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Working toward a model-independent understanding of cosmic microwave background (CMB)
anisotropies and their significance, we undertake a comprehensive and self-contained study of scalar
perturbation theory. Initial conditions, evolution, thermal history, matter content, background
dynamics, and geometry all play a role in determining the anisotropy. By employing analytic
techniques to illuminate the numerical results, we are able to separate and identify each contribution.
We thus bring out the nature of the total Sachs-Wolfe effect, acoustic oscillations, diffusion damping,
Doppler shifts, and reionization, as well as their particular manifestation in a critical curvature,
or cosmological-constant-dominated universe. By studying the full angular and spatial content of
the resultant fluctuations, we isolate the signature of these effects from the dependence on initial
conditions. Whereas structure in the Sachs-Wolfe anisotropy depends strongly on the underlying
power spectra, the acoustic oscillations provide features which are nearly model independent. This
may allow for future determination of the matter content of the Universe as well as the adiabatic
and/or isocurvature nature of the initial fluctuations.
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I. INTRODUCTION

With the steadily increasing number of cosmic mi-
crowave background (CMB) anisotropy experiments on
various angular scales (see, e.g., [1]), the empirical re-
construction of the process for structure formation in the
Universe will soon enter a new phase. For this task to
succeed, the groundwork for understanding anisotropy
formation must be firmly laid. While numerical stud-
ies of specific models abound, this ab initio black box
approach is not well suited to the reconstruction prob-
lem. One must be able to distinguish between the effects
of initial conditions, evolution, thermal history, matter
content, background dynamics, and geometry. With the
goal of shedding light on the model-independent physical
mechanisms involved in anisotropy formation, we have
undertaken a comprehensive and self-contained study of
the scalar perturbations which give rise to large-scale
structure in the Universe.

Of the two general classes of scalar perturbations, the
isocurvature mode is by far the less well studied. A rich
structure of anisotropies under the baryon isocurvature
scenario is unveiled by generalizing the original model
proposed by Peebles [2] to arbitrary thermal histories
[3,4]. Yet even the familiar adiabatic case holds novel fea-
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tures if one steps beyond the standard Q¢ = 1 Harrison-
Zel’dovich cold dark matter (CDM) model [5]. In this
paper, we extend the highly accurate analytic tools de-
veloped for this standard CDM model [6] to the general
case of arbitrary initial conditions, thermal history, and
background dynamics. By employing these methods to
illuminate the numerical results, we examine the physical
mechanism behind the evolution of isocurvature and adi-
abatic fluctuations in an Q¢ = 1, open, or cosmological-
constant-dominated universe, allowing for possible late
or partial reionization. Focusing on the physical interpre-
tation rather than specific model-dependent results, we
explore the possibilities that these as yet undetermined
quantities leave open.

In Sec. I, we discuss the gauge-invariant perturbation
equations and their general implications. Unlike most
previous analytic treatments, e.g., [7,8], we take a mul-
tifluid approach to realistically describe the evolution of
each component. Superhorizon evolution, analyzed in
Sec. III brings out the differences between the isocur-
vature and adiabatic modes, including the gravitational
redshift [9] and curvature effects [10]. Further discus-
sion of open universe peculiarities may be found in Ap-
pendix A, and commonly used relations in Appendix B.
As shown in Sec. IV, intermediate-scale perturbations in
the photon-baryon fluid evolve as an oscillator in the po-
tential well created by the total density perturbations.
This leads to the characteristic oscillatory “Doppler”
peak structure in the CMB at recombination for both
modes [11]. Photon diffusion however erases these acous-
tic oscillations at small scales [12]. This is especially
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important in reionized scenarios, considered in Sec. V,
where last scattering is delayed and the diffusion length
grows to be nearly the horizon size at last scattering.
In this case, degree scale anisotropies can be dominated
by the Doppler effect from scattering off electrons [13],
which at late times are released from Compton drag.

