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Nontrivial dynamics in the early stages of inHation
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In8ationary cosmologies, regarded as dynamical systems, have rather simple asymptotic behavior
insofar as the cosmic baldness principle holds. Nevertheless, in the early stages of an inBationary
process the dynamical behavior may be very complex. In this paper, we show how even a simple
infiationary scenario, based on Linde s "chaotic inHation" proposal, manifests nontrivial dynamical
effects such as the breakup of invariant tori, the formation of cantori, and Arnol'd's diffusion. The
relevance of such effects is highlighted by the facts that even the occurrence or nonoccurrence of
in8ation in a given universe is dependent upon them.

PACS number(s): 98.80.Cq, 04.20.Cv, 46.10.+z

X. INTRODUCTION

In this paper, we shall study the behavior of simple in-
flationary models of the Universe, regarded as dynamical
systems. For concreteness, we shall concentrate on mod-
els such as Linde's chaotic in8ation scenario [1], where
inflation is powered by the vacuum energy of a single
slowly rolling inflaton Geld. We shall also restrict our-
selves to the actual inflationary period, well before "re-
heating" starts. As could be expected, we shall Bnd that,
once inflation begins, the Universe quickly falls into a
de Sitter-like expansion, in agreement with the "cosmic
baldness" principle [2]. Nevertheless, we shall also find
that extremely complex behavior may occur in the very
early stages of inflation, before expansion becomes ex-
ponential. The list of nontrivial dynamical effects to
be found includes the break up of Kolmogorov-Arnol'd-
Moser (KAM) tori [3, the formation of cantori [4], and
Arnol'd's difFusion [5 . Indeed, whether or not a given
Universe undergoes inflation depends on these effects.
Since the complexity of behavior increases with the num-
ber of degrees of freedom of the dynamical system, sim-
ilar conclusions hold for models based on nonminimal
inflaton sectors, and indeed for any model based on a
second-order phase transition and/or assuming a "slow
roll" period [6].

The dynamics of cosmological models, allowing for an
inflaton field as the only matter present, has been stud-
ied by many authors [7]. In these studies, it is customary
to assume homogeneity and isotropy, and a convenient
gauge choice; the resulting dynamical system has only
two degrees of freedom, e.g. , the homogeneous inflaton
field amplitude 4 and the Friedmann-Robertson-Walker
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(FRW) "radius of the Universe, " a. The behavior of the
system is relatively simple, displaying an inflationary at-
tractor in phase space.

Nevertheless, gravitation and a homogeneous inflaton
cannot be the only Belds in a workable inflationary model.
At some point, the inflationary expansion must "grace-
fully exit" to a radiation-dominated FRW epoch. This
demands that the inflaton Geld can decay into radiation
during the "reheating" era. We do not have the freedom
to assume that this radiation Geld has vanishing ampli-
tude before reheating. The initial conditions for the ra-
diation field, in the classical regime, are decided by the
earlier quantum and semiclassical eras.

In fact, simple quantum models of the Universe predict
that the radiation field was in its vacuum state at the be-
ginning of the semiclassical era [8]. However, quanta of
the radiation field are created subsequently out of the
gravitational Beld itself, much in the same way as gravi-
tational perturbations are generated [9]. While the radi-
ation Geld would be usually protected against cosmolog-
ical particle creation by conformal invariance [10], in our
case, conformal symmetry is broken by the nonvanish-
ing inflaton vacuum expectation value and the radiation
coupling to it. Moreover, conformal symmetry may be
broken by other reasons as well; for example, radiation
quanta may be created out of the decay of primordial
anisotropies [11].We are therefore led to assume a finite
amplitude for the radiation field at the beginning of the
classical regime.

Indeed, we must adopt for the radiation field the same
"chaotic" view of initial conditions [1] usually applied
to the inflaton. This means that matter fields emerge
from the semiclassical era, taking uncorrelated values in
different patches of the Universe; the dispersion of these
values is such that they occasionally approach Planckian
scales. Since we are interested in the evolution of a small
region of the Universe, though, we can treat the relevant
fields as coherent and homogeneous.

In this paper, therefore, we shall focus on the dynami-
cal effects of including a radiation field g in an inflation-
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ary model, in addition to the homogeneous component
of the inflaton field. "Radiation" may be described as a
conformal scalar field; however, as we already remarked,
conformal symmetry is broken by the nonvanishing ex-
pectation value of the inflaton, and g develops a mass
through its coupling to it.

In an earlier communication, we have shown that the
dynamical system obtained from coupling a spatially
closed, FRW universe to a conformally coupled but mas-
sive scalar field displays homoclinic chaos [12,13]. While
it would be improper to describe an inflating cosmology
as "chaotic, " as the typical trajectories are unbounded,
it should be clear that the breaking of conformal sym-
metry results in a definite increase in the complexity of
the dynamics. Concretely, while under conformal sym-
metry there is a sharp separation between inflating and
recollapsing universes, once conformal symmetry is bro-
ken there appears a full measure stochastic layer in phase
space, where orbits may either be trapped forever or es-
cape and approach de Sitter expansion. The reason why
recollapse may be avoided, namely, that the action vari-
able associated to the radiation field is no longer con-
served, parallels the particle creation processes to be
found in semiclassical inflationary models [10], which
have a similar, inflation-enhancing effect [11]. Indeed,
the above action variable is essentially the particle num-
ber of the second-quantized radiation field, as defined by
the adiabatic particle model [14].

In this paper we shall consider two difFerent models
displaying the influence of a scalar radiation field on the
expansion of the Universe in the early stages of infla-
tion. In the Grst model, the radiation field itself will be
considered homogeneous, along with the metric and the
inflaton field. In the second model, we shall allow the
radiation field to be constituted by a homogeneous back-
ground plus an inhomogeneous mode. Of course, the ac-
tual presence of such modes is dictated by the dynamics
of particle creation. The metric itself will be taken always
as that of a spatially closed FRW model, with the "ra-
dius of the Universe, " a. This assumption, which, in the
context of the second model, is inconsistent with Einstein
equations, may be justified physically. Indeed, our only
concern is to study how the dynamics of the Universe re-
acts to an increased number of degrees of freedom. From
this point of view, the consideration of graviton modes,
along with the inhomogeneous scalar field mode, short of
posing the full field theoretical problem, would not bring
any new qualitative features [15].

It is interesting to observe that taking as canonical
variable a gauge-invariant quantity built from scalar and
graviton modes [16], rather than the scalar field ampli-
tude itself, would lead to similar results to ours. Indeed,
these quantities may be described as scalar Belds with
time-dependent masses [17].

