given implicitly by the equation

Since p and p are assumed to be functions of t alone in
(2.4), Eqs. (2.9) and (2.10) give two equations for the
two unknowns R and p under the assumption that the
equation of state is of the form p = p(p). It follows from
(2.9) and (2.10) that (R(t), p(t)) is a solution if and only
if (R(—t), p( —t)) is a solution. Moreover, it follows that
[1]

pR(0. (2.11)

ds2 = —B(p)(gP + Q(p) idp2 + p2dQ2 (2.12)

We write this metric in bar coordinates so that it can be
distinguished from the unbarred coordinates when we do

Thus, to every expanding solution there exists a corre-
sponding contracting solution, and vice versa.

The OT metric describes a time-independent, spher-
ically symmetric solution that models the interior of a
star. In coordinates the components of the metric are
given by

M(r) = —p(t)p3
(2.18)

Equation (2.18) defines the radial coordinate r of the OT
metric as a function of the time coordinate t of the FRW
metric along the shock surface Z, and this applies when
any equation of state p = p(p) is assigned to the FRW
metric and any equation of state p = p(p) is assigned to
the OT metric. The transformation p = p(t, r) is given
by

p = R(t)r, (2.19)

in the mapping (t, p) -+ (t, r), but the transformation
t = t(t, r) is more complicated, and its existence is
demonstrated in [1]; we will not need any explicit in-
formation about the t transformation here. The identi-
fication (2.19) (together with the implicit identification
of the angular coordinates 0 and P), guarantees that the
areas of the spheres of symmetry agree under this coor-
dinate identification. Since, in our construction in [1],
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the FR& metric matches the OT metric Lipschitz con-
tinuously across the shock (2.18), the following general
theorem, which is proved in [1], theorem 4, applies (see
also [9]):

Theorem 1. Let Z denote a smooth, three-dimensional
shock surface in spacetime with spacelike normal vector
n. Assume that the components g,z of the gravitational
metric g are smooth on either side of Z (continuous up
to the boundary on either side separately), and Lips-
chitz continuous across Z in some fixed coordinate sys-
tem. Then the following statements are equivalent.

(i) [K] = 0 at each point of Z. (Here [f] denotes
the jump in the quantity f across the surface Z, and K
denotes the extrinsic curvature, or second fundamental
form, which is determined separately on each side of the
shock surface K by the metric g.)

(ii) The curvature tensors B'&& and G;z, viewed as
second-order operators on the metric components g,~. ,

produce no b-function sources on Z.
(iii) For each point P C Z there exists a Ci'i coordi-

nate transformation de6ned in a neighbor of P, such that,
in the new coordinates (which can be taken to be the
Gaussian normal coordinates for the surface), the met-
ric components are C ' functions of these coordinates.
(By C ' we mean that the first derivatives are Lipschitz
continuous. )

(iv) For each P E Z, there exists a coordinate frame
that is locally Lorentzian at P, and can be reached from
the original coordinates by a C ' coordinate transfor-
mation. [A coordinate frame is locally Lorentzian at a
point P if g;~(P) = diag( —1, 1, 1, 1) and gU. I, (P) = 0 for
all', &, I = o, . . . , 3.]

Moreover, if any one of these equivalencies hold, then
the Rankine-Hugoniot jump conditions, [G'~]n; = 0, hold
at each point at Z. (This expresses the weak form of
conservation of energy and momentum across Z when
G = r.T.)