Putting these results together in Sec. VI, we exam-
ine their implications for the observable quantities to-
day. By analyzing the full matter and temperature trans-
fer functions, we achieve separation of initial and evolu-
tionary contributions. Robust features in the anisotropy
are singled out as potentially useful for extracting in-
formation about the background cosmology. We con-
clude in Sec. VII with some general comments on the
present status of models given their predictions for CMB
anisotropies.

II. THE EVOLUTION EQUATIONS
AND THEIR INTERPRETATION

In this treatment, we assume scalar fluctuations about
a background Friedmann-Robertson-Walker metric:

2
d82 = |:;~:| (—d7]2 + ’Yijd:l,‘idil'j) y (1)
0

where ¢ = 1, ;; is the three-metric on a space of constant
negative curvature, and 7 = [(ao/a)dt is the conformal
time. Normalized to unity at matter-radiation equality,
the scale factor a evolves as a/a = Ha/ao where the
overdot denotes a conformal time derivative and
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is the Hubble parameter with Hy = 100k kms~! Mpc!
as its value today. For spatially flat models, the curvature
parameter K = —HZ(1—Q¢—Q4) goes to zero, where the
vacuum density is related to the cosmological constant by
Qa = A/3HZ.

Perturbations around these background quantities may
be represented in various ways under gauge-invariant
theory [14-16]. Although all are gauge invariant, they
reduce to ordinary perturbation quantities for different
choices of hypersurface slicing [17]. This flexibility in the
gauge-invariant scheme allows us to simplify the phys-
ical interpretation. For temperature perturbations, we
choose shear-free Newtonian slicing, since on large scales,
they are determined by gravitational redshifts from the
Newtonian potential. Unfortunately, this choice does not
clearly bring out the evolution of energy density per-
turbations, which is best studied in the total matter
rest frame representation. To avoid confusion, we will
only employ photon and neutrino temperature pertur-
bations, ® = AT, /T, and N = AT,/T,, in the New-
tonian representation, and energy density fluctuations,
eg., Ay =0p,/py and A, = 6p,/p,, in the total matter
rest frame representation.
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A. The photon and neutrino Boltzmann equations

The full linearized Boltzmann equation for the evolu-
tion of unpolarized Newtonian photon temperature per-
turbations ©(n,x,v), is given by [8]

o
oy

d Y
%(9+\P)=®+\P+wb—;(®+\ﬁ)+7 (0+ %)

=¥ — &+ 7(0 — © + viv} + vy 1Y),

3)

where v} is the baryon velocity (¢ = 1), vi(= &;) are
the direction cosines of the photon momentum, Og is
the isotropic component of ®, and the anisotropic stress
perturbation for the photons H;j is defined explicitly in
Appendix A from the quadrupole moment of ©. The
last term in Eq. (3) accounts for Compton scattering,
where 7 = zen.ora/ao is the differential optical depth,
with z. the ionization fraction, n. the electron number
density, and o the Thomson cross section. The gauge-
invariant metric perturbations are ¥, the Newtonian po-
tential and ®, the perturbation to the intrinsic spatial
curvature, which are related to the density perturbation
through a generalized Poisson equation in Sec. IIC. We
will commonly refer to both & and ¥ as gravitational
potentials.

If the potentials are static and Compton scattering is
ineffective, Eq. (3) implies © + ¥ is a conserved quantity.
This merely represents what we call the ordinary Sachs-
Wolfe (SW) effect: a photon experiences a fractional red-
shift of ¥ climbing out of a ¥ < 0 potential well. The ef-
fective temperature perturbation accounting for this shift
is therefore ® +W. If ¥ changes, the corresponding gravi-
tational redshift of course follows suit. Changes in ® also
affect the photons through time dilation. Since these ef-
fects accumulate along the geodesics, we call the combi-
nation the integrated Sachs-Wolfe (ISW) effect. The total
contribution, derived by Sachs and Wolfe [9], is a combi-
nation of SW and ISW effects and completely describes
the effect of gravitational redshift on the photons.

