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Calculation of particle production by Nambu-Goldstone bosons with application
to inHation reheating and baryogenesis
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A semiclassical calculation of particle production by a scalar field in a potential is performed.
We focus on the particular case of production of fermions by a Nambu-Goldstone boson 8. We
have derived a (non)local equation of motion for the 8 field with the back reaction of the produced
particles taken into account. The equation is solved in some special cases, namely, for purely Nambu-
Goldstone bosons and for the tilted potential U(8) oc m 8 . Enhanced production of bosons due
to parametric resonance is investigated; we argue that the resonance probably disappears when the
expansion of the Universe is included. Application of our work on particle production to reheating
and an idea for baryogenesis in in6ation are mentioned.

PACS number(s): 98.80.Cq, 11.30.Fs, 14.80.Mz

X. INTRODUCTION

Nambu-Goldstone bosons (NGB's) are ubiquitous in
particle physics: they arise whenever a symmetry is spon-
taneously broken. If there is additional explicit sym-
metry breaking, these particles become pseudo Nambu-
Goldstone bosons (PNGB's). In this paper, we consider
particle production by Nambu-Goldstone bosons as they
rotate about the bottom of the "Mexican hat" potential,
whether or not there is a tilt around the bottom (i.e. ,
with or without explicit symmetry breaking).

The Nambu-Goldstone bosons, hereafter called 8, are
assumed to couple to fermions; thus as the 8 field moves it
is capable of producing these fermions. Here we perform
a semiclassical calculation. The 0 field is treated clas-
sically while the particles produced are quantized. The
back reaction of quantum fermions on the evolution of
the 8 field is calculated. Our motivation is to lay out a
general way to perform such a calculation and to carry
it out for a specific coupling. The primary results of our
calculations in Hat spacetime are Eqs. (2.21) and (2.22).
We then demonstrate examples and generalize to curved
spacetime with massive fermions.

Particle production by Nambu-Goldstone fields may
have several applications. One is the @CD axion. An-
other is particle production by the infiation field [1] in
natural inflation [2]. Particle production is, of course,
important for estimates of reheating in inflation. Many
models of inflation involve "slowly rolling" fields that
evolve down a potential. Subsequent to the "slowly
rolling" epoch, there must be an epoch of reheating,
where vacuum energy is converted into the production
of radiation energy. The equation of motion for the in-
Baton Geld is taken to be

8+3He+re=-" .
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The term I'8 is assumed to describe the reheating. I'
is taken to be the decay rate of the inflaton field. This
heuristic term really describes much more complicated
physics. In fact one should accurately calculate the pro-
duction of particles and its back reaction on the inflaton
field as it rolls down the potential. Previous work on this
subject includes [3,4].

In addition, there may be a mechanism for baryoge-
nesis during natural inflation. If the equivalent of the
Peccei-Quinn field can be made to carry baryon number,
one may be able to do baryogenesis as the inflaton is
rolling down its potential. This has several nice features:
(i) the same field would be responsible for both infia-
tion and baryogenesis and (ii) the infiaton could reheat
to very low temperatures, perhaps as low as nucleosyn-
thesis temperatures of MeV. [In fact, for this mech-
anism to work one would have to reheat to below the
electroweak temperature to avoid sphaleron destruction,
if it is operative; alternatively the inflaton could gener-
ate nonvanishing (B —I) asymmetry which is preserved
by sphalerons. ] The approach is similar to proposals of
AHleck and Dine [5] and Cohen and Kaplan [6]. It is
assumed that the inflaton field 4 is complex and has a
nonvanishing baryon number. The corresponding baryon
current generated by the classical rolling down of the in-
flaton Geld is essentially equal to the angular momentum
of the two-dimensional mechanical motion in the plane
(Re@,lm4'). Thus, as the field rolls in one direction, it
preferentially creates baryons over antibaryons, while the
opposite is true as it rolls in the opposite direction. (We
assume that the decays during reheating are baryon num-
ber conserving. ) Thus, no CP violation is required of the
particle physics; instead those regions of the Universe in
which the inflaton by chance rolls down the potential in
one direction turn out to be baryon dominated, while
those that roll down the other direction turn out to be
antibaryon dominated. Conveniently, each of these re-
gions is inflated to be very large, so that it makes sense
for our baryon-dominated region to be large enough to
encompass our observable Universe. The requirements to
create a specific particle physics model for this proposal
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are restrictive and are discussed below.
In Sec. II, we discuss the sample Lagrangian we con-

sider, and calculate the particle production for this case.
First we perform the calculation in the absence of ex-
pansion of the Universe, and for production of massless
fermions. In Sec. III, we apply the results to two specific
examples: (i) a scalar 0 rotating in a potential without
explicit syinmetry breaking, and (ii) the same scalar but
now oscillating near the minimum of a quadratic poten-
tial produced by explicit symmetry breaking; for exam-
ple, such a potential may give rise to inflation. In Sec. IV,
we include the efFects of expansion of the Universe and
fermion masses. We also discuss the possibility of para-
metric resonance [3,7,8] whereby large numbers of scalars
might be produced during reheating in inflation. We ar-
gue that there is probably no resonance if one includes
the expansion of the Universe. In Sec. V, we discuss
the possible application to inflation, particularly to the
model of natural inflation. The baryogenesis model men-
tioned above is discussed in this section. In Sec. VI we
conclude.