In the case of spherical symmetry, the conservation
condition [G'~]n; = 0 reduces to the single condition
[G ]n,n~ = 0, and this implies the equivalencies in the-
orem 1. In fact, we have the following ( [1], proposition
9)

Theorem 2. Assume that g and g are two spheri-
cally symmetric metrics that match Lipschitz continu-
ously across a three-dimensional shock interface E to
form the matched metric g U g. That is, assume that
g and g are Lorentzian metrics given by

ds = —a(t, r)dt + b(t, r)dr + c(t, r)dA

ds2 = —a(t, r)dt + b(t, r )dr + c(t,r) dA

and that there exists a smooth coordinate transformation
i11: (t, r) + (t, r), defined in a neighborhood of the shock
surface Z given by r = r(t), such that the metrics agree
on Z. (We implicitly assume that 9 and p are continuous
across the surface. ) Assume that

c(t, r) = c(C (t, r)),

[G;]n; = 0, (2.2o)

[G'&]n;n, = O, (2.21)

[z] =o. (2.22)

Here, [f] = f —f denotes the jump in the quantity f
across Z, and K denotes the second fundamental form
on the shock interface.

It is straightforward to check that the conditions in
the above theorem on the functions c and c are met
when c = r, c = Rr, and r(t, r) = B(t)r. In light of
(2.20) and (2.21), we conclude that conservation across
the shock surface (2.18) is equivalent to the condition
that the equation [T'~]n, n~. = 0 holds across Z. In [1] we

derived the identity

Do[T* ], = (p+ p) o
—(p+ p) + + (p

Here n' and n' denote the components of the normal
vector n to Z in the (t, r) and (t, r) coordinate systems,
respectively. Equation (2.23) represents the additional
constraint imposed by conservation across the shock sur-
face (2.18). Using the expressions for the components n;
and n, of n, we readily obtain the equivalent expression
(see Eq. (5.34) of [1])

1 —kr[T"]n*n' = (p+ p)r —(p+ p) ~~, r

1 —kr2
+(p P)—=0. (2.24)

Here, r' and r denote the shock speeds dr/dt and dr/dt,
respectively. In [1], we used Eq. (2.9) to eliminate p
from (2.24), and thereby derived an autonomous system
of ODE's in (R, r) as a function of t that determines the
inner FRW metric and the shock position r(t) in terms
of any given OT metric. (cf. (5.46)—(5.49) of [1].) Thus,
for any assignment of equation of state p = p(p) and
initial conditions for an OT metric, our system of ODE's
determines the FRW metrics, B(t), p(t), and p(t), that
match the given OT metric Lipschitz continuously across
the shock surface (2.18), such that conservation holds
across the surface.

In this paper, we proceed somewhat differently. Here
we will solve our difFerential equations by working with an

in an open neighborhood of the shock surface Z, so that,
in particular, the areas of the two-spheres of symmetry
in the barred and unbarred metrics agree on the shock
surface. Assume also that the shock surface r = r(t)
in unbarred coordinates is mapped to the surface r =
r(t) by (t, r(t)) = @(t,r(t)). Assume, finally, that the
normal n to Z is non-null, and that n(c) g 0, where n(c)
denotes the derivative of the function c in the direction
of the vector n. Then the following are equivalent to the
statement that the components of the metric g Ug in any
Gaussian-normal coordinate system are C ' functions of
these coordinates across the surface Z:
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equivalent form of (2.24) which we now derive. Thus, dif-
ferentiating (2.18) with respect to t and applying (2.14)
yields p(r) =

„=, (3.2)

for the OT metric, and assume that the density is of form

3-p= (p ——p)r .

Solving for p in (2.9) yields

(2.25) for some constant p. In this case, an exact solution of
the OT type was first found by Tolman, [3]; namely, by
(2.16),

3A
P = —

R (P+») . (2.26) Putting (3.1)—(3.3) into (2.15) and simplifying, yields the
identity

Combining (2.25) and (2.26) thus gives

p+pr =Br
p p

(2.27)

1 ( rr

27rg pl+ 6o + rr2)

From (2.13), we obtain

(3.4)

Differentiating P = Rr with respect to t in (2.27) and
solving for i gives

A = 1 —8vrgp . (3.5)

Br p+p
A p —p

(2.28)

Substituting (2.27) and (2.28) into (2.24), we obtain the
following equation, which is equivalent to the conserva-
tion condition [T'~]n, n~ = 0:

t'

k, l (P+»)(» +P )' —&(P+»)(P+»)'
ql —kr')