In open universes, the 4; term in Eq. (3) does not van-
ish due to the curving of geodesics. Although this would
seem to complicate matters, its effect on Eq. (3) is easy
to interpret and compute, once we decompose the fluctu-
ation into its normal modes. Plane-wave perturbations
Q = exp(ik - x), appropriate for a flat geometry, must be
replaced with the eigenfunctions of the Laplacian for an
open geometry [18-20]:

V2Q =49Q); = —k*Q, (4)

where a vertical bar denotes a covariant derivative on
the three-space. Since the eigenfunctions are complete
for k > +/—K one often introduces the auxiliary variable
k? = k? + K. The subtle question of whether 27 /k or
27/ k should be considered as the “physical” wavelength
of the mode is examined further in Appendix A.

Since each eigenmode evolves independently in linear
theory, it is sufficient to consider temperature perturba-
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tions to exist in a single k mode,’ which can be decom-
posed into angular moments as [10,21]

O(n,x,7) = Y Oi(n)Gi(x,7) . (5)

=0

Here the angular functions G; are defined in Appendix A
such that they reduce to G; = (—i)'exp(ik - x)Py(k - )
in the flat space limit, where P; is an ordinary Legendre
polynomial.

We can now write Eq. (3) in the standard hierarchy of
coupled equations for the ! modes:

. k .
&= —30: - ¢,

. [ 2 3K ,
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where vivj = V,G1 = Vu(—k)"'%Q);, and we have
made the replacements such as ¥(n,x) = ¥(n)Go(x) =
¥(n)Q(x) here and below. By analogy with Eq. (6),
we can immediately write down the corresponding Boltz-
mann equation for (massless) neutrino temperature per-
turbations N(n,x,~) by making the replacements ©; —
Ni, 7 — 0, in Eq. (6). This is sufficient since neutrino
decoupling occurs before any scale of interest enters the
horizon.

B. CMB anisotropies

Although this Newtonian representation of the Boltz-
mann equation (6) may cause stability problems for its
numerical solution [22], it serves to bring out the physics
of anisotropies quite well. First, scattering tends to
isotropize the photons in the electron rest frame, leaving
anisotropies only in the unscattered fraction: for I > 2,
©; x exp(—7), whereas Oz ox exp(—97/10) due to the an-
gular dependence of Compton scattering. Isotropy also
requires V, = ©; = V,. Even so, the dipole suffers from
gravitational infall due to ¥, i.e., the SW effect. On the
other hand, the ISW time dilation effect provides a source
to the monopole.

Since the density of free electrons decreases either due
to recombination, or if the universe is reionized, to the

! As usual, the general case can be recovered by summing
a power spectrum of these independent k£ modes. It should
also be noted that all perturbation amplitudes such as ©;
have an implicit £ dependence. However when discussing the
evolution of a single £k mode, we drop the index for brevity.
After this section, no real-space perturbation variables are
employed.

expansion, the CMB effectively ceases to scatter when
the optical depth to the present from Compton scattering
drops to _[;:'f 7dn = 1. Under the standard recombination
scenario, this occurs at z, ~ 1000, whereas for reionized
models it is delayed until

2\ 1/3 2/3
2 =~ 30 Qoh 0.05 ’ (7)
0.1 .’l:eQbhz

if last scattering occurs before curvature or A domination.

After z,, the photons effectively free stream to form
anisotropies. On the last scattering surface, the photon
distribution may be locally isotropic while still possessing
inhomogeneities, i.e., hot and cold spots, which will be
observed as anisotropies on the sky today. Free streaming
transfers fluctuations to high multipoles, as the [-mode
coupling of Eq. (6) shows. Consequently, in the absence
of sources, the monopole collisionlessly damps. For su-
perhorizon scales k77 < 1, the photons can only travel
a small fraction of a wavelength, and thus the fluctua-
tions remain in the monopole. This is reflected in the
k dependence of this I-mode coupling. If there is sub-
sequent reionization, superhorizon-sized fluctuations will
consequently not damp by isotropization.

