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We describe how to consistently incorporate solar model uncertainties, along with experimental
errors and correlations, when analyzing solar neutrino data to derive con6dence limits on parameter
space for proposed solutions of the solar neutrino problem. Our work resolves ambiguities and
inconsistencies in the previous literature. As an application of our methods we calculate the masses
and mixing angles allowed by the current data for the proposed MSW solution using both Bayesian
and frequentist methods, allowing purely for solar model Bux variations, to compare with previous
work. We also show that solutions which simply suppress the B solar neutrino Sux are strongly
disfavored and have a likelihood ratio of at most 10 compared to the best MSW solution. Finally,
we consider the efFects of including metal difFusion in the solar models and also discuss implications
for future experiments.

PACS number(s): 96.60.Kx, 12.15.Ff, 14.60.Pq

I. INTRODUCTION

As more experimental information has become avail-
able and theorists have converged on "new-physics" ex-
planations [1—3,5—8] of the solar neutrino problem there
has been interest in incorporating the error budget of so-
lar models into analyses of the data. This has proceeded
in stages. Solar model flux uncertainties were first in-
corporated in [4]. The first effort to exploit them in a
quantitative comparison with data was [1], which how-
ever did not take experimental correlations into account.
Recently, a detailed analysis has been performed which
has largely resolved this problem by a correct accounting
for experimental correlations, as well as a careful exam-
ination of such eKects as Mikheyev-Smirnov-Wolfenstein
(MSW) [9] mixing in the Earth in order to derive allowed
regions of mass and mixing angle [10]. Nevertheless, the
general applicability of the approximations used there to
model solar model uncertainties is not obvious. In addi-
tion, the determination of confidence limits and allowed
regions of parameter space uses a nonstandard statistical
analysis.

Now that it appears that the gallium results are stable
and that no new significant experimental light is likely
to be shed on the problem until the gallium experiments
have been checked with neutrino sources (GALLEX is
scheduled for "calibration" in June 1994) or the next
generation of detectors comes on line in 3—4 years, there
is time to consider a comprehensive, consistent statis-
tical analysis, vis-a-vis neutrino-based solutions of the
solar neutrino problem. (Neutrino-, rather than solar-
model-, based solutions are now strongly indicated by

the present data, even without including the Homestake
results [6,8].) Such an analysis is the purpose of the
present paper. We shall demonstrate a technique which
treats known solar model uncertainties in a computation-
ally simple fashion, and then describe how to incorporate
the existing experimental information in order to derive
confidence limits on neutrino masses and mixing angles
which have a well-defined statistical meaning. In the ap-
proximation in which all solar model uncertainties can be
parametrized in terms of the neutrino flux uncertainties,
this technique yields allowed regions in parameter space
which can be compared with previous results.

The determination of allowed regions requires four dis-
tinct parts: (1) a calculation of solar model uncertainties,
(2) a model of neutrino transport and detection proba-
bilities, (3) a determination of experimental uncertainties
and correlations, and finally (4) a well-defined statistical
procedure for comparing predictions and observations.

The outline of the paper is as follows. We first describe
solar model uncertainties gleaned &om Monte Carlo stud-
ies of solar models. We demonstrate that the essential
information about this type of solar model uncertainty is
contained in the neutrino flux correlation matrix, which
can be calculated either directly using the solar mod-
els themselves, or else using a simple but well-defined
approximation. Next we demonstrate how to translate
these flux correlations into an experimental covariance
matrix necessary to incorporate properly the experimen-
tal error budget. Following this we describe, for both
MSW and vacuum oscillations, how one derives survival
probabilities following transport through the Sun and
Earth. Finally, we describe how to consistently derive
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allowed regions for neutrino parameter space using well-
defined statistical probes in a way which avoids problems
with past analyses, and discuss the meaning of our results
for future experiments and particle physics models.

It is worth emphasizing in advance that by outlining
a well-defined statistical procedure for comparing theory
and observation we do not necessarily subscribe to the
view that only statistical solar model uncertainties are
relevant, or even that they may be the most important
uncertainties. It is possible that systematic uncertain-
ties, due to the introduction of new physics into the solar
models, could shift the entire allowed range of model pa-
rameters determined by the methods we describe here.
As the standard solar model gets more complete, this
will be less likely. As an example we show that the inclu-
sion of new physics in the form of heavy metal difFusion
has a noticeable but small eKect on the allowed regions.
In any case our purpose here is to define a consistent and
correct procedure which may be applied as both the data
and the theoretical models improve.

II. SOLAR MODEL UNCERTAINTIES

Comprehensive estimates of the present solar model
uncertainties have been made by Bahcall and collabora-
tors [11,12], who performed detailed Monte Carlo anal-
yses of the neutrino fluxes that result when solar model
input parameters are varied over their allowed ranges.
Since calculating many full solar models can prove cum-
bersome in terms of computing time, it is useful to have a
reliable and eKcient approximation scheme which repro-
duces the results of such a calculation. Several schemes
have been proposed which account for the variation in
the total flux of neutrinos, which is in general the major
source of uncertainty (from solar physics) in the predic-
tion of the experimental rates.

Two different approaches have been applied to this
problem. The first involves simplifying the solar model
parameter space, an example of which we will call "the
T, approach" [13]. Here the fluxes are parametrized by
a single (solar model output) variable the core temper-
ature of the sun, T, . The temperature dependence of the
various fluxes are derived from the scatter plots of flux
vs T from solar-model Monte Carlo calculations. (See,
e.g. , Figs. 6.2 and 6.3 in Ref. [12].) Approximating the
temperature dependence of the fluxes by power laws in
T specifies the flux distributions, with the error in T
determined so as to give the appropriate uncertainties in
the fluxes.