1+, , (p —»)(p -P )'. (2.29)

Equation (2.29) expresses conservation at the shock sur-
face (2.18). But from Eq. (4.54) of [1],we know that the
identity

To solve for B, start with (2.17) and write

1 dB dp 20. dp

B dp dr (1+ o.)pdr
'

which simplifies to

dB 20. dp
B (1+rr) p

This equation has the explicit solution

f —) ~~~ +~l f)~~~ '+~—&

& po) &"o)

(3.6)

(3.7)

(3.8)

By rescaling the time coordinate, we can take Bo ——1 at
F'e ——1, in which case (3.8) reduces to

R'r' = —A+ (1 —kr') (2.30) B —4'/(1+ca) (3 9)

holds on the shock surface, and thus we can transform
(2.29) into the final form,

o = (1 —8)(p+ p)(p+ p)'
1+

~

1 ——
l
(p+»)(p+»)'+ (» -»)(p —p)'0)

(2.31)

where

A

1 —kr2 (2.32)

It is this functional form of (2.24) that we shall analyze.

III. AN EXACT SOLUTION OF THE OT TYPE

We now construct exact solutions of the OT type,
which represent the general relativistic version of static,
singular isothermal spheres. First assume the equation
of state,

We conclude that when (3.4) holds, (3.1)—(3.5) and (3.8)
provide an exact solution of the Einstein field equations
(2.1) of OT type. Note that, since ~o is the sound speed
of the Auid, (3.1)—(3.3) provide exact solutions for any
sound speed 0 & o & 1. Note also that when o
the extreme relativistic limit for free particles [2], (3.4)
yields p = 3/56vrQ [cf., [2], Eq. (11.4.13)]. These exact
solutions by themselves are not so interesting physically
because the density and pressure are infinite at r = 0 at
every value of time. Our shock-wave construction, given
below, removes the singularity at r = 0 in these solutions,
after some initial time.

IV. AN EXACT SOLUTION OF THE FRW TYPE

We now construct exact solutions of the FRW type.
We restrict ourselves to the case k = 0 in (2.4), so that
the metric takes the simple (conformally flat) form

p=~p ~ (3.1)
In the case o = —,this solution was rediscovered by Misner

and Zapolsky, cf. [2], p. 320.
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ds' = —dt' + B'(t) (dr' + r'dA') . (4 1)

Now assume an arbitrary equation of state of the form
p = p(p). We will obtain a closed form solution of the
Einstein equations (2.1) in this case. By (2.9) and (2.10),
it suffices to solve the system of two ODE's,

across which the metrics join Lipschitz continuously, and
such that the conservation constraint (2.31) holds at the
interface. The resulting solution is interpreted as a Huid
dynamical shock wave in which the increase of entropy in
the Huids drives a time-irreversible gravitational wave.

Assume now that the equation of state for the OT
metric is taken to be

8~g
pB

3
(4.2)

and

Rp
p(p) = —p—

3B

Rewrite (4.2) as

B=+~
i

B,i3)

(4.3)

(4 4)

for some constant 0, and that the fixed OT solution is
given by (3.2)—(3.5) and (3.8). Then, given an arbitrary
FRW metric, our results in [1] imply that we can con-
struct a coordinate mapping (t, r ) ~ (t, r) such that the
FRW metric matches the OT metric Lipschitz continu-
ously across the shock surface (2.18). This applies, in
principle, to any equation of state p = p(p) chosen for
the FRW metric. Using (3.3) and solving for p gives p
on the shock surface r (t) = r(t)B(t):

and substitute into (4.3) to obtain

p
+ +24vrgp

(4.5)

[The upper and lower plus or minus signs will always
correspond to the two cases represented by the upper
and lower plus or minus sign in (4.4), respectively. ] The
point to be noted here is that when p = p(p) is assigned,
(4.5) is independent of B,, and thus we can integrate it
explicitly; namely, since