II. PARTICLE PRODUCTION
IN A SIMPLE MODEL

which is the Peccei-Quinn (PQ) symmetry [9] in axion
models. Then the current would be J+ = Qp~p g. Al-
though we do not explicitly analyze this case, it would
be very similar to the one we do look at.

We assume the global symmetry is spontaneously bro-
ken at the energy scale f in the usual way, e.g. , via a
potential of the form

V(i@i) = A 4*4 —f /2 (2.3)

The resulting scalar field vacuum expectation value
(VEV) is

(2 4)

Below the scale f, we can neglect the superheavy radial
mode of 4(m, s; i = A ~ f) since it is so massive that
it is &ozen out. The remaining light degree of freedom
is the angular variable P, the Goldstone boson of the
spontaneously broken U(1) [one can think of this as the
angle around the bottom of the Mexican hat described
by Eq. (2.3)]. For simplicity of notation, we introduce
the dimensionless angular field 0—:re/f We th. us study
the effective Lagrangian [10,11] for 0:

A. Lagrangian
Q,g = 0„00"0—+iQp" B„QP

+iLp"O„L+ (gfQLe' + H.c.) —U(0) (2.5)

We first describe a simple model in which we calculate
particle production. Consider the fundamental action for
a complex scalar Beld C and two fermions Q and L:

The global symmetry is now realized in the Goldstone
mode: 8 g is invariant under

Qme* Q, LmL, 0-+0+n. (2.6)
8 = d x —g g""B„4*0C —V 4*4 +i p"0„

+i Lp"B„L+ (g 4 QL + H.c.)]. (2.1)

At this stage, 0 is massless because we have not yet ex-
plicitly broken the symmetry.

With a rotation of the form in Eq. (2.6) with n = —0,
the Lagrangian can alternatively be written

Note that Q and L can be any fermions, not necessarily
quarks and leptons of the standard model. For example,
they can be heavy fermions; they may be given some of
the same quantum numbers as particles in the standard
model if they couple to ordinary quarks and leptons. For
this section of the paper, we will take the intrinsic mass
of the Q and L fields to be zero, and will include mass
efFects in later sections.

This action is invariant under the appropriate U(1)
symmetry. For example, in this paper, we will take the
Lagrangian to be invariant under

@me' O, Qme' Q, LmL. (2.2a)

Equation (2.2a) is the symmetry we will use for the rest
of the paper.

We did, however, want to point out that a very sim-
ilar analysis would apply to the case of global chiral
U(1) symmetry in a Lagrangian with Yukawa coupling
gal. @R4. Here subscripts L and. R refer to left- and
right-handed projections of the fermion fields, @R r,
(1+ps)@/2. This Lagrangian is invariant under

2

8„0B"0 +—iQp" B„Q+ i Lp"B„LP

+(gfQL+ H.c.) + 0„0J"—U(0), (2.7)

where the fermion current derives from the U(1) symme-
try; here, J" = Qp„Q.

B. Explicit symmetry breaking

Our subsequent analysis of particle production applies
whether or not the symmetry is further broken explic-
itly. Several options exist for explicitly breaking the
global symmetry and generating a PNGB potential at
a mass scale A. Models include the schizon models
of [12]. Another possibility is the QCD axion [13]: dy-
namical chiral symmetry breaking through strongly cou-
pled gauge fields. When QCD becomes strong at a scale
AQQD GeV, instanton efFects become important. Chi-
ral dynamics induces a fermion condensate, (@g) ~ A
and the potential for the angular PNGB Geld becomes

@i, ~ e' ~ @I„vp ~Re ' gR, 4 —& e' 4, (2.2b) U(0) = A [1 6 cos 0]. (2-8)
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Such a potential is used in the case of natural inQation, al-
though at higher mass scales, and will be discussed later.

Q field and satisfies B„7"Gq(x, y) = b'4(x —y). Similaily,
the solution to Eq. (2.12) is

C. Equations of motion

The equations of motion for the Q fields are

i,p"B„Q+B„8p"Q+gfL = 0

and

(2.9a)

L(x) = L; (x) + igf f d y Ge(x y)Q(y)

= L; (x) +egf j d Gy(e,x)yQ; (y)e' ~e~. (g. lgb)

We take the vacuum expectation value (in Heisenberg
picture)

iB„(Qp") —B„8Qp" —gfL = 0. (2.9b)

The combination of these two equations can be written

8(*)+ U (8(*))/f )

= —(B„J")„,= —((QL —LQ))„,. (2.17)

B„J~——B„(Qp"Q) = igf (Q—L —LQ). (2.io)

The equation of motion for 0 is

1728+ U'(8)/f2 = B„J"= —(QL —LQ) (2 ll)

The equation of motion for the L fields, which we as-
sume does not transform under the symmetry, is

We perform a semiclassical treatment, where the 0 field is
treated classically while the fermion fields are quantized
and via the equations of motion determine the evolution
of 8. To first order in g, the right-hand side of Eq. (2.17)
is (L;„Q;„)= 0. Working to second order in g, we substi-
tute Eq. (2.16a) into Eq. (2.14), and plug that into the
right-hand side of (2.17) to obtain

(D'8(~) + U'(8(*))If' )

~V"B~L = 8fQ— (2.12)
=g d 'gLi~ z Gg x)'g Li~ g 8 6

B„(Lp"L)= ig f(QL ——LQ). (2.i3)

As above, if we add the equation of motion for the L
Geld, we find

-Q;.(*)G.(*,.)Q-(.) ""'-"*'+H'

(2.is)

D. Particle production

Here we calculate the production of Q and I particles
by the angular 0 field as it rotates around the Mexican
hat (which may or may not be tilted). For the moment
we will neglect expansion of the Universe.