Let us now describe in more detail the models to be
studied. Since the inflaton field, given the "slow roll" as-
sumption, plays no dynamical role in the epoch of inter-
est, we shall replace it with a fundamental cosmological
constant A (the full evolution of a FRW universe cou-
pled to a minimal, massive scalar Geld is analyzed in Ref.
[18]). The radiation field @ will be conformally coupled

to a, but also have a mass m. The mass m eC, where
e is the coupling between inflaton and radiation, and 4
the inflaton vacuum expectation value. The "charge" e is
bounded by the requirement that the induced inflaton self
coupling ( e ) should not be too large, and 4 is bounded
by the assumptions of slow rollover, enough inflation,
etc. This still allows for values as high as e 10
4 10 (in natural units, h = c = 87rG = 1), which
gives m 10 [19].

If the radiation Geld mass is neglected, we have confor-
mal symmetry and the system is integrable. The metric
and the field g (from now on "the Beld" ) are decoupled,
except that the metric reacts to the full field energy den-
sity p/a, p = (1/2) (p& +g )—:const. There are two un-
stable static solutions, the Einstein universes defined by
a = +1/2~A, p = 1/16A. They are joined by two hete-
roclinic orbits. Within the separatrix, defined by the het-
eroclinic orbits, motion is quasiperiodic and confined to
invariant KAM tori. Inflating orbits are unbounded, and
approach asymptotically the stable and unstable mani-
folds of the static solutions. Thus, all inflating universes
share the same asymptotic behavior, in agreement with
the "cosmic baldness" principle.

In the conformally symmetric model, therefore, there is
a sharp distinction between inflationary and recollapsing
initial conditions. Restricting ourselves to universes aris-
ing from a big bang (a = 0 at the origin of time), they
inflate if p ) (16A), and recollapse if p ( (16A)
There is no orbit connecting one region to the other, as
the separatrix stands as an insurmountable barrier.

When the field develops a mass, it becomes nonlinearly
coupled to a. This coupling induces internal resonances
between a and g, and, consequently, both the separatrix
and underlying resonant KAM tori are destroyed. In-
stead, there arises a new kind of structure in phase space,
the stochastic layer [12,13]. The structure of the layer is
best analyzed by means of Poincare sections [20]. It is
found that, alongside with fixed points and invariant tori,
there is a new kind of invariant orbit, the "cantori" [4].
Cantori have gaps in them, which allow for communica-
tion between di8'erent parts of the stochastic layer and
the outside. The separation between inflating and recol-
lapsing initial conditions becomes less clear-cut: Orbits
starting from below the original separatrix may now Gnd
their way through the gaps and become inflating, through
a process of Hamiltonian diffusion [5]. The occurrence
of inflation in a given universe, therefore, may depend
upon a nontrivial dynamical e8'ect such as the breakup
of KAM tori.

As long as we consider the field g as homogeneous,
there will be always a critical value of the momentum p,
such that orbits leaving the singularity from below this
threshold are bound to recollapse. This is because the
available phase space, once the Hamiltonian constraint is
enforced, is three dimensional, and thus it is separated
by two-dimensional KAM tori. Therefore, any unbroken
torus traps the phase space volume inside it, and makes
recollapse unavoidable. Moreover, it should be clear that
this critical value will be close to the separatrix value of
p 1/+8A at a = 0, at least for small field masses. Sim-
ilarly, while phase volume conservation implies that some
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orbits starting kom outside the separatrix must enter the
stochastic layer and be trapped, it should be clear that
the field mass will not greatly affect the behavior of orbits
much above the separatrix. From these considerations,
it could be concluded that the kinds of effect discussed
above are associated with exceptional initial conditions.

However, as we shall show presently, the stochastic
layer is localized in phase space because we have assumed
a model with only two degrees of freedom. Such local-
ization is not found in higher-dimensional models, such
as those allowing for inhomogeneous fields and geome-
try. The second model to be considered in this paper,
adding a single inhomogeneous mode to the homogeneous
g background, is a first step in the study of those more
complex models.

The dynamics of nonintegrable systems in higher di-
mensions is qualitatively different from that of their two-
degrees-of-&eedom counterparts. In our case, we have a
six-dimensional phase space (a, @,gi, p~, p~, p~i), where

(@i,p@i) stand for the amplitude of the inhomogeneous
mode and its canonically conjugated momentum. Even
after enforcement of the Hamiltonian constraint, the
available phase space is five dimensional, and it is not
divided by three-dimensional tori. Thus, unbroken KAM
tori do not negate diffusion, and, in principle, a trajec-
tory beginning from a = 0, with arbitrarily small ~p ~,

may nevertheless find its way beyond the separatrix and
inflate.

This effect provides a sort of classical mechanism for
"creation from nothing" [21]. It makes it unnecessary
to assume an unnaturally high value of the initial radi-
ation energy density to explain how the Universe could
avoid recollapsing much before inflation had a chance to
begin. It recalls previous analyses of semiclassical cos-
mology, where particle creation has been invoked to sat-
isfy a similar task [11]. It also shows that the nontrivial
dynamical behavior discussed here is indeed widespread
in phase space.

Our goal in this paper is to point out the manifestation
of the nontrivial dynamical effects described above in nu-
merically generated solutions to our models, both the ho-
mogeneous and the inhomogeneous, higher-dimensional
one. Of course, since Hamiltonian diffusion is such a
slow process [22], it would be extremely hard to follow
numerically, with proper accuracy, a single diffusing or-
bit &om a neighborhood. of the origin in phase space un-
til it becomes definitely inflationary. Instead, we have
built Poincare sections [20] for both models (in the sec-
ond model, where the Poincare section would. be four di-
mensional, we shall present only three-dimensional pro-
jections of it), and studied the Lyapunov exponents cor-
responding to selected initial conditions [23].

Poincare sections are built by selecting a given plane
on phase space, and collecting the points where a given
orbit crosses this plane in a chosen sense. The full dynam-
ics induces a "return map" on the Poincare section, both
flow and map sharing the same degree of complexity from
the standpoint of dynamical systems theory. Thus, for
example, the orbits of the map induced by an integrable
dynamical system with two-dimensional sections will be
either topological circles or else isolated points; an orbit

that would not fit in any of these two types is therefore
a strong indication of nonintegrability. Poincare sections
are an especially valuable tool in investigating generally
covariant dynamical systems, as they convey in a sim-
ple fashion information on the dynamics [12,13]. This
information concerns the topology of the orbits, which is
gauge invariant.

In our case, the simpler, purely homogeneous model
has a four-dimensional phase space. We shall choose
the Q = 0 plane to build the Poincare section; since the
canonical momentum py depends on the other variables
by the Hamiltonian constraint, the section is two dimen-
sional.