3 M 3p
4~ r-(t)' r-(t) 2 (5.1)

To meet the additional conservation condition, we re-
strict to FRW metrics with k = 0, and we use (2.31)
to determine the pressure. Substituting 0 = A
1 —8mgp—:const into (2.31), we see that the result-
ing equation is homogeneous of degree three in the p, p
and p, p variables. Since p = o p, and

we obtain

dt=+ dp

(p+ p)/247rgp
' (4.6) on the shock surface, it is clear from homogeneity that

(2.31) can be met if and only if p = op for some con-
stant o. Substituting this into (2.31) gives the following
relation between o and 0' (cf. Fig. 1):

t —t0 ——g
P d

. [(+p(()]/24~g(
(4.7) (5.2)0 = —' 9o 2 + 54o. + 49 —-cr —I—:H(0). .

2 2 2

Formula (4.7) gives t as a function of p, and we can use
this, together with (4.2), to obtain a closed form expres-
sion for R as a function of p. Thus, since

R = — = y(p+ p) +24~gpdp dB dR
dt dp dp

if we combine this with (4.2), we get

Alternatively, we can solve for 0 in (5.2) and write this
relation as

o(0. + 7)
3(1 —cr)

'

This guarantees that conservation holds across the shock
surface, and thus by theorem 2, the results of theorem 1
apply. Note that H(0) = 0, and, to leading order,

dB —dp
R 3(p+ p)

' (4.9) o =H(o) = ~o+O(cr ), (5.3)

which has the explicit solution

(4.10)

as o. ~ 0. It is easy to verify that within the physical
region 0 & o', o' & 1, H'(0) ) 0, and o & cr, as would
be expected physically because p = 3p & p at the shock
surface. One can verify that when 0. = —,we have

a = ~17 —4 = 0.1231.. .

V. AN EXPLICIT SHOCK-WAVE SOLUTION
OF THE EINSTEIN EQUATIONS

We now use the theory developed in [1] to match the
above OT- and FRW-type metrics at a spherical interface

and when cr = 1, we have

—5 = 0.2915.. .
2

We now obtain formulas for p(t), R(t), and the shock
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positions r(t) and r(t) = r(t)R(t). Substituting p = a.p
into (4.6) and (4.9) yields

7 p

v 187rgp(1+ a)
(5.14)

1
dt = + p-'i'dp

,/'24~g(1+ ~)

and

dR 1 dp
R 3(l+ a) p

(5.5)

Using (5.1) we obtain

2
p / dp= — dr.

3~
(5.6)

Putting this into (5.4) gives

1 1dt=~ dr .(1+a.) v/18vrgp
(5.7)

P(t) = ++18vrgp(1+ cr)(t —to) + ro . (5 8)

Integrating Eq. (5.7) gives the formula for the shock
position:

As t ~ t, , it is clear that r ~ 0, p, p, p, p all tend to in-
finity, and R, r tend to zero. If we take this as a cosmo-
logical model, then t = t, represents the initial big bang
singularity in which a shock wave emerges from r = 0.

We summarize these results in the following theorem.
Theorem 8. Assume an equation of state of the form

p = op for the OT metric, and p = op for the FRW
metric, assume (5.2) holds, and take A: = 0. Then the
OT solution given by (3.2), (3.3), (3.5), and (3.8), will
match the FRW solution given by (5.9) and (5.10), across
the shock surface (5.8), such that conservation of energy
and momentum hold across the surface. The coordinate
identification (t, r) ~ (t, r) is given by r = Rr, together
with a smooth function t = t(t, r) whose existence (in
a neighborhood of the shock surface) is demonstrated in
[1]

By theorem 2, all of the equivalencies in theorem 1 hold
across the shock surface. In the next section we show that
the shock speeds are less than the speed of light, and we
determine when the Lax characteristic conditions hold.