Because of the more rapid deviation of geodesics, a
given length scale will correspond to a smaller angle in
an open umiverse than a flat one. Thus the only effect of
negative spatial curvature in Eq. (6) is to speed the trans-
fer of power to higher multipoles. Its effect is noticeable
if the angular scale § ~ [~! is less than the ratio of the
physical scale to the curvature radius v/—K /k. One pe-
culiarity arises however. Even for the lowest eigenmode,

k = v/—K or k = 0, the l-mode coupling in Eq. (6)
does not vanish. Unlike the flat case, this “infinite wave-
length” mode suffers free-streaming damping of low-order
multipoles, once the horizon becomes larger than the cur-
vature radius 7v/—K 2 1. The physical origin of this
effect is discussed further in Sec. VIB and Appendix A.

Finally, let us state some useful relations. As discussed
in Appendix A, the total anisotropy is

2041, V. [dk M 5
ar O' = oz 1}21+1k|®’|
V [ dk M,

— ar kZ 1/2k3® 2
22 | x k 1L EEDTR,
(8)

where the ensemble average anisotropy predicted for an
experiment with window function W; is (AT/T)? =
S(21 + 1)W,C;/4n with ©; evaluated at present. Here
M; = (k* — K)--- (k? — KI2)/(k? — K)! and reduces to
unity in the flat space limit. This implies that the contri-
bution to the anisotropy per logarithmic k£ and [ interval
is

AT\ ? IM
(T) =2 +11 (1+ K/R)EVIO”. ©)
lk

We can also sum in [ to obtain
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oo M,
0+ ¥l =100+ 217 + 3" M j0u?,  (10)
=1

which measures the total power in a single k¥ mode. Since
fluctuations are merely transferred to high multipoles by
free streaming, this quantity is conserved if ® = ¥ =7 =
0, as is evident from Eq. (3).

C. Gravitational potentials

We of course have to define the gravitational potentials
® and ¥ in order to complete the Boltzmann equation
(6). It is useful to introduce the following gauge-invariant
variables: the total density perturbation in the matter
rest frame pAr = >, p;A;, where the sum runs over
all the species present and the density perturbations are
related to the temperature perturbations by

aVrp
Aa’ —4@0-’{-4;—76'“,
(11)
A, =4N0+4EKI'17
a k

the total matter velocity (p + p)Vr = Y ;(pi + p:)Vi,
where p is the pressure, and the anisotropic stress pll =
> pill;, where contributions come essentially from the
radiation quadrupoles

I, =20,, I, = N,. (12)

Employing the Einstein equations, we may now write the
generalized Poisson equation as

(13)

As discussed above, scattering suppresses anisotropies
such that ®, ~ 0, and for perturbations larger than
the horizon scale, N; < Ny. Moreover, in the matter-
dominated regime, the pressure itself is negligible p < p.
The pIl anisotropic stress term can thus be ignored as a
first approximation, implying & ~ —¥.

D. Matter components

The baryons evolve under the generalized baryon con-
tinuity and Euler equations

Ab = _k(Vb - V*/) + %A“/ s
(14)

Vi = =2V, + k¥ + +(V, - V3)/R,

where R = 3p,/4p, is the scale factor normalized to 3

at photon-baryon equality. Again if a collisionless non-
relativistic particle were present, e.g., CDM or compact
baryonic objects [23,24], its evolution would be obtained
by setting 7 = 0.

Well inside the horizon, Egs. (6) and (11) imply that
the photons satisfy a separate continuity equation A., =
- %kV.,, which reduces the first baryon equation to the fa-

miliar form A, = —kV,. The baryon velocity decays due
to the expansion and has a source term from infall into
gravitational wells. Thus the only effect of the decoupled
components is through this potential term.