While the scatter plots indicate that the relationship
between the neutrino flux and T can be approximately
described by a simple power law, this relationship is only
approximate, and there remains a significant width to
the straight line that would describe a perfect power-law
dependence. Because of this width, these plots do not in-
dicate how the various fluxes are correlated. For example,
a solar model with a high T may correspond to an in-
creased pp flux, but little or no corresponding decrease in
the B flux. The T method, based on only one param-
eter, of course produces totally (anti)correlated uncer-

tainties for the neutrino fluxes while the solar model flux
uncertainties exhibit a wide range of correlations. The
differences in the correlations for the T parametrization
and the full solar-model Monte Carlo calculation are a re-
flection of the scatter in the plots of [12]. By overestimat-
ing the correlations, the T approach tends to underesti-
mate the size of the allowed parameter region for a given
confidence level. We note also that the T method fails
completely for the "maximum rate model" of Bahcall and
Pinsonneault [16]. Thus while a T, parametrization can
be a useful tool in some instances, and gives physical in-
sight into the basic mechanism of the flux distributions,
it is not appropriate for calculating solar model uncer-
tainties [2]. We note that above we have discussed the
simplest application of the T "model, " and these criti-
cisms are not meant to apply to [13]. The relevance of
extra degrees of freedom beyond T, was noted in [13],
who included the eÃect of nuclear cross section uncer-
tainties. Unfortunately a detailed examination of their
results is not possible since there is no specification of
how this was done.

An updated version of this method [10] includes not
only T but also cross section uncertainties in the form
of two extra parameters, chosen from among the (nu-
clear cross section) input parameters to the solar mod-
els. This allows this method to be tuned to approximate
more closely the full solar model correlations [10]. Any
method which reproduces the flux correlation matrix can
correctly include the solar model errors, so this updated
method and the "power-law method" (described below)
should agree on the statistical content of the solar model
uncertainty. However, the applicability of this method,
including the determination of which combination works,
and which T uncertainty to use can only strictly be de-
termined after the fact by explicitly utilizing the detailed
results of the full solar-model Monte Carlo calculations.

An alternative approach, proposed earlier [1],
parametrizes the solar model uncertainties in terms of
the logarithmic derivatives of the fluxes with respect to
the 10 solar-model input parameters. It was shown in [12]
that for reasonable variations in the input parameters the
neutrino fluxes P can be expressed as

where nz y is the logarithmic partial derivative of Pz (j =
pp, pep, hep, Be, B, N, 0, and ~~F) with respect to
the input parameter I'k. The solar model flux uncertain-
ties can thereafter be obtained &om a Monte Carlo pro-
cedure assuming Gaussian distributions for the input pa-
rameters, as described in more detail in [1]. This method
has a firm basis in describing the errors in the output
function (solar model fluxes) in terms of the errors in the
input parameters, and the o~ & are readily available [12].
We shall refer to this as "the power-law approach. "

From a Monte Carlo analysis using this approach, we
obtain an estimate of the theoretical uncertainties in the
predicted fluxes for each species. This allows us to deter-
mine the correlations between the various Quxes, which
will be important for computing correlations between the
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TABLE I. The experiment and flux correlations (x100)
computed using the 1000 solar models of Bahcall and Ulrich.

H K Ga
H 100 99 97
K 99 100 95
Ga 97 95 100

pp pep hep "Be B ' N 0 F

PP
pep
hep
Be
sB
13N
15O
17F

100 77 16
77 100 28
16 28 100

—91 —69 5
—72 —50 —15
—88 —73 —46
—88 —71 —45
—88 —72 —45

—91 —72
—69 —50

5 —15
100 74
74 100
80 73
80 73
80 73

—88 —88 —88
—73 —71 —72
—46 —45 —45
80 80 80
73 73 73
100 99 99
99 100 99
99 99 100

rates predicted for different detectors. The elements of
the covariance matrix for the various fluxes (P~) are given

by [14]

where 0~ = gV~~ is the standard deviation in P~. . Note
that in the correlation matrix the diagonal elements are 1
by definition and off-diagonal elements are equal to (—)1
in the limit of perfect (anti)correlation.

It is important to note that the partial derivatives in

(1) were determined via the solar model with fixed solar
luminosity. Even though the power law approach does
not explicitly enforce such a constraint, the use of the re-
lation (1) will result in a covariance matrix equal to that
from the fully self-consistent solar-model Monte Carlo
calculations. This was implicitly exploited in our previ-
ous work [1,15] and is explicitly demonstrated in Tables I
and II which compare the covariance matrices for the two
approaches. The agreement between our Monte Carlo

where the angular brackets indicate an average over the
solar models and P = (P). To display the correlations we
present the correlation matrix, whose elements are given
by

V~A:
Pjk =

O&OA

calculation and the 1000 models of Bahcall and Ulrich
is good, as one would expect, except for the hep neutri-
nos. Since the hep and F contribute negligibly to the
rate in all the detectors this is not of concern. The flux
correlation matrix for the T approach has all elements
equal to +1 since there is perfect correlation i.e. , all the
fluxes depend on one parameter. This is relaxed in the
updated approach including the cross section uncertain-
ties [10] which it is claimed also reproduces Table I.

As we shall discuss later, at least as far as flux uncer-
tainties are concerned, the relevant statistical content of
the full solar-model Monte Carlo calculation is contained
in the covariance matrix V;~. Our method is designed to
reproduce this matrix based on the matrix of flux deriva-
tives, while the updated T approach reproduces this ma-
trix by a posteriori construction. Nevertheless, once the
matrix Vz is obtained &om the solar models, this alone
is sufhcient, and there is no need for either approxima-
tion. For this reason, this quantity is as important to
extract from solar model calculations as are logarithmic
flux derivatives o.z A, , and we suggest that future work on
solar model calculations include the results for V;~ explic-
itly.

In our Bts, to be described later, we use the updated
Huxes from the Bahcall and Pinsonneault solar model [16]
which incorporates Helium diffusion and new equation of
state and opacity calculations. Although a full Monte
Carlo treatment of the flux uncertainties has not been
performed for this model we have updated the correlation
matrix shown in Table II to incorporate the errors on the
input parameters as given in [16]. This does not include
the uncertainty in the fluxes from variations in diffusion,
but is the best use of currently ava'ilable information.