The second model would have four-dimensional sec-
tions. For ease of representation, it is desirable to reduce
the dimensionality of the section by imposing a second
constraint (gi ——0, say) on the selected points. However,
this space is populated by points, not by a continuous tra-
jectory; and the probability of a point falling on an ar-
bitrarily chosen surface is zero. Therefore we must take
not a true section, but rather a slice, allowing the "space
of section" to have a finite thickness, in order to catch
points [20]. As a matter of fact, in the range covered
by our simulations, the shape of the sections is essen-
tially insensitive to vPi, and so we have simply left it un-
specified. We have found it best to describe the sections
in terms of coordinates (a,p, j). Here j = (1/2w)p&
(w = 1+m a ) is the adiabatically invariant amplitude
associated with the homogeneous mode at the zero cross-
ings. Of the two undetermined canonical variables (the
amplitude and momentum of the inhomogeneous mode),
one can be deduced from the Hamiltonian constraint, and
so we are losing only one dimension of the real Poincare
section. As we have verified, this entails no significant
loss of information.

Another technique to analyze the higher-dimensional
model is to plot, in the space of initial conditions, the
region corresponding to orbits that escape the separatrix
in less than 500 iterations of the Poincare section return
map. Restricting ourselves to universes with vanishing
initial volume and field, and imposing the Hamiltonian
constraint, the space of initial conditions is two dimen-
sional; we have chosen the initial values of p and py
as suitable coordinates. As befits a chaotic system, the
border of the set of inflating trajectories is highly irregu-
lar, with thongs of inflating initial conditions penetrating
the regular region, and island. s of regularity otherwise
surrounded by unstable solutions. This plot affords a
glimpse of the structure of the Arnol'd web.

A more common tool for the study of nontrivial dy-
namical systems is the calculation of Lyapunov exponents
[24]. These measure the average instability of the orbits
of a dynamical system. If the system executes bounded
motions, then the Lyapunov exponents may be related
to the Kolmogorov-Sinai entropy; in particular, positive
I yapunov's exponents are a sufhcient condition for chaos
[25]. In our case, this identification does not hold, since
most orbits eventually escape the separatrix and inflate;
here, the Lyapunov exponent would only relate to the
time constant of the inflationary exponential expansion
of the Universe, as the cosmic baldness principle asserts
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itself.
More relevant to our discussion are, therefore, the Lya-

punov exponents as a measure of the average eigenvalues
of the linearized evolution operator for suitable initial
conditions, over finite parts of the correspondig orbits
[23]. Essentially, we shall use Lyapunov exponents to ob-
tain a quantitative measure of the strong sensitivity to
initial conditions displayed by the Poincare sections (see
below). Indeed, we shall see how orbits with close initial
conditions are characterized by highly difI'erent sets of ex-
ponents, corroborating the visual information conveyed
by the Poincare sections.

Our numerical simulations will offer concrete exam-
ples of all the kinds of nontrivial dynamical behavior dis-
cussed above. For the homogeneous mode, we shall see,
through the Poincare sections, the destruction of the con-
formal KAM tori, their replacement by chains of islands,
and the formation of a stochastic sea among the islands.
We shall display concrete instances of orbits beginning in
the stochastic sea, and eventually leaving the separatrix.
This shows that the stochastic sea contains no unbroken
tori, but rather it is composed of cantori layers. As a
check on our codes, we shall verify the validity of the
cosmic baldness principle for inflating orbits.

We shall also display two Poincare sections of the inho-
mogeneous model, corresponding one to a stable, regular
trajectory and the other one to an unstable one, which
eventually becomes inflationary. Comparing these two
sections, we shall be able to observe how the destruc-
tion of constants of motion is reflected in the topology
of the orbit. The pervading strong sensitivity to initial
conditions is also reflected by the Lyapunov's exponents
associated with each orbit, which we computed.

Prom the results of these numerical experiments, we
shall conclude that a realistic inflationary cosmologi-
cal model, regarded as a dynamical system, is complex
enough to allow for highly nontrivial behavior. More-
over, nonlinearity is a major force in shaping the behavior
of the model, even where the cosmic baldness principle
holds. A correct understanding of the incidence of these
kinds of phenomena may well illuminate several standing
issues in inflationary cosmology, which are still oftentimes
solved by recourse to fine tuning [26], as well as help us
find the proper relationship between classical, semiclas-
sical, and quantum cosmology.

The paper is organized as follows. In the next section
we introduce our models, and discuss the main features
of the behavior of their solutions, out of simple analytical
arguments. In Sec. III, we shall present the results of our
numerical simulations. We conclude, in Sec. IV, with a
brief d.iscussion of the overall lessons to be learned.

II. MODEL

In this paper, we shall consider spatially closed
Friedmann-Robertson-Walker universes coupled. to scalar
matter and radiation. The metric takes the form du
a (g)(—di1 + ds ), where q is "conformal time" and
ds denotes an invariant metric on the Euclidean three-
sphere. The matter field, namely, the "inflaton, " will

1H= —
[
—(p +a —2Aa )+(p++vP )+m a g ],

(2.1)

supplemented by the Hamiltonian constraint H = 0. We
shall refer to the system defined by this Hamiltonian as
the "homogeneous" mod. el.

The homogeneous radiation Geld may also be consid-
ered as the first term in the expansion of a generic Geld in
terms of three-dimensional spherical harmonics [28]. The
difI'erent modes are labeled by a positive integer n & 1;
n = 1 corresponds to the homogeneous mode. On a FRW
background, the higher modes may be described by their
conformal time-dependent amplitude and its time deriva-
tive. Of course, when the back reaction of these modes
is considered, the geometry ceases to belong to the FRW
class. However, to obtain a glimpse of the efI'ect of these
modes on the cosmic evolution, we may disregard the
departure of the metric &om its FRW value. For sim-
plicity, moreover, we shall assign a nonzero amplitude to
only one mode, say, ni, with amplitude gi and conju-
gated momentum pq. The Hamiltonian now reads

1
H, = —

[
—(p + a —2Aa ) + (py + g ) + (pi + n, g, )

2 2(@2 + @2)] (2.2)

with, as before, the constraint Hi ——0. We shall refer to

be taken as a real scalar field 4, minimally coupled to
the curvature, with effective potential V(4). "Radia-
tion" shall be described by a massless real scalar Geld
conformally coupled to the curvature. This means that
the Lagrangian density shall contain a (—a /12)R(g/a)2
term, g being the conformally scaled scalar field and
R = (6/a )(a + a) the scalar curvature [we shall follow
Misner- Thorne-Wheeler (MTW) conventions throughout
[27]; a dot denotes a conformal time derivative]. The in-
flaton and radiation fields are coupled to each other; this
coupling is essential to the "graceful exit" from the infla-
tionary phase.