Thus, (5.1) gives p in terms of t: VI. THE I AX SHOCK CONDITIONS

p(t) =
r(t) 3 [+i/'18vrgp(1 + a.) (t —to) + ro]

(5.9)

Finally, we can use (5.5) to obtain R(t), and the shock
position r(t) = P(t)R(t)

( ) —i/3(i+~) f -( ) ) 2/ ('+~)
R(t) = Ro i- =Ro/

0 "o)
(5.10)

( (t) g
—2/3(1+cr)

r(t) = r(t)R(t) —' = r-(t)R, '
~

(, "o )
(1+3~)/(3+30 )

oRo ("o) . (511)

DifFerentiating (5.8) and (5.11) gives the speeds of the
shock r and r' in the (t,P) and (t, r)-coord-inate systems,
respectively:

r = 3(1+ cr)
pl + 6a + a3) (5.12)

1+3~ r

R(t) q1+ 6a. + a2) (5.13)

where again, a = H(a) is given in (5.2).
Note that the solution (5.8)—(5.11) contains two arbi-

trary constants rp, Rp or rp, Rp, as it should from the
initial value problem (4.4) and (4.5). Note also that for
an outgoing shock wave we choose the plus sign in (4.4)
and (5.8), and in this case there is a singularity in back-
ward time:

To complete the analysis of our shock-wave solution
discussed in the last section, it remains to analyze the
shock speed and characteristic speeds on both sides of
the shock. In classical gas dynamics, characteristics (in
the same family of a shock) impinge on the shock from
both sides, leading to an increase of entropy and con-
sequent loss of information. This is also the source of
the well-known time irreversibility, as well as the stabil-
ity, of gas dynamical shock waves. This interpretation
carries over to a general system of hyperbolic conserva-
tion laws. Indeed, this characteristic condition has been
proposed by Lax [5,6], as a stability criterion for shock
waves in settings other than gas dynamics. This "Lax
characteristic condition" can be easily applied in general
systems, where either a physical entropy is difEcult to
work with or has not been identified [6]. Since in gas
dynamics the density and pressure are always larger be-
hind (stable) shock waves, and in our example p = 3p
[cf. (5.1)], we restrict our attention to the case of an
outgoing shock wave in which the FRW metric is on the
inside and the OT metric is on the outside of the shock.
This is equivalent to taking the plus sign in (4.4) [and
the corresponding upper sign in Eqs. (4.5)—(4.7)], and
we therefore restrict our attention to this case.

The goal of this section is to show that, in this case,
there exist values 0 & a'i & a2 & 1 (ai —0.458,
a 3

——v 5/3 —0.745), such that, for 0 & a & 1, the Lax
characteristic condition holds at the shock if and only if
0 & o. & oq., and the shock speed is less than the speed
of light if and only if 0 & o. & cr2. We conclude that our
gravitational shock wave represents a new type of fluid.
dynamical shock wave when o.

q & o. & u2. For the outgo-
ing shock waves with cr in this interval, the shock speed
exceeds all of the characteristic speeds on either side of
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—:s(o-),

the shock because both the fast and slow characteristics
cross the shock wave from the OT side to the FRW side
of the shock. Our first result is the following lemma.

Lemma 1. For 0 & 0 ( 1, the shock speed, relative to
the FRW fluid particles, is given by

) i/2
s = (1+3o)

i
(6.1)

where s(cr) is the function of a' obtained by substituting
(5.2) for o in (6.1).
The function s(o) is plotted in Fig. 2. By numerical
calculation we obtain that 1 —s(a) is monotone for 0 &
o ( 1 and becomes negative above o. = 0.2, where, using
computer algebra, we And

Choose p so that B (p')2 = 1 at the point P; i.e. , at P =
P(t, r), set p'(r) = 1/R(t). Thus, in the (t, r) coordinates

= —dt +dr +P2d02

at the point P, and so the (t,F ) coordinates represent the
class of locally Minkowskian coordinate frames that are
Axed relative to the fluid particles of the FRW metric at
the point P (T.hat is, any two members of this class of
coordinate frames will dier by higher-order terms that
do not affect the calculation of radial velocities at P.)
Therefore, the speed dr/dt of a particle in (t, r) coordi-
nates gives the value of the speed of the particle relative
to the FRW fluid in the special relativistic sense. Since

a2 ——~5/3 = 0.745 . (6.2)
dP dP dP (dP 1 dP

dt dP dt dt B dt ' (6.3)

Therefore, by general covariance, the following theorem
is a consequence of lemma 1.