III. EXPERIMENTAL RATE UNCERTAINTIES

The central quantity to use in determining how well
model predictions agree with the observed rates will be
the rate covariance matrix. When solar model uncertain-
ties can be completely parametrized in terms of the flux
covariance matrix, the covariance matrix for the rates
can be calculated directly from that for the fluxes. In
this case, for any theoretical model the predicted rate in

TABLE II. The experiment and flux correlations (x100) computed using the power-law Monte
Carlo approach.

H
K
Ga
PP
pep
hep
Be
SB

N
15O
17F

H
100
99
95

K
99
100
92

Ga
95
92
100

PP

100
77
8

—90
—74
—88
—88
—88

pep

77
100
12

—70
—53
—71
—69
—71

hep

8
12
100

2
—6
—21
—20
—21

Be

—90
—70

2
100
75
77
77
80

sB

—74
—53
—6
75
100
73
73
75

—88
—71
—21
77
73
100
100
97

15O

—88
—69
—20
77
73
100
100
96

17F

—88
—71
—21
80
75
97
96
100
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the detector B (a = H, K, Ga) is a linear combination
of the fluxes P~ with coefficients functions of the theory
parameters [see Eq. (23)]. If we write B = r zP~ with
r z

——r ~ (Am, sin 20) then it is straightforward to show
that

+ab +aj ~bk +jk
jk

(4)

It is important to note that at this stage experimental un-
certainties, including those from detection cross section
uncertainties have not been introduced.

The correlation matrices for both the Huxes and the ex-
periments (assuming standard model interactions for the
neutrinos) are shown in Tables I and II for the Bahcall
and Ulrich standard solar model(s) [ll] and our power-
law approach. Note that the experimental rates are al-
most perfectly correlated (a fact which was ignored in
our earlier work [1]). The correlation between experi-
ments can decrease once neutrino mixing is allowed. For
example the correlations can be as low as 25%%uo for
(Am, sin 20) in the small-angle allowed region (see Fig.
2), however generally the correlation is above 80%. It
is initially surprising that the rates for Homestake and
Kamiokande, which measure principally B neutrinos,
should be (strongly) positively correlated with gallium,
which measures principally pp neutrinos, when B and
pp neutrinos are strongly anticorrelatedJ' The resolution
of this apparent paradox is that while the major contri-
bution to the gallium rate is due to pp neutrinos, the B
and Be neutrino Huxes are much more uncertain and
are the principal contribution to the uncertainty in the
gallium rate. For gallium

IV. NEUTRINO TRANSPORT

In order to determine the experimental rate matrix de-
scribed above, we must utilize analytic or numerical tech-
niques to propagate neutrinos through the Sun, empty
space, and the Earth in order to determine survival prob-
abilities and resulting Aux modulations. The methods
used differ, depending upon whether one is interested in
the region of mass and mixing angle space where MSW
oscillations or vacuum oscillations are important.

BG~ ——71pp + 34 Be + 14 B
+ . SNU(solar neutrino units).

The relative errors of the pp, Be, and B fluxes are 2%,
5%, and 15%, respectively. Clearly the uncertainty in
Be and B dominates the solar model induced uncer-

tainty in the gallium rate. (Note once again that at this
stage detector cross section uncertainties have not yet
been introduced. )

[17]. In this case the details of the production in the sun
are unimportant, and we need keep track only of total
flux variations. The survival probability is [12]

P(v, -+ v, ) = 1 —sin 20sin 2 vrL

Lv (6)

with Lv. = 4mE/Em . Additionally one can average this
survival probability over the change in the Earth-Sun dis-
tance during times comparable with the average duration
of an experimental "run. " We find our conclusions do not
depend on the averaging.

Performing a fit to the current experimental data (as
described later) we find a small region in parameter space
which is allowed at the 95%%uo confidence level. This re-
gion agrees in general with those found by other authors
[19,18], who have explored this theory in detail, and we
will have nothing further to say about it.

B. MSW oscillations

(~ 2l &. '201
2E ) ( cos20

~

where N, (r) is the electron density profile in the Sun.
The electron density at resonance is given by

Perhaps the most promising neutrino mixing solution
to the solar neutrino problem is the Mikheyev-Smirnov-
Wolfenstein (MSW), or matter-enhanced mixing, model
[9,12]. In this section we give details of our approxima-
tions and modeling of this effect in relation to computing
the predicted rates in the Homestake [20], Kamiokande
[21], and gallium [22,23] neutrino experiments.

To compute the rate predicted by a model for any de-
tector we need information about the neutrino produc-
tion in the Sun. We use the Hux distributions over the
production regions dP, (r) and the electron number den-
sity as a function of solar radius, N, (r), from [12] and
the scale heights at resonance ro tabulated in [24] for use
with their analytic approximations. We have explicitly
checked that using ro = N;"/~dN, /dr~„, from the Bah-
call and Pinsonneault standard solar model [16] produces
the same results. Additionally we assume that the energy
spectrum of neutrinos at each r is as described in [12].
We have fitted the spectra for all species as a polynomial
times the relevant P-decay spectrum (correcting the ty-
pographical error in Eq. 8.15 of [12]). These values are
then input into the analytic expressions for the v, sur-
vival probability [24] (see also [25]), as outlined in our
previous work [15] and summarized below.

If the neutrino passes through a resonance on its way
through the Sun then we define

A. Vacuum oscillations

In addition to the MSW model, there exists the possi-
bility that the observed deficit of neutrinos could be due
to oscillations in vacua between the Sun and the Earth

We correct a programming error in our earlier work in which

ro was incorrectly read from the table.
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Sm'l (.o.20

In terms of np we classify the transition as either adia-
batic (4np )) 1) or nonadiabatic (4np ( 1).