Insofar as FRW symmetry holds, both scalar fields
must be homogeneous. The basic assumption of infla-
tionary cosmologies is that 4 is a slowly evolving field
whose efI'ective potential is strictly positive. This positive
vacuum energy acts as a cosmological constant, powering
an explosive expansion of the Universe ("inflation" ). The
nonvanishing background value of the inflaton also pro-
vides a mass to the radiation field, through Higgs' mech-
anism. Until the "reheating" phase begins (whereby the
inflaton vacuum energy is transformed into radiation en-
ergy and dissipated [31]),the inflaton plays no dynamical
role and may be taken as constant, its efI'ects being incor-
porated through the values A of the vacuum energy den-
sity and m of the radiation field mass. In this regime, the
efI'ective degrees of freedom of the model are the "radius
of the Universe, " a, and the conformally scaled radiation
field g(rI). Their conjugated momenta are just their con-
formal time derivatives a = —p, @ = py. The evolution
of these variables in conformal time is described by the
Hamiltonian
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this generalization of the model above as the "inhomoge-
neous" one.

If the effective mass of the radiation field is zero, then
geometry and radiation are decoupled, and the resulting
dynamics is trivial. When a nonvanishing mass devel-
ops, on the other hand, the dynamics of both homoge-
neous and inhomogeneous models becomes exceedingly
complex. Indeed, the dynamics of the A = 0 homoge-
neous case was studied in detail in Ref. [12], where it is
demonstrated how homoclinic chaos arises out of the in-
ternal resonances between a and @. The A g 0 case is
brieHy considered in Ref. [13]. There it is shown that in
the massless case there are two unstable static solutions
joined by a separatrix; in the presence of a nonvanishing
mass the separatrix is destroyed and homoclinic chaos
results. A more detailed analysis based on the structure
of Gxed points and resonances of the homogeneous model
confirms these findings [29].

In view of these results, it should be clear that a thor-
ough investigation of these models requires numerical
techniques. However, perturbative arguments, where the
effective mass of the radiation Geld is taken as a small
parameter, shed some light on the structure of the solu-
tions and are helpful to understand the numerical results.
Therefore, in this section, we shall consider briefly what
can be said about these models out of simple perturbative
arguments. Later, Sec. III on, we shall consider several
numerical experiments, which will disclose the nature of
the dynamics without any perturbative assumptions.

Observe that the equations describing our dynamical
system remain well defined even upon the cosmic sin-
gularities a = 0. Thus, a given universe may be ana-
lytically continued beyond the singularity, becoming one
in a series of cosmic episodes. This series shall extend
indefinitely unless, at some link, the trajectory avoids
recollapsing and inflates. Therefore, an "orbit" of the re-
currence map may actually represent a sequence of many
universes. The important point in the present context
is not which of these universes inflate and which do not,
but rather the fact that some chains, after several recol-
lapsing cycles, actually end with an inflationary episode.
This implies a communication between different regions
of phase space which would be utterly impossible under
an integrable dynamics.

Indeed, the &equency of the Geld oscillations is weakly
dependent on amplitude as far as the mass remains small.
Therefore, it makes sense to describe the Geld evolution
in terms of the massless action-angle variables j and y,
defined through @ = ~2jsinrp, py = ~2j cosy. The
Hamiltonian may be split as H = H + bH, where the
integrable, "unperturbed" Hamiltonian H = —E + j,

1E = —[p +(u a —2Aa ], (2.3)

where ~ = 1 —m j, while the "perturbation"

bH = ——m ja cos2y .122
2

(2 4)

a da'
7

/2E + 2Aa'4 —(u2a'2
(2.5)

This definition is easily inverted to yield

(d7a= yl —Aa, sn 1+ k2
(2 6)

We shall retain the mass correction to the small oscil-
lations &equency, though formally a small term, as this
shall improve remarkably the accuracy of our analysis.

It is clearly seen from (2.3) that the properties of the
motion depend strongly on whether m j is larger or
smaller than unity, in agreement with previous results
[12,13]. In the first case, the unperturbed motion is un-
bounded, and all trajectories correspond to a near —de
Sitter inflationary expansion. Therefore, it is in the op-
posite case m j ( 1 that we may Gnd nontrivial dy-
namical effects. This is also the relevant case to investi-
gate the physical question of whether inflation requires
greater than Planckian radiation energy densities in the
early Universe.

Assuming therefore m j ( 1, we find that when
E = E, = u /16A, the "unperturbed" motion admits
two static solutions with a = a, = ~ /4A. These so-
lutions are joined by a separatrix. To describe motion
below this separatrix, it is convenient to pick E itself as
the generalized momentum. Its conjugated variable is, of
course, "time, " defined as

A. Homogeneous model

In this subsection, we shall consider the dynamics gen-
erated by the two-degrees-of-freedom Hamiltonian (2.1),
constrained to the null energy shell.

In the massless case, we may analyze the evolution
of field and geometry independently. The field is just
a harmonic oscillator, with unit &equency independent
of its amplitude. The radius of the Universe, on the
other hand, may be described as an anharmonic oscil-
lator, whose &equency begins as unity, but falls down
with amplitude. It actually vanishes as we approach the
separatrix connecting the two unstable static solutions.
Beyond the separatrix, motion is unbounded, and quickly
approaches a de Sitter-like expansion.

where snu denotes the Jacobi elliptic function of the first
kind [30], A = gl —(E/E, ) and k = (1 —A)/(1 + A).
We can also Fourier expand a as

a = gl —Aa, ) q„sin(2n —1)Qr, (2.7)

where the Fourier coefIicients q have standard expres-
sions in terms of complete elliptic integrals [30] and the
fundamental &equency

7T' (d

2K +1+ k2
' (2.8)

Here, K = K[k] is the complete elliptic integral of the
first kind [30]. We see that 0 ~ w when E —+ 0, and
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vanishes when E approaches E„as we expected.
Let us observe that, because the transformation from

(a, p ) to (~, E) depends on j, when the second pair is
used, the angle conjugated to j is no longer &p but P =
p + bP, where

BH1 = ——fA a j cos 2p + —cos 2+1
2 n1

(2.12)

This allows us to split the Hamiltonian into a pertur-
bation

m2
d~' a (~') .

2
(2.9) acting on the unperturbed Hamiltonian IIi —— E—+ (j+

niji), where

Having solved the unperturbed motion, the analysis
follows a standard pattern [13]. The perturbative ap-
proach breaks down, and nontrivial dynamics appears,
when the oscillations in a become resonant with those
in P. Since the leading perturbation goes like cos2$,
the leading resonances will be those where NO = 2, the
unperturbed P frequency being identically 1. This equa-
tion has no solution for N = 1, and only the trivial one
E = j = 0 for N = 2. Thus the first real breakdown
of perturbation theory occurs when N = 3. The cor-
responding KAM torus in the unperturbed dynamics is
destroyed by the resonant perturbation, resulting in new
homoclinic points and separatrices. These separatrices
are further destroyed by other resonant terms, leading to
the formation of a stochastic layer. The layers of difI'erent
resonances tend to overlap with each other, thus forming
a stochastic sea extending up to the former separatrix
at E, . Within the stochastic sea KAM tori are replaced
by cantori [4], allowing for such phenomena as difFusion;
thus an orbit with initial conditions below E, may escape
the separatrix and inflate.