Theorem g. For 0 & a & 1, the shock speed is less
than the speed of light if and only if o ( 0.2.

To prove lemma 1, we recall that the "speed" of a shock is
a coordinate-dependent quantity that can be interpreted
in a special relativistic sense at a point P in coordinate
systems for which g;~(P) = diag( —1, 1, 1, 1). [We call
such coordinate frames "locally Minkowskian" to distin-
guish these from "locally Lorentzian" frames in which

p;~, k (P) = 0 as well. Since we are dealing only with veloc-
ities and not accelerations, we do not need to invoke the
additional condition g;~ ~(P) = 0 for a local Lorentzian
coordinate frame in order to recover a special relativistic
interpretation for velocities. ] Moreover, since we are deal-
ing only with radial motion, it suKces to work with coor-
dinate systems that are locally Minkowskian in the (t, r)
variables alone. In such coordinate frames, a "speed" at
P transforms according to the special relativistic veloc-
ity transformation law when a Lorentz transformation is
performed. We now determine the shock speed at a point
P on the shock in a locally Minkowskian frame that is
comoving with the FRW metric. To this end, let (t, r)
coordinates correspond to the FRW metric with A: = 0
in (4.1). Let (t, r) coordinates correspond to a locally
Minkowskian system obtained from (t, r) by a transfor-
mation of the form r = &p(r), so that, in (t, r) coordinates,

ds2 = —dt2 + A(t ) (y') dr .

1.2

we conclude that if the speed of a particle in (t, r) co-
ordinates is dr/dt, then its geometric speed relative to
observers fixed with the FRW fluid (and hence also fixed
relative to the radial coordinate P of the FRW metric
because the fluid is comoving) is equal to R(dr/dt).

Now consider the shock wave (5.11) which moves with
speed [cf. (5.13)]:

dP =P=
dt

1+3a ( o-

B(t) (1+6o. + o-2) (6 4)

Then by (6.3), the speed of the shock s relative to the
FRW fluid particles must be given by (6.1). A graph of
s(o) is given in Fig. 2, from which we conclude that the
shock speed moves with a speed less than one relative
to the FRW fluid if and only if 0 ( cr2 holds; and for
0 & a & 1, s(a) = 1 if and only if o = o2, where nu-

merical symbolic algebra gives o2 ——v 5/3 —0.745. This
completes the proof of lemma 1.

We next determine when the Lax characteristic con-
dition holds at the shock. To this end, we erst deter-
mine the speed of the characteristics relative to the fixed
FRW fluid particles. By (6.3), the characteristic speeds
on the FRW side of the shock must equal the sound
speeds +~o in the (t, r) coordinate frame because the
FRW fluid is comoving with respect to the (t, r) coor-
dinates. (The characteristic speed is obtained from the
fluid speed and sound speed by the special relativistic
summation formula for velocities [10].) We conclude that
the FRW characteristic speeds %FRY, AF+Rw (the speeds
of the characteristics relative to the FRW fluid) are given,
respectively, by the formula

0.8

dP
FRW dt

(6.5)

0.6

0.4

0.2

By (6.3),

v~
FRW FRW B B

0 0.2 0.4 0.6 0.8

FIG. 2. A plot of the shock speed 8 vs o. .