Early on scattering makes V3, = V,, which shows that
the photons and baryons evolve adiabatically A.., = %Ab,
regardless of whether the initial conditions are adiabatic
or isocurvature. Yet even if the Universe remains fully
ionized to the present, the baryons will eventually de-
couple from the photons, because 7/R = $7(p,/ps) goes
to zero in the matter-dominated limit. Since 7 o< Qp,
this epoch is independent of Q. The Compton drag on
an individual baryon does not depend on the total num-
ber of baryons. In fact, Eq. (14) and the Poisson (13)
equations show that the drag term « V3 comes to domi-
nate over the gravitational infall term o« k¥ at redshifts
above z ~ 200(Qh2)/52-%/®. Thus all modes are re-
leased from Compton drag at the same time, which we
take to be

za = 160(Qh?) /52 2/5 (15)

defined as the epoch when fluctuations effectively join the
growing mode of pressureless linear theory (see Sec. V A).

It is important to realize that the drag and the last
scattering redshift are generally not equal. The photons
decouple from the baryons before the baryons decouple
from the photons in the standard recombination scenario.
Typically the opposite occurs in reionized scenarios re-
sulting in quite different anisotropies for the two cases
(see Secs. IV and V).

We now possess all the machinery necessary to de-
scribe the evolution of perturbations. Numerical solu-
tions, based on Sugiyama and Gouda [25], are presented
in the following sections. However, to shed light on these
solutions, we also apply analytic techniques in the sin-
gle fluid (Sec. III), photon-baryon fluid (Sec. IV), and
diffusive limits (Sec. V).

III. LARGE-SCALE EVOLUTION:
SINGLE FLUID APPROXIMATION

Since no causal process such as free streaming or diffu-
sion can separate the components, all fluid velocities are
equal above the horizon. We can thus describe the cou-
pled multicomponent system as a single fluid, defined by
the total matter variables, whose behavior does not even
depend on the ionization history. Its evolution is deter-
mined by combining the equations for the various species,
assumed to be either fully relativistic or nonrelativistic,
i.e., Egs. (6) and (14) with their decoupled variants,
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where w = p/pand S = A, — %A,., with A,, and A, be-
ing the perturbations in the matter and radiation energy
densities, respectively. As we shall see, S can be inter-
preted as an entropy fluctuation. In the evolution equa-
tion for V7, infall due to the potential ¥ is countered
by the pressure term Ar at small scales. The two are
balanced at the Jeans scale. In this section, we solve the
evolution equations neglecting pressure and anisotropic
stress as is appropriate for large scales.

J

16 16
Uyg = [D3+§D2—§D——+—

9 9

Ur=—

1]
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A. Initial conditions and the general solution

The distinction between adiabatic and isocurvature
scenarios lies in the entropy term S of Eq. (16). Its evo-
lution is given by the matter continuity equation (14),
ie., S = k(V, — V;), where the matter and radiation
velocities are defined in a manner analogous to Vr [see
Eq. (11)]. Since all components have the same velocity,
S is a constant before the mode enters the horizon and,
if it is present, must have been established at the initial
conditions.

Under this S = 0 assumption, we show in Appendix B
that the general growing solution of Eq. (16) is

Ar =CaUs + C1Uy, (17)

where the C’s are fixed by the initial conditions, and
we have neglected anisotropic stress. Although S is a
constant above the horizon, we will define C; = S(0), in
anticipation of horizon crossing. As we shall see in the
next section, the evolutionary factors U4 and Uy take
simple asymptotic forms. However to preserve generality,
we give the complete expressions here:

DD +1)’
(18)

15 \ keq k2

respectively, where keq = (aH)eq/a0 = V2(aoQWHE)Y/?
corresponds to the scale which passes the horizon at
equality, and we have assumed II = 0. The factor D(a)
accounts for pressureless growth

5.5 -
4

da/ag

D= L
(Ha/ao)?