The location of the N = 3 resonance is therefore an
estimate of the lower limit of the stochastic sea in the
full dynamics. It is determined by the resonant condition
0 = 2/3 plus the Hamiltonian constraint E = j. For the
values m = 0.65, A = 0.125, which we shall use in our
numerical simulations, the N = 3 resonance appears at
E = j = 0.28. For an orbit starting from a = 0, this
means that the initial momentum should be p 0.75.
Moreover, it being a N = 3 resonance, we expect that a
triangular pattern of islands of stability will form in the
wake of the destroyed KAM torus in (a, p ) space.

As we shall see in next section, both predictions of
the perturbative analysis are confirmed by the numerical
results. For the time being, however, let us turn to the
study of the second, "inhomogeneous" model.

B. Inhomogeneous model

1 2E = —[p' + (ui2a' —2Aa4] (2.13)

and (u, = 1 —(m /ni)(nij+ ji).
The integration of the unperturbed motion may be per-

formed exactly as before. There are two unstable fixed
points, at energy E = Ei = ui4/16A, joined by a sepa-
ratrix. Above the separatrix, motion is unbounded. To
describe the motion below the separatrix, we write E =
E, [4k2/(1 + k2)2], 0 & k & 1. The evolution of a may
be described as a superposition of harmonic oscillations,
with fundaxnental frequency Oi ——(vr/2K)(ui/Ql + k2).
Here, as before, K = K[k] is the complete elliptic integral
of the 6rst kind [30].

As in the "homogeneous" model, it is convenient to
choose E itself as canonical momentum. Again this im-
plies introducing a new angle variable v instead of a, and
shifting the angles p and yi to new angles P = y + bP
and Pi ——rpi + (1/ni)b'P. The shift is still given by the
expression (2.9), where now of course we must compute
the dependence of a on v using the proper &equency ul.

Given the structure of the perturbation, we expect the
leading resonances shall be those where the a &equency
is a rational multiple of either of the field frequencies.
Mode-mode coupling, on the other hand, will only show
up at high orders in perturbation theory, and its efFects
shall be correspondingly weak.

As a matter of fact, the structure of the resonances,
as described by the "unperturbed" Hamiltonian Hl, is
trivial. Since the frequencies are independent of the Beld
amplitudes, they are just vertical lines in the (E,j) plane,
accumulating towards E = E, . Moreover, since the fre-
quencies belonging to either mode have a fixed, integer
ratio, instead of two families of resonances, there is only
one. To break this degeneracy, we must consider higher
orders in perturbation theory.

To this end, we shall observe that, if we average the
perturbation bHi over r, holding P, Pi fixed, we get the
nonzero value

2jl
sin (pl )nl

(2.10)

In this subsection, we shall apply essentially the same
techniques than in the previous one, to the study of the
"inhomogeneous" model (2.2). As before, we extend to
all phase space the low-amplitude action-angle variables
(j, y) for the "homogeneous" component. For the "inho-
mogeneous" mode, we write, in the same spirit,

where AP is the accumulated phase shift over one period:
namely,

m'~, [K —E]
&1+k' ' (2.15)

(hIIi) = j[sin 2(P —AP) —sin 2$]
01
4'

sin 2(4is ——s241) —sin 24is I, 12.14)jl 1

Al

pi = +27l, i/i cos pi (2.11) E = E[k] being the complete elliptic integral of the sec-
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Ogj = i — fsin2($ —Eii) —sin2$])2:,4' (2.i6)

ji —— 1—n, . (
sin 2 p, ——Eii —sin 2i4 )xz

4am~2 ( ng

(2.17)

This transformation is made canonical by a suitable
redefinition of the angle variables, which we do not need
to carry through explicitly. Writing the Hamiltonian in
terms of the new action variables, and averaging over the
old angles, we obtain the new, improved, unperturbed
Hamiltonian

H~ = E+ nx +—ngPxg, (2.1S)

where

/'n, &'
. ,n= 1 —2 sin

( 47r
(2.i9)

ond kind [30]. We shall improve our perturbative scheme
by introducing this term into the unperturbed Hamilto-
nian. To perform the actual calculation, however, let us
disregard the dependence of uq with respect to j, and jq',
we may, for example, approximate uz 1 —m E, which
is accurate when j~ 0. This step may not be easily
justi6able quantitatively, but it will simplify enormously
the analysis below without changing the character of the
solutions.

Treating the new term in the Hamiltonian as small, we
seek to eliminate it by introducing new action variables
x and xq, where

1 QAi
(2.23)

III. NUMERICAL RESULTS

where q' & 1/nq is also rational. We see that the two
families of resonances have been resolved, although of
course the difference in slope between the curves repre-
senting each family in the (E,x) plane is much smaller
than the slopes themselves. This weak splitting is never-
theless enough to communicate the d.ifferent resonances
among themselves, thus providing the basic pattern of
the Arnol'd web.

Another feature of the resonant lines that can be eas-
ily checked against the numerical results concerns their
overall slope. First, it should be observed that, the de-
nominator in Eqs. (2.22) and (2.23) being generally very
small over the physical range, we only obtain the con-
straint x & E/n when the numerator itself is close to
zero. Moreover, since O~ is decreasing over the physi-
cal range, at zero the numerator will go from positive to
negative. For the values m = 0.65 and A = 0.125 to
be used in Sec. III, the denominator is positive over the
range 0.237 & E & 0.355. Since x must be positive, we
may conclude that the resonant lines have negative slope
in this range of energies, reaching the zeros of the nu-
merator from below. In terms of the initial value of the
momenta, assuming initially a, P, Pq

——0, this interval
corresponds to 0.688 & p; & 0.842. Of course, a nega-
tive dx/dE also implies dye;/dp; & 0, in agreement with
the numerical results (see below). Outside this range, the
resonances should display positive slopes; however, this
behavior was not observed, as motion remains regular
below the lower limit, and it is too unstable above the
upper one.

We shall stop our analysis at this point, proceeding to
the presentation of the numerical results.

t 4~m,
(2.20)

(2.21)

Since xq must be positive, we must have x & E/n.
The equations for the two families of resonances now

read as follows.
Case I. a —P coupling:

x = —1— (2.22)

where n' = dn/dE, and q & 1 is a rational number.
Case II. a —

&Pq coupling:

Observe that 1 —P « 1 —o. throughout the energy
range, and so there is no significative loss in approximat-
ing P 1.