Thus, since the (t, r) coordinates are also comoving with
the fiuid, the sound waves in the (t, r) coordinates of the
FRW metric must move at coordinate speed
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dr ~o.
dt B

We refer to the —,+ characteristics as being in the 1,2-
characteristic families, respectively. Now in the one-
space —one-time —dimensional theory of conservation laws
the Lax characteristic condition states that the charac-
teristic curves in the family of the shock impinge upon
the shock from both sides, while all other characteris-
tic curves cross the shock, cf. [6]. Since in our example
the shock is outward moving with respect to r and r, it
follows that on the FRW side, only the 2 characteristic
can impinge on the shock, and thus we must identify the
shock wave as a 2 shock. Thus the Lax characteristic con-
dition must be interpreted as meaning that the following
inequalities hold:

AQT & AQT & 0 (6.10)

holds for all 0 & o & 1.

The next theorem is another immediate consequence of
lemma 2.

Theorem 6. If o z & o & o2, then the following inequal-
ities hold:

FRW FRW (P) (6.11)

only if 0 & o- & o~.

Since (6.6) follows from (6.8) and (6.9), the proof of
theorem 5 will be complete once we prove the following
lemma, which immediately implies (6.7).

Lemma 2. The inequality

FRW
+ (6.6) and

and AOT & A~T & 8(a) . (6.12)

AQT & 8.+ (6.7)

ApRvv s(o):A(0')

( 5
1/2

= ~~ —(1+3~)
~

pl + 6cr + cr2y

&0. (6.8)

A numerical plot of the function E(cr), given in Fig. 3,
shows that A(0) changes from positive to negative at the
unique point o = o1, where

o.
g = 0.458 . (6.9)

We are now ready to prove the following theorem.
Theorem 5. For 0 & o & 1, the Lax characteristic

conditions (6.6) and (6.7) hold across the shock if and

Here AQ T refers to the speed of the faster character-
istic on the OT side of the shock as measured in the
(t, r)-coordinate system, which is related to the (t, r)
coordinate system through the (t, r) ~ (t, r) coordinate
identification. By (6.1) and (6.5), (6.6) is equivalent to
the condition

Ox Ox pD = tL
Ox OxP

(6.13)

Note that when oi & o & o2, (6.11) and (6.12) describe
a diferent kind of shock wave in which the 1 and 2 char-
acteristics both cross the shock because the shock speed
exceeds the characteristic speeds on both sides of the
shock. This occurs even though the sound speeds and
shock speed all remain less than the speed of light. In
words, theorem 6 states that in general relativity, a sound
speed ~o = /0. 744 can drive the shock speed all the way
up to the speed of light.

It remains only to give the proof of lemma 2. Let u
denote the velocity vector for the fluid on the OT side
of the shock, and let o. = 0, 1 refer to components in the
(t, r)-coordinate frame and i = 0, 1 to components in the
(t, r)-coordinate frame. Then a velocity vector tangent
to the particle paths of the fluid on the OT side of the
shock is given by (u, u ) = (1,0) in barred coordinates
because the fluid is comoving relative to the barred co-
ordinate system on the OT side of the shock; for brevity
we write u = (1,0) . (Since our aim is to compute the
characteristic speed, which is a ratio of two vector com-
ponents, a tangent vector of any length will sufFice. ) Let
x' = (t, r)' and x—:(t, r) . Then

R-v Thus the speed of the OT fluid as measured in the FRW
coordinates (t, r) is given by

0.05

—0.05

—0.1
But

~1
tL =

tL

Ox'/Bxo (Br/Bt) (t, r )
Bx /Bx (Bt/Ot)(t, r)

(6.14)

—0.15

—0 ' 2

—0.25

FIG. 3. A plot of the difference between the inner charac-
teristic speed ApRw and the shock speed s as a function of o.

so

Since

Ot 1

Ot
' (Bt/Bt)(t, r) '

Or Ot Oru—:=(t, r) (t, r-) = (t, r-) .

(6.15)

(6.16)
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r(t, r-) =
R(t) '

Or 8 r rB
Bt Bt R(t) R2 (6.17)

But by (5.10),

and this holds in a neighborhood of the shock surface, we
have

where again we use (5.2) to eliminate cr in favor of o. A
numerical plot of A&T(o) vs cr is given in Fig. 4. This
verifies that A+&T(o) & 0 for 0 & o & 1, and thus com-
pletes the proof of lemma 2 in light of the inequality
&o~ & &oT.