(19)

where H is obtained from the Hubble parameter by ig-
noring the radiation

= (%9)390H3 - (%)2K+ %—A. (20)

We assume curvature and A dynamical contributions are
only important well after equality a > 1. Curvature
dominates over matter at a/ap > 0/(1 — Qo — QA),
whereas A dominates over matter at a/aq > (Q0/Q4)Y/3
and over curvature at a/ao > [(1— Qo — Q4)/Qa]*/2. Al-
though we will usually only consider A models which are
flat, these solutions are applicable to the general case.
Before either curvature or A domination, D = a; after-
wards, it goes to a constant. Moreover ifa > 1, Ay < D
regardless of scale and initial conditions as discussed be-
low.

Whereas adiabatic scenarios begin with C; = 0 and
finite Cy4, isocurvature universes have Cr # 0. If only
baryons, photons, and neutrinos are present, as in the

4 ( k )2(1_y§) 3D? 4+ 22D + 24 + 4(4+ 3D)(1 + D)V/2
(1+D)(4+3D)[1+ (1+ D)'/2)* ’

[
case of the baryonic models, S can be broken down into

= qubu+ (l‘fu)sb'y, (21)

with an obvious generalization to the case of an addi-
tional decoupled nonrelativistic component. Here the
neutrino fraction f, = p,/(p, + py) is time independent
after electron-positron annihilation, implying f, = 0.405
for three families of massless neutrinos and the standard
thermal history. Since Sy, = Ap — 3A,, = §(np/n,), and
likewise for the neutrinos, Sy, and S, represent pertur-
bations to the baryon to photon and baryon to neutrino
number densities, respectively. This in fact justifies our
use of the term “entropy” fluctuation to describe S. No-
tice that S = 0 then has an obvious interpretation: since
the components cannot separate above the horizon, the
particle number ratios must remain constant.

Furthermore isocurvature conditions allow no initial
curvature perturbations as the name implies. Thus the
gravitational potentials ¥ and ® vanish at the initial
epoch, implying C4 = 0. If the perturbations were
formed in the radiation-dominated epoch, they must be
placed in the baryons only. In this case, Spy = Sp, = S
initially, which we will hereafter adopt. The generaliza-
tion to the case where Sy, # Sp, or nonbaryonic dark
matter is straightforward. Note that any arbitrary mix-
ture of adiabatic and isocurvature modes is also covered
by Eq. (17).
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B. The evolution of the fluid components

Now let us consider the implications and interpretation
of the general solution (17). The results for the adiabatic
mode are extremely simple. When the Universe is domi-
nated by radiation (RD), matter (MD), curvature (CD),
or the cosmological constant (AD), the total density fluc-
tuation takes the form

L;]az RD,
Ar/Ca=4 a MD, (22)
D CD/AD.

Moreover since S = 0, the components evolve together
Ay = A, = %A., = %A,, where A, is any decoupled
nonrelativistic component (e.g., CDM). The velocity and
potential are given by

J
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— 52 (koo /k)(1 — 3K/k?)"'a  RD,

Vr/Ca = —¥%2(ke/k)(1 — 3K/k?)~1al/? MD,
—(1-3K/k?)"D/k CD/AD,
(23)
_%(keq/k)z(l - 3K/k2)—1 RD,
U/Ca =1 —§(keq/k)*(1 —3K/K*)"? MD,

——%(keq/k)z(l —3K/k?)"'D/a CD/AD.
Contrast this with the isocurvature evolution:
1(k/keq)?(1 — 3K /k?)a® RD,
i5(k/keq)?*(1 — 3K/k?)a MD, (24)
%(k/keq)z(l —3K/k?*)D CD/AD.