To obtain the actual form of the resonances, let us solve
the Hamiltonian constraint for xi, obtaining

We now proceed to present the results of the numeri-
cal solution of the models described in Sec. II. In these
numerical simulations, we have reverted to the original
canonical variables (a,p, g, p~, @q,pq), whose equations
of evolution follow f'rom the Hamiltonians (2.1) and (2.2).
The simplicity of these equations makes this approach
more appealing than other, more sophisticated alterna-
tives. We have also appealed to the Action of continu-
ing each solution beyond the cosmic singularities a = 0.
Therefore, the numerical trajectories to be presented cor-
respond actually to strings of different universes, each
being the analytic extension of its parent. This mathe-
matical trick, possible because the equations of motion,
as written in the conformal time frame, remain analytical
at these singularities, will allow for a more efBcient ex-
ploration of the dynamics without affecting the physics.

To solve the models, we have used a Runge-Kutta [32]
fifth-order routine. This method works well in our ex-
amples, mainly due to the particular choice of time vari-
able. We have chosen not to enforce the Hamiltonian
constraint, but as a check on the numerical code, sur-
veyed it in all runs, making sure that the value of the
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Hamiltonian never exceeded a given threshold of 10
I.et us now discuss our results. As in the previous

section, we shall begin with the simplest, "homogeneous"
model.

A. Homogeneous model

This section is devoted to the study of a homogeneous
inflationary cosmological model consistent with a FRW
background, an inflaton field, and a conformally coupled
scalar radiation field. Because we are interested in dy-
namical effects during the very beginning of the infla-
tionary stage, we will replace the inflaton Geld by a cos-
mological constant A, also allowing the radiation field to
develop a mass m through Higgs' mechanism. Here and
in next section, we assume A = 0.125 and m = 0.65, both
in natural units. These values are suitable both on the-
oretical grounds and for the practical implementation of
the model; moreover, it can be seen that the general fea-
tures of the solutions are independent of this particular
choice.

Using standard dynamical systems theory techniques
the four-dimensional phase space of this model can be
reduced to more visualizable two-dimensional Poincare
surface of section. This is built by intersecting a plane
(@ = 0, say) with the dynamical How in the phase space.
In this way all the dynamics can be analyzed on, for
example, the a-p plane. These variables represent the
"slow" variables in our problem.

If the conformal symmetry were not broken by the
presence of mass, the problem would be integrable and
there would be a separatrix sharply dividing the Poincare
section into five regions. One region, around the ori-
gin where the motion is bounded, is filled with invariant
KAM tori. The other ones correspond to unbounded

trajectories that, wheresoever they begin, approach a de
Sitter solution. The motion would be regular in all five
regions.

Because of the mass term, the separatrix is replaced by
a stochastic layer. In this layer the tori, corresponding
to the inner region, are broken, being replaced by new
structures, cantori and islands of stability. The former
are partially broken tori with gaps in them; some trajec-
tories can escape through the gaps, while others remain
confined within the stochastic layer. Trapped trajecto-
ries also form around the elliptic points left in the wake
of resonant tori, and make up the islands of stability.

The five regions on the plane of section are displayed
in Fig. 1. The solid lines represent the separatrices con-
necting the massless unstable static solutions

1 —4Aa2

gsx
as well as the other branches of the stable and unsta-
ble manifolds emerging &om the massless fixed points,
which represent inflationary de Sitter solutions. We have
also plotted the sections belonging to a few trajectories
in the massive case, which manage to escape from the
separatrices. It can be easily appreciated that all the or-
bits approach very rapidly the massless de Sitter solution.
This is, of course, just what would be expected &om the
"cosmic baldness" principle. We can also observe that
the separatrices shrink in the presence of mass, as may
be expected &om the analysis in the previous section.

The fact that some orbits manage to get through a
region formerly occupied by KAM tori is a clear indica-
tion of the formation of cantori. However, since for small
masses the gaps in the cantori are rather narrow, most
orbits escape only after a long period of bouncing within
the stochastic layer, while others remain bouncing for-

FIG. 1. Poincare section on
the g = 0 plane. Only
the no-boundary trajectories
are shown. The solid lines be-
long to the conformal symmet-
ric case (m = 0). Notice the
running away trajectories ap-
proach the separatrix.
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FIG. 2. Same as Fig. 1, in-
cluding the region of quasiperi-
odic motion. There are more
than 100 trajectories that start
at vP, = a, = 0, with p~, run-
ning up to 0.812. The three
secondary islands can be appre-
ciated.
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ever. Because of Liouville's theorem, another orbits must
get in from outside the separatrix, being trapped in the
stochastic sea.

The region within the separatrices is shown in greater
detail in Fig. 2. This picture corresponds at almost 100
different initial conditions, all of them with a, = @, = 0,
but differing in py;, which runs up to 0.812. As man-
dated by the Hamiltonian constraint, p, = —py;. We
may appreciate the inner unbroken KAM tori, where the
points seem to lie on smooth curves. We note that they
are not arranged in sequential order, and so each torus
corresponds to several turns around the origin or, in cos-
mological language, to several cosmic cycles. After those
there are several "orbits" corresponding to broken tori,
which after several revolutions escape and inHate. Out-

ermost, a new set of stable trajectories makes up a trian-
gular pattern of islands. This chain of secondary islands
surrounds the central one in a rather symmetrical way.
The slight asymmetry of the two lower islands, due to
their relative position with respect to the most likely es-
cape route, can be attributed to the particular choice of
initial conditions. It is easily seen that as the mass is
increased the last unbroken KAM torus shrinks, but, as
long as the field amplitude is different from zero, it never
reaches the origin of phase space. The approximate loca-
tions of the islands of stability, as well as the triangular
pattern, are in excellent agreement with the analysis in
the previous section.

In Fig. 3, we exhibit a blowup of the upper island. At
the bottom there are several unbroken tori, then a chaotic
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FIG. 3. Blowup of the up-
per island of Fig. 2. Around
this island a similar pat tern
of third-order islands is clearly
seen.
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FIG. 4. Maximal Lyapunov
exponent for an unstable tra-
jectory (with initial conditions
vP, = a, = 0 and p@, = 0.736).
It never stabilizes and grows up
suddenly when the system es-
capes away from the separatrix.
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or irregular region, and the stable island surrounding an
elliptic point on the former KAM torus. As is well known,
in nonintegrable systems there exists an infinity hierar-
chy of such structures, so that around a secondary island
there is a pattern of third. -order islands, with a fourth-
order chain around each, and so on. The radial width
of the corresponding island decreases with the order of
the chain. This kind of behavior can be clearly appreci-
ated in the picture, where up to third-order islands may
be seen. If we were able to get initial conditions close
enough to some resonance, it would be possible to go
on forever, bringing to light deeper and deeper levels in
phase space, until eventually the resolution of the com-
puter is exhausted.

We find that not all the orbits in the chaotic region
escape to infinity. Indeed, some of them remain in the
stochastic layer for more than 300 iterations of the map, a
rather stable behavior. Also, there is no clear-cut divide
between stable and unstable trajectories; as we increase
the initial momenta, there are unstable orbits following
stable ones and vice versa.