I et N be the electron density at the point of v pro-(p)

duction, then for neutrinos in the adiabatic region, or
those in the nonadiabatic region with ¹"& N, /(1 +
tan20) the analytic expression for the v, survival proba-
bility is given by [24]

R/Rg
0.0000-0.1910
0.1910—0.5471
0.5471—0.8948
0.8948—0.9341
0.9341—1.0000

P
12.858
11.024
4.964
3.923
2.292

(+2GpN, )
4.87
4.18
1.88
1.49
0.87

TABLE III. The model Earth that we used in calculating
the regeneration efFect. Densities in column 2 are given in
g/cm and the final column is in 10 eV /MeV, assuming
n„=n for the Earth interior.

1 /1+e i 1 e
P(v, —+ v, ) = —+

[2 I 1 —e ) 2 1+e
x cos20~cos20)

where

Am2
x —2&pp 2E ' (io)

"night") and fit to the data in many bins2 we choose
to use a number which summarizes that no effect is ac-
tually seen. (This makes our result less sensitive to the
detailed statistics of the full day-night data. In any case,
as we later display, incorporating day-night effects has a
minimal effect at present on the allowed regions. ) Con-
sequently we use the quoted measurement of [21]

y = 27rnp(l —tan 0),

cos20~ = (1 —g)/ (1 —n)2 + tan220, (12)
day + night

year

(i6)

e / e

For neutrinos in the nonadiabatic region produced near
resonance, N, /(1 + tan20) (N;" ( N, /(1 —tan20),
the corresponding expression for the survival probability
1S

1
P(v, -+ v, ) = —[1+exp( —7rnp)],

2
(14)

while for nonadiabatic transitions with ¹") N, /(1—
tan20) or adiabatic transitions with ¹") N( we use

1 1
P(v, ~ v, ) = —+ —cos20 cos20.

2 2

We have also included in our analysis the efFects of double
resonances in the Sun, see [15].

C. Earth efFects

It has long been known [26] that for Am near
10 eV and large sin 20 it is possible to "regenerate"
v by having neutrinos pass through the Earth. The sur-
vival probability P(v, ~ v, ) is very sensitive to the path
length of the neutrinos in the Earth, and so neutrinos
with parameters in this range should give rise to day-
night and seasonal variations in the observed fiux. Since
no such effect has been seen [21] this serves to rule out
a region of parameter space near Am2 10 eV and
sin 20 0.2.

We follow [27] in including this "Earth effect" in our
fits, though our treatment differs from theirs. Rather
than keep track of the predicted dependence of P(v, -+
v, ) on the path length (which changes during the

PE = PMsw[a[ + (1 —PMsw) [b[

+
[

——PMsw
~

tan20(ab* + ba*)
)

(17)

where a and 6 are elements of the unitary matrix which

We note in passing that the binned data of [21] for the day-
night; efFect has a very low y per degree of freedom, which
may indicate correlated (systematic) uncertainties in this data
set. While it is not impossible that d.ata with such small
scatter could arise as a statistical fluctuation, in any case
such a low y will bias a fit in which these points form most
of the degrees of freedom. This is one reason why we utilize
the method described above.

which is independent of the solar model Aux uncertain-
ties. (This was obtained for thresholds of both 7.5 MeV
and 9.3 MeV as the experiment lowered its threshold.
Since there was no evidence of an efFect at either thresh-
old we use the lower, i.e. , 7.5 MeV in our analysis. ) Since
this quantity does not depend on the neutrino Aux we
simply add the y from this fit to the y obtained &om
fitting to the time average rates as will be described later.
(Correlations between the two measures will not be ex-
pected to alter substantively our results since the data
shows no evidence for variations in any case. ) The effect
will be to rule out a region of parameter space where a
large day-night effect would be predicted.

To predict the left-hand side (LHS) of (16) we follow
[27,28]. Since only the integrated electron density along
the line of sight matters for the average P(v, ~ v, ) we
model the Earth as five concentric shells of constant elec-
tron density N„which we have taken from the models
of [29] and listed in Table III. Including the Earth effect
the survival probability of a v, which has MSW survival
probability PMsw is given by [27,28]
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. d t'v, i
dt ( vx p

&a ~. ~m'
cos20 o.s

)
Am' . &v, )

sin20 O.i4E I v*)

where 0; are the Pauli matrices. We solve this using the
identity exp[ia o'] = costa~1+ isin~a~(a. a) to yield

describes the evolution of neutrinos through the Earth:

t' .(t) )
(t) )

Once we have solved for this matrix for an arbitrary shell
of our model Earth we can obtain the full matrix by
multiplication of the evolution matrices for each shell in
the appropriate order (entering and leaving). Thus the
problem reduces to calculating a and b for propagation
through a shell of constant N, . Dropping a constant
energy o8'set from v and v, which contributes only an
irrelevant overall phase, the evolution equation is

is totally de6ned by giving the angle Oo subtended at
the center of the Earth by the point of entry of the v
beam and the detector. In the limit that the Earth-Sun
distance is much larger than the Earth's radius we have
that

f~ —e.~
cos I

= sinbsini + cosbcosicos(P + m) (22)

where P is the azimuthal angle between the Sun and the
detector as measured &om the center of the Earth, b is
the detector latitude, and i = 23 .5sin(aIot) is the incli-
nation of the ecliptic to the Earth's equator. Averaging
over P and not we obtain the distributions for oo, with
which we can then determine the v survival probability
averaged over night-year. For a given mass and mixing
angle, we compare this value with the RHS of (16) in
determining the y fit to the data. The survival proba-
bility P(v, ~ v, ) including the Earth efFect is shown in
Fig. 1 for a parameter set which can be compared with
Fig. 3(b) of [28].

b = -ih, ,sin~h. ~,

(20)

with

(am2 . GFN,
sin20, 0,

~
4E

x path length (2i)

0.8

and h = 6/~h~. Although our model is relatively crude,
given that we are trying to Bt to the absence of an eKect
it is su%cient for our purposes.