For convenience we will define

Q = Qoe' (2.14)

so that Eq. (2.9) becomes

p"B„QO ——igfe ' L. (2.i5)

Q.(*) = Q;.(*)+*gff d'y Gg(*, y)L(y)

(2.16a)
where to lowest order we will take L = L;„ inside the
integral. Here Gg is the retarded Green's function for the

I

We will solve perturbatively the Heisenberg equations of
motion presented above. We will take the free field Q;„ to
satisfy p"B„Q;„=0, and make a perturbation expansion
Qo ——Q;„+gQi. Equation (2.15) is solved by

Here, Gg and Gg are the Green's functions for the Q and
L fields. For the case of massless fermions, Gg ——Gg.

We now quantize the &ee-fermion fields:

d3k
Q'-(&) =).

(2 ),(,
S

~(e)
[ sl s —ik. g. + sdyt ik g.

)E A; A: k
A:

(2.19)

(L(*)G(* ~)L(~))

d3
4 [i(p+l}.(y —z)] )

(2')~ 2E„ /2 + m2

(2.20)

and a similar expression for the quarks.
After much algebra (presented in Appendix A), we find

where bI', and d& are annihilation and creation operators
at momentum k and spin s for particles and antiparticles,
respectively. The quantization for the &ee I;„Geld is
similar. Now we evaluate the right-hand side of (2.17).
The details of the calculation are discussed in Appendix
A. As shown there, we Gnd that

oo 0

(D 8 + U'(8)/f ) = — du(G dt'sin(2LGt') sin[8(t + t') —8(t)].
7t 0 —OO

(2.21)



2696 ALEXANDRE DOLGOV AND KATHERINE FREESE

As shown in Appendix A, after the cu integration is done and with some algebra, this equation becomes

g . , cos 2nt' —1
lim dt' 0(t + t') cos b, 8 —0 (t + t') sin b,8

2~2 m~oo
(2.22)

III. EXAMPLES

In this section we will apply Eq. (2.21) to two exam-
ples. First we will consider the case of U'(8) = 0. This
is the case where there is no explicit symmetry breaking.
Thus the potential looks like an ordinary Mexican hat, in
which every point around the bottom is equivalent. For
example, there is no tilt (no cosine potential). Another
situation in which this case would be relevant is the case
when the rotation proceeds so far up in the Mexican hat
that the details around the bottom are irrelevant and can
be ignored.

The second example we will consider is one that would
be relevant to inflation, namely oscillations around the
bottom of a tilt in the potential. In this case U'(0) g 0
and there is explicit breaking of the symmetry.

Case I: U'(8) = 0: In this first case, we consider a
simple Mexican hat with no explicit symmetry breaking.
The zeroth order solution to Eq. (2.21) would be obtained
by setting the right hand side, which is proportional to g,
to zero. The zeroth order solution is 8 = const. In other
words, the Geld is simply rotating around in the Mexican
hat with constant angular velocity. We substitute this
ansatz 8 = const back into Eq. (2.21) to see what the
corrections would be. The t' integral becomes

dt' sin(2~t') sin(8t') = —[h(2~ + 0) —h(2~ —8)].
~ ~

~ ~

2

Thus, Eq. (2.21) becomes
2 .

8+ —8 sgn(0) = 0.
271

(3 1)

If the Beld 4 has been arranged to carry baryon num-
ber, then the baryon number is shifted (via a baryon-

I

Here ip tends to infinity and we have defined A0—:8(t+
t') —0(t).

Equations (2.21) and (2.22) are the major results of
this section. To reiterate, these equations describe the
evolution of the 0 Geld with production of massless
fermions taken into account in a semiclassical approxi-
mation. So far the expansion of the Universe has not
been included.

conserving decay) to the fermions. The baryon number
~ ~

of the fermions satisfies B„J"= fz8 from the equations of
~ 0

motion. Thus n~ = f 8, where nIs is the baryon number
carried by the fermions. The change in baryon number
carried by the fermions is thus determined by the change
in 0 via conjs = fzb8, si.milar to Ref. [5]. Here, all that
has happened is that this mechanism transfers the initial
baryon number B; = f~8, into the quarks. Subscripts i
refer to initial values. Thus, it is an initial value problem:
to get the right value today one would need exactly the
right value of 0;. We are not proposing this as a likely
explanation for the baryon content of our Universe.

The solution to Eq. (3.1) is 8 = 2vr8, j(2m+ g t8;) and
8 = 2mg z ln(2~+gzt8;)+8;. Here 0; is the initial value of
0. Thus, we have checked that in the short time or small
g limit, 0 const was reasonable. We wish, however, to
remind the reader that the expansion of the Universe has
not yet been included here.