As another way to stress the variety of behavior, we
have computed the Lyapunov exponents, after the al-
gorithm proposed by Benettin et al. and others [23],
for a set of different initial conditions corresponding to
an unbroken tori, broken tori leading to irregular mo-
tion, and stable orbits within the upper secondary island.
Figure 4 is a plot of the largest Lyapunov number corre-
sponding to an unstable trajectory with initial conditions
@, = a, = 0, p@; = —p, = 0.736. After an initial tran-
sitory stage, the Lyapunov coefIicient becomes positive
for several tens of recurrences on the Poincare section. It
never stabilizes, and towards the end it sharply grows,
due, most likely, to the unbounded character of this or-
bit. On the other hand, for initial conditions within the
large central island or the secondary ones, the Lyapunov
characteristic numbers tend slowly to zero after the ini-
tial transitory stage, as expected for regular trajectories.

We checked in all cases that, as corresponds to a Hamil-
tonian system, the sum of the four Lyapunov exponents
is zero.

To summarize, this simple model displays extremely
complex behavior. The fact that the main features and
location of the chaotic region agree with the analysis in
Sec. II indicates that these are legitimate effects, rather
than numerical constructs. The dynamical effects to be
seen include the destruction of KAM tori, and their re-
placement by cantori and stability islands.

With regards to the cosmological relevance of these
findings, it could be objected that they are restricted to
a rather special region of phase space. To counter this
argument we need to consider the second, "inhomoge-
neous" model, to which we presently shift our attention.

B. Inhomogeneous model

In this section we shall add a second, inhomogeneous
mode to the radiation field. In this way we will be able to
analyze the reaction of the system under an increase in
the number of degrees of freedom. Indeed, phase space
has now six dimensions (a, p, @,py, gq, pq); if we take
a section, due to the fixed value of the Hamiltonian,
we obtain a four-dimensional Poincare space of section,
which is much more difIicult to visualize than the two-
dimensional surfaces of section of the previous case.

In an integrable system, there are, besides the Hamilto-
nian, two other integrals of motion. Therefore the orbits
are confined to three-dimensional tori, and their sections
can be contained within two-dimensional subsets of the
space of section. If the system is perturbed, but we are
in a region where the KAM theorem applies, then we
also expect two-dimensional sections. At the other ex-
treme, for an ergodic system, points should fill the four-
dimensional space of section. Thus, the dimension of the
manifold occupied by a sequence of points belonging to
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the same orbit can range &om 2 to 4.
In our specific model, if the radiation field were mass-

less, the system would be integrable. For example, we
could choose as constants of motion in involution the
Hamiltonian itself and the field action variables j and ji,
introduced in the previous section. When the mass is
turned on, these variables are no longer conserved; how-
ever, away from resonances, we expect there will be two
other constants of motion, analytic in m and reducing
to j, jz in the massless limit. Therefore, in the absence
of resonances, we expect that the orbits will leave a two-
dimensional imprint on a given Poincare space of section,
which we shall choose, by analogy with the previous sec-
tion, as the g = 0 plane.

To display this section, however, it is convenient to
project it onto ordinary three-dimensional space by con-
straining also one of the other "fast" variables [33], say,

In fact, we have found in our numerical trials that
the resulting projection is largely insensitive to the cho-
sen interval in @q, thus, for simplicity, we shall leave vga

unspecified, projecting the actual section onto (a,p, p~)
space. Of course, in the massless case, the projection lies
entirely on a j = const. surface. In the massive case, but
in the absence of resonances, there will be an invariant
surface close to this plane, which shall contain the orbit.
Therefore, the Poincare section will bend, but it will pre-
serve its shape. On the other hand, upon a resonance,
the section will break apart altogether.

To better appreciate this eKect, it is convenient to elim-
inate the adiabatic distortion of the section produced by
the evolution of the radius of the Universe, a. To this

end, we shall display the numerically obtained sections
in (a,p, J) space, where

(p~s + (I + ms as) @s)
2/1+ m'a' (3.2)

is an adiabatic invariant. Even with this choice of vari-
ables, motion becomes highly irregular as soon as we ap-
proach the separatrices. Therefore, we shall confine our-
selves to the region in phase space where nonintegrable
behavior is first apparent. Also, we shall concentrate on
initial conditions where @q and pq are small, since our
main concern is to study how the presence of the "inho-
mogeneous" mode affects the dynamics of a and g.

Figure 5 shows a very stable, nonresonant trajectory
of our inhomogenous model; it corresponds to more than
1000 recurrences of the orbit on the Poincare section.
The initial conditions for it are @, = @q; ——a, = 0,
py; ——0.7293, p; = —0.7295, and pi, 0.0171, as given
by the Hamiltonian constraint. The trajectory seems to
be confined just to a line; although a few points are seen
away &om the main line of section, they correspond to
the late behavior of the simulation, where the loss of sta-
bility may be attributed to the accumulation of numerical
errors through the simulation. It is also remarkable that
the section does not display gaps; we are therefore seeing
an unbroken KAM torus, rather than a cantori.

Now, Fig. 6 shows the corresponding picture, for an
orbit characterized by the neighboring initial conditions
Q& = gy; = o; = 0, py; = 0.7293, p; = —0.7294, and
pq; 0.0121. This orbit is much less stable than the

0.4

0.35

0.

FIG. 5. Poincare space of
section for a stable trajectory
(more than 1000 iterations on
the section), for the inhomoge-
neous model. The initial con-
ditions are @; = Qq, ——a, = 0,
py, ——0.7293, p; = —0.7295,
and pz, 0.0171, as given by
the Hamiltonian constraint.
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FIG. 6. Same as Fig. 5
for an unstable trajectory.
Here the initial conditions are

a, = 0,
py, = 0.7293, p; = —0.7294,
and p~,. 0.0121. Despite the
lower value of p,. this is a less
regular orbit than the former.

previous one, becoming inflationary after a few hundred
iterations of the map. In addition, it is hard to believe
that it could fit into a line; it seems to belong to a surface
or even a volume. This orbit therefore corresponds to a
broken torus. It becomes inflationary by diffusing around
the unbroken tori surrounding it, rather than by moving
across gaps in them.

To corroborate the results above, Fig. 7 displays a
comparison between the Lyapunov exponents associated

with each initial condition. The upper one corresponds to
the second orbit and its value is around twice the value of
the first one. Also in these examples the sum of the Lya-
punov exponents remains zero, in good agreement with
the Liouville theorem. The first orbit is clearly more
stable despite the fact it is closer to the separatrices.
It therefore suggests that the unstable orbit is able to
somehow find its way around the stable ones, becoming
inflationary in spite of the survival of unbroken tori in
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FIG. 7. Comparison
between the Lyapunov expo-
nents associated with trajecto-
ries shown in Figs. 5 and 6.
The upper one corresponds to
the second orbit and its value
is around twice the value of the
Grst one. The first orbit is
clearly more stable despite the
fact that it is closer to the sep-
aratrix.
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the outer layers of the stochastic sea. Indeed, we expect
unstable orbits to "diffuse" along the resonant lines of
the Arnol'd web. This provides a classical mechanism to
achieve inflation starting &om fairly generic initial con-
ditions.