The Anal task is then to integrate over the paths
through the Earth during the course of the night-year.
In our model Earth with spherical symmetry the path

D. Calculating the rates

Using the above and the formulas for PMS~ outlined in
the previous section we computed the survival probability
averaged over the night and the year. These probabilities
and the Huxes for each species, j, are then convolved with
the detector response D; (E ) [1,12,15,30,31] for neutrinos
of Bavor i and energy E„to get the predicted rate

R=) f ds P, IE )PIE ID, IE I
'U

(23)

for each model. We include the contributions from
j = pp(10), pep(1), Be(2), B(30), N(20), and O(20)
neutrinos, where the number in parentheses after each
species is the number of energies computed for each spec-
trum in the integration. The contribution &om hep and
i~F neutrinos are less than I/2% for all the experiments
and can be safely ignored. Our results for the iso-SNU
contours for the Homestake, Kamiokande, and. Gallium
experiments compare well with those in [10].

0
a5

0
n. o4

5 6 7 8
E/5m (MeV/eV )

FIG. 1. The survival probability P(v, -+ v ) including the
Earth effect for mixing angle sin 20 = 0.4. The dotted line is
the MSW probability without the Earth effect, the solid line
is the probability for a neutrino passing through the center
of the Earth, and the dot-dashed line shows the probability
averaged over the night-year.

V. DATA AND MODEL TESTING

We use the latest data for the time-averaged rate in
the Homestake [20], Kamiokande [21], SAGE [22], and
GALLEX [23] experiments. Since the theory predictions
for the SAGE and GALLEX experiments are identical
and the experimental values agree within errors, we have
combined the two rates (74 + 20 and 79 + 12 SNU for
SAGE and GALLEX, respectively) in our fit. We have
added the statistical and systematic errors in quadra-
ture, since they are independent. The assumption of a
Gaussian distribution for the systematic error is prob-
lematic because, by its very nature, the systematic error
has no statistical distribution. However, if we regard the
Gaussian as representing the state of our knowledge
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—:(R —R )V s (Rs —Rs), (24)

where B is the standard solar + neutrino-mixing model
rate prediction, the distribution of y 's defined by the
theory is a y distribution with 3 degrees of freedom (or
4 degrees of &eedom if we include the day-night mea-
surement). The statement that the theory is ruled out
at some confidence level is the claim that the y for the
measured triplet (quartet) lies in the large-y2 tail of the
distribution defined by the theory, i.e., that the measured
value is unlikely. If the data are within the 95% confi-
dence level of a given theory we say the theory parameters
are allowed at the 95% confidence level by the data.

Previous authors have generally implemented instead a
best fit procedure tha-t attempts to estimate the param-
eters Lm and sin 20 from the data and assign errors
to the inferred values. One takes the parameters which

about the systematic error then clearly a function which
penalizes large "errors" is more appropriate than a flat
distribution (which would correspond to maximal igno-
rance of the size of the systematic error). We have cho-
sen a Gaussian for simplicity. The three experimental
rates, as a fraction of the standard solar model predic-
tions, are shown in Table IV. In our analysis we have
added the cross section uncertainties [11] in quadrature
to the quoted errors. For gallium this ignores the energy
dependence of the uncertainty &om the resonance, but
this uncertainty affects primarily the B contribution to
the rate which is already small and which we expect to be
suppressed for the masses and mixing angles of interest
to us.

We have used two parametric methods: a g goodness-
of-fit procedure and a Bayesian likelihood analysis [14] to
compare the measured rates R + o (a=H, K,Ga) to the
rates predicted by the model (b,m, sin 20). Both meth-
ods rely on the assumption that the errors in the solar
model predictions are Gaussian under small variations
in the solar model input parameters, which appears to
be a good assumption [12]. For more discussion of the
methods we use see [14,32—34].

Including the solar model uncertainties, each set of
MSW parameters (Am, sin 20) defines a distribution of
rate triplets R . One can calculate the covariance ma-
trix V~+ for the triplets analogously to Eqs. (2) and (4).
To the theoretical solar model covariance, V &, we add
the experimental errors, o (when the quoted errors are
asymmetric we add upper and lower intervals in quadra-
ture to obtain cr ), to obtain the full covariance matrix:
Vs = V& +0 b~b Defini. ng [14]

minimize y as the central values, with an allowed range
given by the condition that y (Kin, sin 20) ( y2,„+v,
with v determined by the range of 0. desired and the num-
ber of parameters being estimated. Such an approach is
based on the maximum likelihood procedure under the
assumption that the correlation matrix is independent of
the parameters being estimated. (This assumption is ob-
viously not true for this case, but the errors introduced
turn out to be numerically small. ) This approach makes
the additional assumption that y2(Am2, sin 20) is well
approximated by a quadratic over the relevant range of
parameters. As can be seen in Fig. 2 this assumption is
clearly false over the range of (Am, sin 20) of interest.
It is important to realize that the statistical answers one
gets depend upon the questions one asks. This method
does not address the question of what regions of model
space are allowed by the data, but rather what regions
provide a best fit under the assumption that the model
is correct, for some set of parameters. The allowed re-
gion determined differs from that for the method outlined
above as it asks a different statistical question: not what
models are allowed by the data but what are the errors
on the best-fit Am and sin 20.

In addition, an approach for calculating allowed re-
gions has recently been advocated [10] which uses non-
standard definition of y . In comparing their method
to solar-model Monte Carlo calculations [11] the authors
define "y " in terms of the logarithm of the "average
probability" rather than computing V g for the Bahcall
and Ulrich solar models directly and using Eq. (24). The
distribution of this y will not be y, and will not take
into account correlations in the rates in a well-defined
way. To use consistently such a statistic, the correct dis-
tribution and confidence levels to be associated with it
would need to be calculated.