VII. CONCLUDING REMARKS

( )i/2

r(t) (1+6o. + cr~)
(6.18)

so

R ~~1+6-+ (6.19)

Thus, by (6.3),

( )i/2
u= —2](1+6o +0 )

(6.20)

dr v+i/0
1+u~e ' (6.21)

and this implies that

lT 1 v+~(7
dt R 1+ v,~or

(6.22)

We now calculate AoT. By (6.20), we have

Ql+ 6o + o2 —20.
(6.23)

and this gives the OT fluid speed in the locally
Minkowskian frame, which is Axed with the FRW fluid
particles. But ~o is the sound speed for the OT met-
ric; thus, i/o is the sound speed as measured in the frame
obtained from the (t,P ) coordinates by the Lorentz trans-
formation for u. Therefore, to obtain the OT character-
istic speed A&T in the frame (t, r), we use the relativistic
addition of velocities formula:

We erst remark that our example here is inherently
a theory of strong shock waves because the condition
p = 3p implies that [p] ~ 0 if and only if p m 0, the
latter being a singular limit; cf. [6]. We also note that
when k & 0, our general shock-wave solutions described
in [1] reduce to the well-known model of Oppenheimer
and Snyder (OS) when p =0, in which case the general
ODE's derived in [1] reproduce the OS equation of state
p = 0. Thus, our shock waves provide a natural general-
ization of the OS model to the case of nonzero pressure.
An important diR'erence between the OS solution and our
shock-wave solutions is that the OS interface is a time-
reversible contact discontinuity, while the interfaces in
our models describe true, time irrever-sible, ffuid dynam
ical, shock waves. Indeed, for a contact discontinuity,
a smooth regularization of the solution at a fixed time
will propagate as a nearby smooth solution for all times
thereafter. In contrast, it is well known from the theory
of hyperbolic conservation laws that shock-wave solutions
cannot be approximated globally by smooth, shock-free
solutions of the hyperbolic equations [6]. It is interest-
ing to note, however, that the OS model reduces to flat
Minkowski space when we take k ~ 0 in the OS solution
[see Weinberg [2] p. 344, Eqs. (11.9.23) and (11.9.21)].
Moreover, when we take cr —+ 0 in our solution (5.8)—
(5.11), we also get fiat Minkowski space. However, the
first limit is singular [because R = 0 implies R—:const
when A: = 0; cf. [2], p. 344, Eq. (11.9.22)]; the second
limit is only one way to impose p=0. Indeed, we can
obtain a diferent, time-reversible, OS-type contact dis-
continuity for the case k = 0 by noting first from (2.31)
that p = 0 = p implies p = 0, and thus we can integrate
(4.7) and (4.10) in the case p = 0 to obtain the formulas

0
0

0.5 ~
1

~
l.5 .2 2.5

P(t) = 1

(+i/'6vrg(t —to) + 1/~p )
(7.1)

—0.05 (7.2)

—0.1 '

-0.15
The shock surface is then given by

-0.2 r(t) =
q4~ p(t))

(7.3)

FIG. 4. A plot of the outer characteristic speed as a func-
tion of o. where M = const when we assume empty space p =
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0 = p. We conclude that (7.1)—(7.3) defines a nontriv-
ial, time-reversible general relativistic model that corre-
sponds to the exact shock-wave solution given in (5.8)—
(5.11), and thus defines a different OS-type model of
gravitational collapse; cf. [2], p. 345, Eq. (11.9.25).

As a Anal comment we note also that once values for cr

and o. = H(o ) are specified, the formulas (5.8)—(5.11) de-
termine a unique shock-wave solution despite the appear-
ance of two free parameters, say Bo and ro. To see this,
note that after Axing the shock position ro, the freedom
in Bo is only a coordinate freedom due to the fact that
R(t) + o. B(t) under the coordinate rescaling r -+ ar
in the FRW metric (4.1) when k = 0.
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