Case II: Oscillations around the minimum of a poten-
tial for 0: Here will consider the case where U'(8) g 0;
i.e., there is a tilt as you go around the bottom of the
Mexican hat. As a simple example we will consider
U(8) = m f 8 /2, as would be appropriate near the bot-
tom of a cosine potential.

Then Eq. (2.22) becomes

g . , cos 2mt' —10+ m 0 = — lim dt'
2~2 ~-+~ t'

x 8(t + t') cos 48 —8 (t + t') sin b,8

(3.2)

Again, the zeroth-order solution is obtained by setting
the right-hand side equal to zero. Thus as our ansatz
we take 0(t) = 8p(t) cosmist where m~ is the renormal-
ized mass to be defined below. We will assume that 0p(t)
varies more slowly with time than do the cosine oscil-
lations. We will consider the case of small oscillations
around the bottom of the potential. Then we can take
cos40 = 1 and neglect 8~ in Eq. (3.2). [Note that the
t' integral should really start &om a Bnite time at which
small oscillations begin; here we will approximate the
lower limit of the integral as t,'„,i,. i

———oo.] Then the t'
integral becomes

g . , cos 2mt' —1
lim dt' [

—m~0p(t) cos m~(t + t')]
'LO ~OO t/

g 2 , sin m~t' , sin mgt'
lim —m&00 sin m~t dt' + m&OO sin mgt dt' cos 2mt'

tO ~CX) tf tl

2 dt' I I+m&8p cos m~t (1 —cos 2uit ) cos m~t
t/ (3.3)
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The first term behaves like a kiction term,
g—mR0/(4') The second term is zero after one takes

the limit m —+ oo. The third. term is a mass renormal-
ization term. After evaluating the integral in this third
term as shown in Appendix B, we find that this term is

2s, mR01n(2m/m~). We wish to add this term to the
second term on the left-hand side of Eq. (3.2) so that
the sum of these terms gives m&0. Therefore we define

2

m&[1+ 2s, ln(2iij/mR)] = m . Then the original integro-
diÃerential equation is efFectively reduced to

their energy density is of the second order in 0. This
agrees with the energy density of the creating field 0.
Thus the final fermion energy is indeed consistent with
the original energy in the 0 field.

The third caveat is that Eq. (3.3) reduced to Eq. (3.4)
only in the approximation that the lower limit of integra-
tion was taken to be —oo. This approximation is good
as long as there are many oscillations over the course of
the integral. For the case of inflation the field oscillates
many times during the reheating period, and thus this
approximation is probably reasonable.

0 + mRO + I'0 = 0, (3.4)

where I' = g m~/4vr. The solution to this equation is

0(t) = 0;e " cos(m~t + b) (3.5)

where we introduced an arbitrary phase b which is fixed
by initial conditions.

Equation (3.4) [or (1.1)] describes the damping of the
external field oscillations due to particle production. It
was postulated in many papers where the Universe re-
heating was considered. As we have shown it is indeed
correct, but our approach alerts us to several issues that
should be considered further with regard to the calcula-
tion of the baryon asymmetry. If the spontaneously bro-
ken symmetry is associated with the baryon number, the
baryon asymmetry generated by the decay of the PNGB
field was calculated [6] as [n~~ = I'f ~0[ which gives

IV. FURTHER COMPLICATIONS: (i) CURVED
SPACETIME (EXPANSION OF THE UNIVERSE),

(ii) NONZERO FERMION MASSES,
AND (iii) PARAMETRIC RESONANCE

A. Curved spacetime

So far all our results have been for flat spacetime. In
order to include the efFects of the expansion of the Uni-
verse, we now generalize to curved spacetime:

S= d —g — 8„0 (9 0 g" + V'„I""

+iLV'„I'"L + 8„0QI' Qg"" —mgQQ
mI, LL + g—f (QL + LQ) —U(0)]. (4.1)

(3.6)

Our first caveat is with regard to energy conservation.
The initial energy density of the field 0 which creates the
baryons is ps(t;) f m 0; At the en. d some of this en-

ergy density has been converted to baryons, with energy
density p~(ty) ) n~E~ where n~ is the density of the
baryonic charge and E~ m is the characteristic energy
of the produced fermions. Clearly it must be true that
p~(ty) ( ps(t;). If we were to use Eq. (3.6) we would see
that this requires I' ( LOm. From the definition of I' we
see that this is satisfied for small values of coupling con-
stant g as long as LO is not too small; for extremely small
values of Lo, this relationship can never be satisfied.

Our second caveat is as follows: in making the iden-
tification ~n~~ = I'f2~0~, one is equating an operator
equation (2.11) with a vacuum-averaged equation (3.4).
Indeed we started. with the operator equation which in
our case looks like 0+ m 0 = n~/f Comparison w. ith
Eq. (3.4) gives the identification mentioned above. How-
ever, Eq. (3.4) is not an operator equation but obtained
by the vacuum averaging of the operator equation (2.11).
As we have seen the average value (n~) is not just I'f 0
but a more complicated expression (3.3). This issue
should be looked at further.