An alternative method, which is similar in spirit to the
best-fit approach, is to calculate the 2D likelihood func-

I I I I IIII I I I I I IIII I I I I I IIII I I I I I IIII—

1P

E&p '

Experiment
Homestake
Kamiokande
Gallium

Rate
0.32 + 0.03
0.51 + 0.07
0.59 + 0.08

TABLE IV. The experimental rates, normalized to the
standard solar model predictions, used in the fits. The
rates for SAGE and GALLEX have been combined and cross
section uncertainties for Homestake and Gallium have been
added, in quadrature, to the experimental errors.
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I IG. 2. Region of MSW mass-mixing angle space al-
lowed at the 95'Pp confidence level for the combined Home-
stake-Kamiokande-Gallium data including solar model uncer-
tainties from the X analysis (solid). Also plotted is the 95%
confidence region from the likelihood function analysis (dot-
ted) and the region obtained by requiring X ( X;„+v

(dashed) .
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tion C(b,m2, sin 28), again under the assumption that
the variations in model predictions (and the experimental
errors) are Gaussian. In this case the likelihood function
is defined as

1 18 oc exp X
QdetV

By use of Bayes' theorem, the conditional probability
for Dm and sin 20, given the experimental measure-
ments, is proportional to the likelihood function times
the a priori probability distribution for the MSW pa-
rameters [33] (for an alternative interpretation see [34]),
which is usually referred to as the posterior distribution.
If we assume, &om scaling arguments, that logarithmic
intervals in Lm and sin 20 are equally likely, before
any experiment is performed, then the posterior distri-
bution is simple proportional to the likelihood function
l:(log b,m2, log sin 28) .

To calculate the 95'%%uo confidence regions for b,m and
sin 28 we follow the method used in assigning regions for
Gaussian distributions (which 8 is not). Let us define a
region in parameter space

A(A)

=

1(logjam,

log sin

28)]8(logjam,

log sin 28) & A).

(26)
Then

Z(logjam, logsin 28)d(logjam )d(logsin 28)
A(A)

is a continuous, monotonic decreasing function of A,

and the 95% confidence region is given by A(A, ), where
I'(A, ) = 0.95I'(0). (We note that this method is some-
what arbitrary for multiply peaked likelihood functions
such as ours, but it is nonetheless well defined. ) This
confidence region is interpreted as the region that con-
tains, with 95% probability, the true values of b,m2 and
sin 20. Although the interpretation of the region is difer-
ent than that allowed by the y method, the two regions
are encouragingly similar. In the limit that the likeli-
hood function were Gaussian (y2 is a quadratic function
of Am2 and sin 28 and det V is constant) the regions
would be ellipses as in [10]. Thus the departure &om el-
liptical shape is an indication that the likelihood function
(see Fig. 3) is not simply Gaussian.

Note that the authors of [10] define a likelihood function as
a sum of Gaussians and redefine v above to give regions con-
sistent with this approximate likelihood function. While the
statistical meaning of this hybrid method is not immediately
clear, the final regions obtained are not much difFerent than
provided by more conventional statistical treatments.

C3

C3
1

L cocg ~ ~(mi ~ ~~)

FIG. 3. Likelihood function Z(logjam, logsin 28) for the
combined Homestake-Kamiokande-Gallium data.

VI. RESULTS

Our principal result, the 95'%%uo C.L. allowed regions in
MSW parameter space, based only on statistical uncer-
tainties in the present formulation of the standard solar
model, is shown in Fig. 2 for both the y2 and 8 meth-
ods. The regions shown are obtained by requiring that
y2 ( 9.49 (four DOF, for the three experimental rates
and the day-night measurement), including both the rate
and the day-night fits. We also show the region obtained
by requiring y ( y2;„+6.0 (2 parameters, b,m2, sin 28)
for comparison.

We see that there are two allowed regions, a large mix-
ing angle (adiabatic) region and a small mixing angle
(nonadiabatic) region. The small mixing angle region is
favored over the large mixing angle region, though both
are "allowed" at the 95% confidence level. Using the like-
lihood function we can ask what are the relative proba-
bilities of the large and small angle regions, e.g. , we find
P(sin 28 & 0.1) 0.3P(sin 28 ( 0.1) (see [10] for a
different way to ask this question).

We also performed a fit of the data to the Bahcall and
Pinsonneault standard solar model (BPSSM) [16],and to
"models" where the B fiux is a &ee parameter ("no new
physics" solutions). The likelihood function for the latter
set has a maximum at 0.28 of the BPSSM B Aux. The
corresponding y for this value is 37 (four DOF), while
the y2 for the BPSSM is 59 (four DOF). Both models
thus provide extremely poor fits to the data, the best
fitting low SB model being 10—8 times less likely than
the best fitting MSW solution!

One of the largest uncertainties in calculating the ex-
pected rates comes &om S~ y, the nuclear cross section
parameter for the reaction rBe(p, p) sB. This uncertainty
directly affects the Aux of B neutrinos, and is due to
both experimental uncertainties and the diKculty of ex-
trapolating the experimental results to the low energies
relevant in the solar interior. There is a significant dif-
ference between the cross sections inferred &om the two
experiments which have been performed at the lowest
energies, indicating some significant systematic error in
this parameter. The authors of Ref. [16] use a value for
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Flux
pp

pep
hep
Be
8B
13N
15O

70 Change
1$
2$
2 1.
5$
14$
4 $

24 $

TABLE V. The percentage change in the auxes for each
neutrino species in the Proffitt solar model arising from in-
cluding heavy element diffusion.