Ar/Cr =

From the definition of the entropy fluctuation S (see also
Appendix B), Eq. (18) implies that

1-—- %a RD,
Ap/Cr =1 3[a=t + L(k/keq)?(1 — 3K /k?)a] MD, (25)
$la™" + 3(k/keq)*(1 — 3K/k?)D] CD/AD,
and
—a RD,
A,/Cr=A,/Cr={ 5[-1+ fx(k/keq)®(1 —3K/k?*)a] MD, (26)

$-1+ f5(k/keq)*(1 — 3K/k*)D] CD/AD,

for the baryon and radiation components. Last, the
velocity and the potential also have simple asymptotic
forms:

—¥2(k/keq)a®>  RD,
Vr/Cr =1 —22(k/keq)a'/> MD,
— & (k/keq)D/keq CD/AD),
(27)
—%a RD,
v/Cr={ -1 MD,

—-1D/a CD/AD.

Notice that unlike the adiabatic case Vr and ¥ have
no explicit curvature dependence in this representation.
Moreover, although these solutions omit radiation pres-
sure and streaming, they are actually valid for the matter
all the way to the present if horizon crossing occurs after
the drag epoch (see Fig. 1).

Let us try to interpret these results physically. The
isocurvature condition is satisfied by initially placing the
fluctuations in the baryons A, = Cr with A, = 0 so that
A7 = 0. As the Universe evolves however, the relative
significance of the baryon fluctuation Aypp/pr for the to-
tal density fluctuation A7 grows as a. To compensate,
the photon and neutrino fluctuations grow to be equal
and opposite A, = A, = —aCj. The tight coupling
condition Ay = %A.Y implies then that the baryon fluc-

[

tuation must also decrease so that A, = (1 — 3a/4)CF.
The presence of A, means that there is a gradient in
the photon energy density. This gradient gives rise to
a dipole V, as the regions come into causal contact [see
Eq. (6)], i.e., Vy ox knA, < —ka?Cj. The same argu-
ment holds for the neutrinos. Constant entropy requires
that the total fluid move with the photons and neutrinos
Vr = V,, and thus infall, produced by the gradient in the
velocity, yields a total density perturbation

Ar o« —kn(1 — 3K/k*)Vyp « (k% — 3K)a®Cy

[see Eq. (16)]. This is one way of interpreting Eq. (18)
and the fact that the entropy provides a source of to-
tal density fluctuations in the radiation-dominated epoch
[26].

A similar analysis applies for adiabatic fluctuations,
which begin instead with finite potential ¥. Infall implies
Vr « kn¥, which then yields

Ar x —knVr < —(k* — 3K)a?¥,

thereby also keeping the potential constant. Compared
to the adiabatic case, the isocurvature scenario predicts
total density perturbations which are smaller by one fac-
tor of a in the radiation-dominated epoch as might be
expected from cancellation.

After radiation domination both modes grow in pres-
sureless linear theory Ar o« D [cf. Egs. (22) and (24)].
Unlike the radiation-dominated limit, the entropy source
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T T FIG. 1. Large-scale open
a, isocurvature evolution (o
= 0.2, h = 0.5, no re-

combination). Perturbations,

which originate in the baryons,
are transferred to the radiation
as the universe becomes more
matter-dominated to avoid a
significant curvature perturba-
tion. Nonetheless, radiation
fluctuations create total den-
sity fluctuations from feedback.
These adiabatic fluctuations in
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ter-dominated epoch. The sin-
gle fluid approximation can-
not extend after last scattering
for the photons a., since free
streaming will damp A, away.
R After curvature domination the
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S is suppressed by w = p/p compared with gravitational
infall ¥, making the isocurvature and adiabatic evolu-
tions identical. Since growth is suppressed in open and
A-dominated universes, the potential ¥ decays, which
has interesting consequences for anisotropies as we shall
now see.