Note that in the case of the spontaneous syxnmetry
breaking without any explicit one, when U'(8) = 0, the

~ ~

operator equation of motion reads f 0 = n~ and An~ =
f 60 (as was mentioned previously). In this case the
characteristic energy of the produced fermions is 0 and

We will consider Friedmann-Robertson-Walker metrics
and work in conformal time, ds = a2(d~ —dx2). Since
g& ——a g», where g~ is the flat spacetime metric, by
making this conformal transformation in the Lagrangian
we can reduce the metric to the flat one. With this
transformation, we can use the ordinary Minkowski space
quantization for the fields and the usual Green's func-
tions. To simplify we redefine the fermion fields as
@ m @/as~ . Note that the matrices in curved space-
time I'~ are now transformed to normal Dirac matrices
p+. Then the action is

S = d x 2 a 0„08~0+i 0~p+ +iLO„p"L

+0„0Qp"Q —mgaQQ —mr, aLL

+gfa(QL + LQ) —a U(0)], (4.2)

where the summations are now done using g„. With
this action the equations of motion are

f'0„(a'8"0) + B„(Qp"Q) + U'(0)a = 0,

iB„p"Q+8~0p" Q —mgaQ = gfaL, —

(4 3)

(4 4)

and

i B„p"L —ml, aL = gfaQ—(4.5)

For the case mq = mL, ——0, we know the fermion Green's
functions [for nonzero masses there is the complication
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that ma(7) is time dependent]. In the massless case we
can repeat the derivation done in flat spacetime previ-
ously and Bnd that the semiclassical equation of motion
for the Goldstone Beld is

(~.( '~"0) + U'(0) '/f')
ip" B„Q+ 0„0p"Q —myQ + gfL = 0 (4.7a)

and

the Lagrangian in Eq. (2.7) we add terms —mgQQ—
mL, LL T. he equations of motion (2.9) are modified to

4g2
a(r) d~' sin(2~~') a(r + ~') iB„(Qp") —B„OQp" + mgQ —gfL = 0. (4.7b)

x sin[0(7. + 7.') —0(~)]. (4 6)

Of course, the lower limit of the 7' integral should really
be some initial time rather than —oo.

B. Nonzero fermion masses

Here we will consider the modifications to the flat
spacetime case when the fermion masses are nonzero. To

Equations (2.10) and (2.11) are unchanged. Again, we
wish to calculate Eq. (2.17), and,
again, (L(z)Gg(z, y)L(y)) is given by Eq. (A2). This
time we keep the masses mq and ml, nonzero. After
we perform the f d y integration, there is a term inside
the remaining integrals: (t p —mgml, )/(l —m&)
(EiE„—12 —mgml, )/(E& —1 —m&). There are poles

at E& ——+ 1 + m. Again, only the E& & 0 part gives

a nonzero contribution. Our result is

2
'D20+ U'(0)/f = —— d & dt' sin[(E„+ E~)t'] sin[0(t + t') —0(t)]

E)Ep + 1 + mgmL,

2EpE)
(4.8)

Here E& ——I + m& and E = I + ml. Equation (4.8)
reduces to Eq. (2.21) when mg = ml, = 0.

For the case of 0 = const (case I considered above),
we can see that only particles with masses mi + m2 (
0 can be produced in perturbation theory, according to
Eq. (4.8). If we do the t' integration in the 0 = const case,
we get h(0 —Ei —E2). For 0 ( mi + m2 this can never

~ ~

be satisfied, there is no particle production, and 0 = 0
exactly. For 0 ) mi+m2, this b function can be satisfied
for some momentum, and particles are produced.

The question remains what happens if one looks be-
yond perturbation theory, particularly in an expanding
Universe. In the case of e+e production by a slowly
varying electric Beld, a nonperturbative contribution to
particle production exists for the case where the oscilla-
tion frequency w is less than the electron mass m; the
result is that the production is exponentially suppressed
(the effect oc exp[ —const x (m, /cu)]) but nonzero. Al-
though we have not found such contributions here, they
may exist (see also [3]).

C. Parametric resonance

Recently Kofman, Linde, and Starobinski [7] (see also
the work of Shtanov, Traschen, and Brandenberger) [8]
noticed that parametric resonance may greatly enhance
the production of bosons during reheating in inflation;
one can interpret this as the formation of a Bose conden-
sate. In this paper we have been primarily considering
the production of fermions, for which there is no para-
metric resonance. However, we should also consider the
production of 0 bosons themselves by the classical 0 field.

We will consider particle production during the reheat-
ing phase of natural inflation. As our potential for the
PNGB field we take U(0) = A4(1 —cos 0). Then the mass

of the PNGB field is m, = A /f For n.atural inflation,
f mp~ and A 10 GeV, so that m 10 GeV.
We will neglect coupling to fermions in our study of the
possibility of resonance, and include only coupling of the
field to itself. At Brst, we will neglect expansion of the
Universe and see that parametric resonance does indeed
exist for a few particular choices of wave number. Then
we will include expansion and argue why we believe that
the resonance disappears. We have not performed a com-
plete analysis of the equation in the case of expansion,
but for the case of natural inflation the arguments are
quite robust. We suspect that the disappearance of the
resonance in an expanding Universe may happen in other
cases as well. We leave investigation of this effect in other
cases to future work.