10 10 10 0 1 1

sin (28)

FIG. 4. Region of MSW mass-mixing angle space al-
lowed at the 9570 conMence level in the Bahcall and
Pinsonneault standard model for the combined Homes-
take-Kamiokande-Gallium data including normal solar model
uncertainties for y ( 9.49 (solid). Also plotted is the 95%
confidence region increasing the error on Si r to 21%%uo (dotted)
and the region obtained for Buxes approximating the effects
of metal diffusion (dashed, see text).

change in the allowed regions due to such modifications
of the solar model can be larger than indicated by the in-
clusion of the usual solar model uncertainties. Thus it is
prudent to realize that the presently allowed regions are
now only suggestive. Further solar model improvements
could change their shape, and position, although we do
not expect such changes to be large.

VII. FUTURE EXPERIMENTS

Sq 7 that is intermediate to these two results, with errors
which do not overlap the central values. This value and
its errors, which we have used in determining the corre-
lation matrix, may not properly reflect the uncertainty
in Sq 7. In order to explore the implications of a larger
estimate for the error in Si 7 in Fig. 4 we present the
allowed regions assuming as the error for Sq 7 the dif-
ference between the two central values of Refs. [35,36],
which corresponds to a 21%%uo uncertainty. As is expected
the allowed regions are correspondingly increased.

Recent refinements in solar models, i.e., including
heavy element diffusion, have changed the predicted neu-
trinos fluxes &om those of the Bahcall and Pinsonneault
model. As we have indicated, changes such as this, which
includes new physics rather than new numerical values
for the input parameters and their errors, can have a
large effect on the allowed regions. The situation with
respect to these new solar models is still not settled, and
the correlation matrix including parameters for the ef-
fects of heavy element and helium diffusion are not yet
available. Nevertheless, to estimate the magnitude of the
effect of such changes we have used a hybrid procedure
which uses neutrino fluxes including heavy element and
helium diffusion from [37,38], but our old correlation ma-
trix. Speci6cally we have arti6cially changed the fluxes
of the Bahcall and Pinsonneault model by percentages
equal to those shown in Table V but used the flux correla-
tion matrix &om Table II. While this method is not fully
consistent, and the fluxes used are preliminary, it should
approximate the main effects of these changes and illus-
trate the possible shift in the allowed regions that can be
expected for such models.

We display in Fig. 4 our result for the allowed range
of parameter space in this case. The change in the al-
lowed region reinforces our earlier remarks: the potential

At very large mixing angles we expect that the v sur-
vival probability will be roughly independent of energy so
that the spectrum of neutrinos seen would be unchanged.
but for the normalization. In the adiabatic region the
existence of a resonance implies a large suppression of
the v, survival probability while the converse is true in
the nonadiabatic region [12]. Hence we expect that for
(b,m2, sin 28) in the small mixing angle allowed region,
the lower energy pp and Be neutrinos, which have en-
ergies that correspond to the adiabatic regime, will be
preferentially depleted, while the higher energy B neu-
trinos have a higher survival probability due to nonadia-
batic level jumping. Two neutrino experiments currently
under construction, the Sudbury Neutrino Observatory
(SNO) and SuperKamiokande, may have the ability to
detect the distortion in the B neutrino energy spectrum
for small angle MSW solutions. For most of the small
angle region, SNO should be able to discern the spec-
tral distortion, while it is very unlikely that the minimal
shape distortion produced by MSW parameters in the
large angle region could be detected.

SNO of course can also measure the ratio of charged
current events to neutral current events, which provides
an indicator for v, oscillations into another active neu-
trino species. A ratio signi6cantly less than that ex-
pected for the SSM (i.e., the ratio of the electron neu-
trino charged current to neutral currents cross sections
[39,40]) would be a strong indication of MSW mixing.
However, the neutral current events are signaled by the
production of a free neutron, and the background for this
process can be problematic.

The improved statistics of SuperKamiokande, which
expects to see on the order of 8000 events per year
[41], can be used to examine more closely the effects of
v, regeneration through the Earth (see Sec. IVC). In
Fig. 5, we plot the contours for several values of (day-
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where the 0.213 is absent for oscillations into a sterile
neutrino. For the two currently allowed MSW parame-
ter regions, the predicted rates in Borexino are shown in
Fig. 6. A Borexino rate of less than 0.3 would provide not
only a striking confirmation of the solar neutrino prob-
lem, but also indicate the small mixing angle region of the
MSW solution, whereas rates between 0.5 and 0.8 would
point to the large mixing angle solutions. A detected rate
of about 0.35 of the standard solar model would not al-
low discrimination between the two solutions, but would.
nonetheless be further evidence in support of new neu-
trino physics. However note that after 1 yr of running
Borexino can at best measure the rate to 30%.

FIG. 5. The allowed region from the fit to the experimental
rates, plus the contours of (day-night)/(day+night) rate. The
contours are 1'%%uo (solid), 5% (dotted), 10%%uo (dashed), and 15%
(long-dashed). An average over the night and the year has
been assumed for these contours, and the model of the interior
of the Earth used was very simplistic.

night)/(day+night), superimposed upon the allowed re-
gions. Recall that our model for calculating the above
ratio automatically assumes an average of the year and
the entire night and uses a very crude model of the Earth.
An analysis using the methods of Sec. IV C on a more
realistic model of the Earth could be performed, however
Fig. 5 serves to show the potential for narrowing the al-
lowed regions if a positive day-night variation is seen. If
SuperKamiokande does find a signal for day-night varia-
tion then binning the data vs cos bs„„[cf.Eq. (22) with
bs„„=(Ho + m)/2] would provide more information than
our simple average.

An experiment sensitive to Be neutrinos can poten-
tially discriminate between the large and small mixing
angle solutions in addition to confirming the depletion of
the Be flux. The predicted rate for Borexino [42] as a
fraction of the standard solar model rate is [43]

Rn»,„,.„o——0.78P(v, ~ v, ; Be) + 0.213 (28)

L. i ~ . . i . J i J..

0.4 0.0 0.0
Hol. exino Hat. e / SSKI

FIG. 6. Predictions for the Borexino event rate as a frac-
tion of the standard solar model value. The histograms
show relative frequencies of predicted event rates in the large
(dashed) and small (solid) angle regions.