Of course, to obtain a direct map of the web is exceed-
ingly difficult [5], since a typical unstable orbit only stays
within it a relatively small fraction of the time. Indeed,
typical evolution is made of short bursts of fast diffusion
along the web, followed by long intervals of seemingly
stable motion. There are in the literature rigorous up-
per bounds for the actual diffusion rates [22]; they are
generally exponentially small.

We may obtain an idea of the structure of the web,
however, by studying which initial conditions lead to sta-
ble (unstable) motion. By constraining ourselves to ini-
tial conditions with a; = @, = @q; ——0, and enforcing the
Hamiltonian constraint, we may reduce these initial con-
ditions to the (p;, py, ) plane. Initial conditions close to
the web will diffuse more easily and become inflationary
faster. Thus, by mapping the regions of instability, we
obtain a rough idea of the outline of the web.

In Fig. 8 we display the sector 0.7288 & p, & 0.7308,
0.725 & py; & 0.73 in the plane of initial conditions.
We have considered initial conditions evenly distributed
in this sector, marking with an asterisk those that in-
Hated in less than 500 iterations of the map ("500 ticks
of the g clock" ), and with a dash those that did not. Of
course, only initial conditions with p; ) py~ are physi-
cal; we have removed the lower left and upper right cor-
ners, where no structure can be seen.

The map shows clearly the intricate structure of the
border of the chaotic region. We can see lines of in-
stability running &om upper left to lower right (just as
expected from the analysis in Sec. II). Of course, what
we are seeing are not just the resonant lines, but the
stochastic layers around them. As we progress towards

the upper right, these layers merge, and the stochastic
sea is formed. Towards the upper left of the fi.gure, where
the orbits in Figs. 5 and 6 belong, stable orbits predom-
inate, but it is easy to discern paths connecting unstable
initial conditions to the stochastic sea, moving around
the stable islands. These are the presumed pathways to
inflation.

Figure 9 is a blowup of the central region of Fig. 8.
Here, 0.7294 & p; & 0.7298, 0.727 & pq; & 0.728. We
see essentially a similar structure than in the larger plot,
which recalls the &actal nature of the actual web. As in
the earlier case, the survival of certain islands of stability
has no confining effect on deeper unstable orbits.

We can see that not only is the inhomogeneous model
more "chaotic" than its homogeneous counterpart, which
after all was to be expected, but also the "fine-tuning"
objection to the cosmological relevance of chaotic behav-
ior is mostly groundless. In higher-dimensional models,
the survival of KAM tori does not confine the deeper lay-
ers of phase space, and so essentially all of the phase space
is connected to the chaotic region. Quite to the contrary,
it is the existence of chaotic diffusion that makes it pos-
sible to dispose of the assumption of an unnaturally high
radiation energy density to avoid recollapse before infla-
tion. Of course, the addition of semiclassical effects such
as particle creation only reinforces this conclusion [11].

To conclude, let us discuss the consistency of having
retained the FRW form of the metric in spite of the field
being inhomogeneous. We can give a quantitative mea-
sure of this inconsistency by computing the contribution
from the inhomogeneous mode to the source term in Ein-
stein equations.

Assuming the spatial metric has the form

ds = dy + sin y(do + sin ed' ),
we can expand the scalar field in eigenfunctions of the
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FIG. 8. The sector
0.7288 & p; & 0.7308,
0.725 & py,. & 0.73 in the plane
of initial conditions. Marked
with an asterisk are those tra-
jectories that inHated in less
than 500 iterations of the map
("500 ticks of the @ clock" ),
and with a dash those that did
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FIG. 9. A blowup of the cen-
tral region of Fig 8 Here
0.7294 & p; & 0.7298,
0.727 & p@, & 0.728. The
structure is essentially the same
as in the larger plot, which re-
calls the fractal nature of the
actual web. Also in this case
the survival of certain islands of
stability has no confining eKect
on deeper unstable orbits.
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three-dimensional Laplacian operator V'2~st [14]:

C(~, x) = ) y, (x),
a(r])

(3 4)

g(g) + 2/i(g) cosy4g, x
u('9)

(3.6)

Substituting Eq. (3.6) into the expression of the stress-
energy —momentum tensor for a scalar field [using, for ex-
ample, Eq. (3.190) of Birrell and Davies [14]], we obtain
Tpp = p, the energy density of the Geld. We can esti-
mate the relative weight of the inhomogeneous terms in
the source of the Einstein equations from the size of the
deviation

(s') —(~)'
(s)'

where (. .) denotes the spatial average.
We have computed o for the two trajectories shown in

this section (Figs. 5 and 6), finding that o 0.001. We
conclude that the inhomogeneous contribution is around
three orders of magnitude smaller than the homogeneous
one, and so it may be considered just as a slight pertur-
bation to the FRW metric.

where x = (y, o, P), k = (k, J, M) (with k = 1, 2, . . . , J =
0, 1, . . . , k —1, and !M! & J), and y~ (x) verifying

V'„,y, (x) = —(I 2 —1)y„(x). (3.5)

Just considering the k = 1, 2 and J = 0 contributions,
the scalar Geld reads

play highly nontrivial dynamics. This is so even in mod-
els such as the ones we have considered here, where the
cosmic baldness principle severely limits the asymptotic
behavior. The consequences of this behavior for the evo-
lution of the Universe may well be drastic; in the models
we have studied, the realization or not of inHation could
hinge upon the possibility of chaotic diffusion in phase
space.

A second lesson to be learned is the clear difference of
behavior between the model with two degrees of freedom
and that with three. It should be stressed that from a
purely dynamical point of view the addition of the inho-
mogeneous mode is a rather mild change, since it does
not couple directly to the homogeneous mode, and its
larger proper frequency shields it from resonances with
the "radius of the Universe" (cf. Sec. II). However, the
purely topological change brought by the opening of new
dimensions in phase space is enough to produce a marked
increase in complexity, of which the "decon6nement" of
unstable orbits near the origin of phase space is the most
conspicuous manifestation.

This indicates that Galerkin- [34] or minisuperspace-
[35] type approximations should be used with extreme
care, especially when addressing the dynamics of the
early Universe, when motions were fast and paramet-
ric couplings strong. This word of caution, which has
recently came to be accepted by researchers of the quan-
tum era [36], is not less true in classical cosmology.
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