In flat spacetime, the equation of motion for the PNGB
is then 0+ U'(0)/f = 0. For our choice of potential, this
becomes 0+ m sin0 = 0. For small oscillations about
0 = 0, we find the solution to this simple equation to be

Op (t) = 0; sin mt. (4 9)

U' = A sin(0p + 60) = A [sin Op cos(60) + sin(80) cos Op]

= A [sin Op + b0 cos Op]

in the small-angle approximation. To Brst order in b0,
after performing a Fourier transform and subtracting the
zeroth-order piece, the equation of motion for b0 is then

hO+ [k + cosOpm ] b0 = 0. (4.10)

Expanding around Op
——0 and using Eq. (4.9), we have

Here, subscript i refers to initial value of the unperturbed
solution. Following the approach of [7,8], we will now add
fluctuations 0 = 00+ b0. We will keep terms to first order
in b0. Then
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b0+
~

k +m — 0, sin mt ~80=0. (4.11)
is matter dominated and we take a oc t ~ (of course af-
ter reheating the Universe is radiation dominated). With
this matter-dominated expansion, Eq. (4.15) becomes

We define y = 2mt and write sin mt = (1 —cos 2mt)/2.
Equation (4.11) can then be written

d2 k 1 1 2 1
b0+ 80 + ———0; + —0; cosy = 0. (4.12)

dy 4m2 4 16 ' 16

The standard form of the Mathieu equation is

d z + (A+ 2e cosy)z = 0.
dy

(4.ia)

0; sin(mt + b)
0p t

mt
(4.i4)

The factor of 1/t in the denominator will prove to be an
important feature of the expansion. We assumed here
that the 0 field started to oscillate when the Hubble pa-
rameter, H = 2/3t, was close to the value of the mass of
the field m, as is usually the case for inflation. It fixes
the initial value of time, t, 1/m.

This time we take y = mt. The equation for the fluc-
tuations becomes

Our flat spacetime equation (4.12) is of the form of
the Mathieu equation with A = ——0; /16+ k /4m and
2e = 0,. /16. Since we made the small-angle approxima-
tion earlier on, we have assumed 0; & 1, i.e., ~ && A & 1.
The Mathieu equation has been studied in great depth.
It is known that for A =

4 + Air and e « 1, there is no
instability if ~Aq~ & 1. (In our case ~Aq~ = 2 for k = 0.)
Therefore, for k = 0, there is no instability. However, for
particular values of nonzero k (values for which A n /4
where n is an integer) there are indeed regions of reso-
nance with b0 growing exponentially in time. We refer
the reader to literature on the Mathieu equation to see
these regions.

However, now let us include the expansion of the Uni-
verse. To simplify we will neglect here the interaction
with fermions. Without fermions it is convenient to
work in terms of the physical time t with the interval
ds2 = dt2 —a2(t)dr . The relevant change from the
nonexpanding case will not only be the additional term
3H0 in the equation of motion; rather the important fea-
tures are (i) the redshifting of the length scales of the
perturbations (k ~ k/a) and (ii) the fact that the un-
perturbed solution 00 is now different. The equation of
motion (again, neglecting the fermion efFects) becomes
0 + 3H0 + U'(0)/f = 0. For our choice of potential,
this equation becomes 0+ 3H0+ m sin 0 = 0. Again, we
take the small-angle approximation sin0 0. The un-
perturbed solution for the matter-dominated expansion
is

,h0+
dy

k 0,. sin y h0=0.
m2Q2 2 y2

(4.16)

As before, we use sin y = [1 —cos(2y)]/2 to write the
equation in the form closest to the Mathieu equation.
This time it is not exactly the Mathieu equation because
of the time dependence in the denominator of k /a and
because of the factor of 1/y that came from Eq. (4.14).

We have numerically integrated Eq. (4.12) without
Universe expansion and Eq. (4.15) with the expansion
to see what happens to the resonance. As we expected
the solutions of Eq. (4.12) show the resonance behavior
for a particular region of parameters while solutions of
Eq. (4.16) do not resonate. The resonance might be ex-
cited if the oscillations of 0 began when H 1/t; (( m
(not what usually happens in inflation). We did not per-
form a numerical study of the entire range of parameter
space, and in principle could have missed the particular
choices of k/a that do resonate. Hence we proceed here
with a simple analytic discussion.

One can see from simple analytic arguments that
Eq. (4.16) is unlikely to lead to resonance. When one
includes expansion, there are two effects that reduce
the instability. First, the redshift of the wave number,
k ~ k/a, quickly moves any wave number that hap-
pens to be in a resonance band, out of the resonance
region. In other words, if at one time there is an insta-
bility on some length scale, shortly afterwards this length
scale has redshifted to a value for which there is no in-
stability. Thus it is difFicult to see how there could be
exponential increase in particle production (numerically
we could get factors of a few, not of 10 ). Second, in
the long-time limit, y )) 1, both the first and third terms
inside the brackets become small. Then Eq. (4.16) is sim-

ply a harmonic-oscillator equation with oscillating rather
than unstable solutions. The last term, whose negative
sign could make it responsible for resonance, becomes
unimportant for times t & 0, /2m. Since the frequency of
oscillations m is usually faster than the frequencies cor-
responding to other relevant time scales, such as the time
scale of reheating in inflation, the last term quickly be-
comes unimportant. There may be enhancement in the
first oscillation or two, but it is probably not very large
(as above, this assumes that the oscillations began when
H m, i.e. , y 1). Instead the solutions quickly be-
come oscillatory, with amplitudes at most slightly larger
than those in the nonexpanding case. Again, we have not
performed a complete analysis of Eq. (4.16), but we have
argued why we believe the resonance effects are not very
strong here.