VIII. IMPLICATIONS FOR PARTICLE PHYSICS
MODELS

If future experiments confirm the deficit of electron
neutrinos indicated by the current data, we would have
the first (indirect) evidence of physics beyond the stan-
dard model: neutrino masses. Further solar neutrino
studies coupled with upcoming neutrino oscillation ex-
periments [44] are the current best hope of seeing neu-
trino masses in the cosmologically interesting range
Zm; = 3—30 eV. (The region of mass-mixing angle space
of interest for oscillations which may explain the deficit
of atmospheric muon neutrinos can be probed by several
proposed long baseline oscillation experiments [45].) The
mass-mixing angle parameters implied by the allowed re-
gions shown in Fig. 2, while not indicative of any par-
ticular particle physics models for neutrino masses, are
consistent with models which incorporate a seesaw mech-
anism. Many of these models can also accommodate the
observed deficit of the ratio of atmospheric v„/v, [46] and
in some cases also allow for the v to be cosmological hot
dark matter [47] or provide contributions to neutrinoless
double P decay at the level of m 1 eV [48].

There is significant literature in the particle physics
community on constructing models which go beyond the
standard model of electroweak interactions, and many of
these models have interesting implications for neutrino
properties. Here we discuss some classes of models which
are currently popular and which relate directly to the
solar neutrino problem.

Models in which the neutrino mixing angles are similar
to the CKM angles in the quark sector [49] now appear
to be disfavored by the data. A class of models based
on grand unification particle physics models and a see-
saw mechanism for neutrino masses [50] give masses and
mixings which can lie in the small angle region of Fig. 2

[51,52]. In some cases these models can also incorporate
solutions to the atmospheric neutrino deficit, provide the
hot dark matter component of currently popular mixed
dark matter models (on the order of 1—10 eV in neutrino
mass), and even accommodate a Majorana mass of 1—2
eV for neutrinoless double P decay [53]. In these models
the masses of the light neutrinos we see are a combina-
tion of the Dirac masses of the usual neutrinos plus new
right-handed neutrinos v~ which additionally have Ma-
jorana masses. The vR are placed in grand unified the-
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ory (GUT) gauge group multiplets along with the quarks
and leptons and get masses from the same Higgs bosons.
This relates the Dirac mass matrices of the neutrinos in
these models to those of the quarks and leptons. If fur-
ther "textures" are assumed for the heavy Majorana mass
matrix of the v~, one obtains predictions for the masses
and mixings of the observed light neutrinos, usually with
one free (overall mass) scale and a small number of group
theory factors. We note in passing that the presence of
(powers of) these group theory factors can significantly
alter the naive seesaw predictions.

Other models exist [54—57] which generate masses and
mixing angles in the large angle allowed region of 2. Such
models can allow for simultaneous solution of the solar
and atmospheric neutrinos [56] or link solar neutrinos
with double P-decay experiments [55] or both [58].

Some authors have considered a radiative mechanism
for the generation of neutrino masses, and found models
which can accommodate two of the three neutrino mass
solutions (solar neutrinos, atmospheric neutrino deficit,
dark matter) [59,60].

Further constraints on models for neutrino masses
which invoke oscillations into sterile neutrinos v, are ob-
tained by considering big-bang nucleosynthesis [61]. The
large angle region is excluded for v, -v, oscillations based
on present observations of the primordial He abundance.
This also eliminates v„-v, solutions to the atmospheric
v„deficit. Arguments derived from Supernova consider-
ations can also be used to constrain oscillations [62,63].
For sterile neutrinos the region of mass-mixing angle
space restricted by these arguments, while of interest for
sterile neutrinos as dark matter candidates, is not rele-
vant for solar neutrino oscillations [63].

IX. CONCLUSIONS

the SSM which suppress the B fIux are strongly disfa-
vored (at better than the 99.99'%%uo level). In considering
the implications of these figures, it is important to note
that systematic uncertainties remaining in both the so-
lar model calculations and input parameters can have an
eKect on the properties of the allowed regions, as shown
in Fig. 4. Nevertheless, as solar models improve, the
consistent statistical analysis we have defined here will
continue to gain in significance.

Future experiments have great promise for confirming
the solar neutrino problem and firmly establishing the
need for neutrino-based solutions. In particular we have
examined the potential of SuperKamiokande, SNO, and
Borexino to provide further constraints on the masses
and mixing angles of neutrinos in such models. If the
charged-to-neutral-current ratio measured by SNO indi-
cates the probability of neutrino oscillations, the pres-
ence (absence) of spectral distortion will further con-
strain the mixing parameters to the small (large) an-
gle regions. (While SNO is not capable of distinguish-
ing between large angle oscillations into sterile neutrinos
and solar model solutions, such oscillations have already
been ruled out by big-bang nucleosynthesis as mentioned
above [61].) Borexino also possesses the ability to dis-
tinguish between small and large angle MSW regions to
some extent. If the large angle solution turns out to be
favored, then SuperKamiokande should provide a sensi-
tive probe of the allowed mass and mixing through the
measurement of the day-night eKect.

Note added in proof The G.ALLEX Collaboration
mentioned in the text has now been performed success-
fully. The observed event rate was in good agreement
with the predicted event rate with a Cr source inserted
in the detector.

In this paper we have presented an updated analysis of
the implications of the four currently operating solar neu-
trino experiments. Our analysis incorporates a straight-
forward and comprehensive treatment of the known the-
oretical statistical uncertainties, which we have outlined
in detail. We have given a full account of our methods
and assumptions so others can compare with our work.

We find that the current solar neutrino experiments
provide a useful constraint on the masses and mixing an-
gles of neutrino in models where neutrino mixing is the
resolution of the solar neutrino problem. All the quan-
tifiable errors in established solar models are included in
this constraint. Both resonant (MSW) and nonresonant
(just-so) neutrino oscillation models are allowed by the
data, while the standard solar model and variations of
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