d 3Hd
,b0+ —h0+

dy m dy , , +1 ——0,', 80=0.
m Q 2 y

(4.15)

V. BARYOGENESIS IN NATURAL INFLATION

To eliminate the b0 term we define 0(t) = 0(t)/as~2.
During the reheating portion of inflation, the Universe

The inflationary Universe model [1]provides an elegant
means of solving several cosmological problems, includ-
ing the horizon problem, the flatness problem, and the
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monopole problem. In addition, quantum fluctuations
produced during the inflationary epoch may provide the
initial conditions required for the formation of structure
in the Universe. During the inflationary epoch, the en-
ergy density of the Universe is dominated by a (nearly
constant) vacuum energy term p = p„„and the scale
factor R of the Universe expands superluminally (i.e.,

R & 0). If the time interval of accelerated expansion
satisfies At & 60R/R, a small causally connected region
of the Universe grows sufIiciently to explain the observed
homogeneity and isotropy of the Universe, to dilute any
overdensity of magnetic monopoles, and to flatten the
spatial hypersurfaces (i.e., 0 ~ 1).

The model of natural inflation [2] was proposed to pro-
vide a natural explanation of the required flatness of the
potential in inflation. The flatness is achieved by mim-
icking the axion physics described earlier. The inflaton
is a PNGB field and two different mass scales describe
the height and width of the potential. The model has
several nice features, including the possibility of extra
large-scale power in the density fluctuations, negligible
production of gravitational waves, and possible tie-ins to
particle physics models under consideration.

Here we want to consider an idea for baryogenesis dur-
ing natural inflation. More standard ideas such as (a)
reheating to above the baryogenesis temperature (e.g. ,
electroweak) or (b) baryon-violating decays have already
been considered [2]. Instead, here we consider a model of
baryogenesis in which the baryon number is produced as
the inflaton is rolling down its potential. In this paper
we will merely suggest the idea, and leave study of the
implementation of the idea for future work.

For this particular idea to work, the inflaton would
have to carry baryon number. If the inflaton rolls clock-
wise down the hump in the Mexican hat, then baryons
are produced; if the inflaton rolls counterclockwise down
the hump, then antibaryons are produced. In different
regions of the Universe, there will be these two different
kinds of behavior. Any one region will be blown up to
become very large by the inflation. Thus our observable
Universe, which lies inside one of these regions, had a
50-50 chance of being made primarily of baryons or of
antibaryons. CP violation is not explicitly required in
the Lagrangian, as the sign of the baryon number is de-
termined by the initial conditions, namely the direction
of the roll of the field. These ideas are very similar to
those of the authors of [5,6].

The reheating temperature in this scenario could
be very low. In particular, if Treheat C Te]ect;roweaky
sphalerons do not erase any baryon asymmetry gener-
ated during inflation. Of course, we also need to re-
turn to the standard evolution of the Universe at a high
enough temperature for nucleosynthesis; i.e. , T, h, t
T ] y t;h ', . It may be a nice feature to have a very
low reheating temperature, as many inflationary models
are very constrained by the requirement of a high reheat
temperature.

In order for this to work, the 4 field must carry a
baryon number. The current that is explicitly broken
by instantons or by whatever else provides the tilt (the
cosine potential) cannot be orthogonal to baryon number.

In that case the baryon number of the C field will be
proportional to the angular momentum as the inflaton
rolls down: one direction of roll will correspond to baryon
production and the other to antibaryon production. The
baryon current carried by the 4' field is J" = i[C B~C *—
C'*ct"C']. Since (4) = fe's, the baryon number density

(n~) = (Jo) = f20, namely the angular momentum of
the two-dimensional mechanical motion of the 4' field in
the plane (Re@,Im@). As an example, in the Lagrangian
in Eq. (2.7), we have considered a symmetry whereby 4
and Q transform whereas L does not. Thus 4 and Q
could carry baryon number while L does not. Q and L
would not be ordinary quarks and leptons; rather they
would be hidden sector particles that could be made to
couple to quarks and leptons in such a way that Q carries
baryon number while L does not.

There are many constraints that such a model must
satisfy. One must be careful about the quantum num-
bers carried by the various fields: namely SU(3) color,
the gauge group that became strong at scale A and pro-
duced the cosine potential in the first place, and baryon
number. One must also ensure that the present day vio-
lation of baryon number predicted for ordinary matter is
not in excess of observations. Also, we do not want the
only decay mode to be to baryonic matter of our Uni-
verse. Somehow there must be nonbaryonic decay modes
or decays to baryons that remain in the hidden sector.
Simultaneously satisfying all these constraints is difIicult.
However, we have by no means exhausted all the possi-
bilities, and leave this investigation to future work should
the idea prove promising enough. As indicated near the
end of Sec. III above, the calculation of the baryon num-
ber produced in such a model will be performed in future
work.

VI. CONCLUSIONS

As a Nambu-Goldstone boson 0 moves in a potential,
it can produce fermions that it couples to. A semiclas-
sical calculation of particle production was performed.
The back reaction of quantum fermions on the evolu-
tion of a classical 0 was calculated for a specific simple
model, to provide a general framework within which one
can calculate production of other particles as well. The
primary results of our calculations in flat spacetime are
Eqs. (2.21) and (2.22). Generalization to curved space-
time with massive fermions was discussed. We argued
that enhanced production of bosons due to parametric
resonance is probably not important here in an expand-
ing universe; a more general investigation of the effects
of expansion on resonance is warranted in the future. We
are especially interested in the model of natural inflation,
in which the inflaton is a pseudo-Nambu-Goldstone bo-
son. It may be possible for the inflaton to create baryon
asymmetry at the exit from inflation simultaneously with
the Universe reheating.
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APPENDIX A: CALCULATION OF SEMICLASSICAL EQUATION FOR 8 FIELD

We wish to calculate the right-hand side of Eq. (2.17). Using the quantization in Eq. (2.19), we find that

(L(z)Gg(z, y)L(y)) = ) ) " O'IGg(z, y)v'e '" ' e'"'"(d', d't)
I

3 m=), , 6„'Gg(z, y)v„'e (Al)

where the second equality follows since (d„",d„'t) = b„ib (p —p'). Using

d4l exp[ —il (z —y)]Gg(z, y) = i~

~(2z-)' I„p~ —mZ+ i~

and g, v„'6„' = (p„p" —ml, )/2mL„we find

(Ala)

d3 d4l
(L(z)Gq(z, y)L(y)) =

2
ei'i"+'~ i" ~'iTr[(l„p" + mq)(p„p" —mL)]. (A2)

In the massless limit considered in Sec. II, the trace becomes Tr[l„p„p"p"] = 4l . p and we have Eq. (2.20). The
calculation of (q(z)GL, (z, y)Q(y)) is similar.

Using Eq. (2.20), we now have terms on the right-hand side of Eq. (2.17) such as

= —ig d ye[i~(&) —i~(~)l
d4i

e[i(p —&)'(&—~)]g .p+ H c
(2vr) 7 Ep12

(A3)

where we have taken l ~ —l compared to previous expressions. We now write l" = (Ei, 1) and p" = (E„,p) so that
l .p = EiE„—1 p. Henceforth we will assume no spatial gradients in the 8 field; i.e., 8 = 8(t) only. We will now use
J' dsye~'~& i&'"j = (2n)shs(p —1) to write

2 dg [i8(t )—i8(t„)] d4/ d3p ElE[i(E„—E&)(t„—t )]g3 l & P + H
(2vr)4 E E2 —12 (A4)

We now do f dEi and find a nonzero contribution from the pole at Ei ———~1]. Note that we take the retarded Green's
function, which gives nonzero result only for t„(t . We have

OO tz
E2dE dg [2iEl (t& —t )] [i8(t )—i8(t&)] + H

2K 0
(A5)

Adding all terms of this form that contribute to the right-hand side of Eq. (2.17), relabeling Ei as u, and defining
t' = ty —t., we 6nd

(D 8+ V'(9)/f ) = — dew f dt'Bin(2wt') sin(8(t + t') —8(t)].
4 2 oo

7l 0 —OO

This is the result quoted in Eq. (2.21).
We can rewrite this in the form given in Eq. (2.22) if we now perform the u integration:

f
OO

dutu sin(2ut') = ——, dw sin 2wt'
0 4 Ot'2 0

0 1lim, , (cos 2v)t' —1)m-+~ gg'2

(A6)

Next we do the t' integral by parts. We will use the notation A6) = [0(t+ t ) —0(t)]. The nonvanishing contribution is
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1 0 1 ( . 1 . I 0 1 0
lim dt', —,(cos 2mt' —1) sin Ag = —— lim dt', —,(cos 2tut' —1),sin Ag

8 m-moo 8 ~~~ i9t

lim dt' —(cos 2tvt' —1) sin Zo,
8 ~~~ Ot'~ (A8)

where surface terms have all vanished. We now perform the derivative on sin 68. Then Eq. (A6) becomes

2

(& 0 + U'(8)/ f ) = —
z

lim dt', 0(t + t') cos 40 —0 (t + t') sin 40
'MP ~OO

(Ao)

This is the result quoted in Eq. (2.22)

APPENDIX B: CALCULATION OF MASS RENORMALIZATION TERM FOR THE CASE
OF SMALL OSCILLATIONS AROUND THE MINIMUM

To obtain Eq. (3.4), we must calculate the term

0 0 I
2 dt

/ I 2 dt I I Im&9o cos m~t, [1 —cos 2mt ] cos mRt = m&0o cos m~t, [cos m~t —cos nt + cos mlt —cos Pt ]2t'
0

= m&go cos m~t, [sin(m~ + tv)t' sin xvt'+ sin mt' sin(zv —m~)t'],

(Bl)
where o. = 2m + m~ and P = 2m —mR. After doing the integration, we find that this term is

m~80 (2w + m~1 (2m —mal
cos mRt n +ln

2 mR mR
(B2)

In the limit n —+ oo, this becomes

—m&oo cos m~t ln(2m/m~), (B3)

a logarithmically divergent term that renormalizes the mass.
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