C. The total Sachs-Wolfe effect: Basics

As noted in Sec. II B, the SW effect causes the effective
perturbation to be ©® + ¥ to account for the gravitational
redshift. Changes in the potential after last scattering of
course alter the shift, an effect which is approximately
doubled by the induced time dilation. This is the ISW
contribution. To determine the net effect however, we
must first derive the value of the intrinsic photon fluctu-
ations ©. If kn < 1, the Boltzmann equation (6) reduces
to the dilation effect

éoz—é’:\i’. (28)

Here we have again assumed II = 0, which causes an
~ 10% error. For corrections due to II see [6].

Since the isocurvature initial conditions satisfy ¥(0) =
0 = ©¢(0), this implies ©g(n) = ¥(n). The effective
superhorizon scale temperature perturbation for isocur-
vature fluctuations is therefore

O+ ¥ =2¥ (iso). (29)

Inside potential wells, the photons are underdense so
that the gravitational redshift adds to the tempera-
ture perturbation. This is a direct consequence of the

1 total density is prevented from
growing and thus leads to decay
in the gravitational potential ¥.

10!

feedback mechanism which generates the potentials (see
Sec. III B). Note however, that in a low Qoh? model with
standard recombination, the potential may not reach the
full matter-dominated value of Eq. (27) by last scattering
(see Fig. 2).

For adiabatic perturbations, the nature of the growing
mode Ug [see Eq. (18)] fixes the initial perturbations to
be ©(0) = —3¥(0), reflecting the fact that the photons
are overdense inside the potential well. Although Ug im-
plies the potential is constant in both the matter- and
radiation-dominated epoch, it changes to ¥(a) = ¥(0)
through equality. The dilation effect then brings the pho-
ton temperature perturbation in the matter-dominated
epoch to ©(n) = —2¥(n) and the effective superhorizon
perturbation to (MD)

[0+ ] = 3T (adi), (30)

which is the familiar Sachs-Wolfe result.

The above results are valid before last scattering at a,.
Again since last scattering can occur before full matter
domination, one should employ the full form

[©0 + ¥](n4) ~ ©0(0) + 2¥(n.) — ¥(0)

instead of Eqs. (27) and (30). After a,, the pho-
tons climb out of the potential wells, leaving the quan-
tity [@¢ + ¥](7+) to become anisotropies today. Addi-
tional contributions to the anisotropy may arise during
free streaming through the ISW effect. Since photon
geodesics are radial in the absence of scattering, we may
use the radial eigenfunctions of the Laplacian to solve
for the free streaming behavior. These are denoted by
Q(x) = XL(x)Y™(6,$), where —v? = k?/K = k?/K +1,
and the radial distance normalized to the curvature ra-
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dius is x = v/—Kn. The radial function X} (x) reduces
to ji(kn) in the flat limit. For superhorizon scales at last
scattering, the resultant anisotropies are (see Appendix
A, Fig. 2)

©4(n)

i1 = 90 + () X1 (x — x»)

n
+ [ - dxc-xan . @)
7
The right-hand side represents the SW and ISW ef-
fects, respectively. Since the potentials for both the
adiabatic and isocurvature modes are constant in the
matter-dominated epoch, the ISW contribution is sep-
arated into two parts: (a) the early ISW effect due to
isocurvature growth before horizon crossing and pres-
sure growth suppression after horizon crossing in the
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radiation-dominated epoch; (b) the late ISW effect due
to expansion growth suppression in the A- or curvature-
dominated epoch. We shall now consider these effects in
more detail.

D. The total Sachs-Wolfe effect: Detailed structure

Equation (31) for the total Sachs-Wolfe effect predicts
a rich structure of anisotropies for low o models [5].
However, to build intuition for Eq. (31), let us first con-
sider the familiar adiabatic 9 = 1 model in which the
ISW term represents only a small correction [6]. A given
k mode contributes maximum anisotropies to the angle
that scale subtends on the sky at last scattering. In the
k-l plane, the anisotropy will have a sharp ridge corre-
sponding to this correlation (see Fig. 3). Here we have
plotted (AT/T)32,, the logarithmic contribution to the
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FIG. 2. The evolution of total Sachs-Wolfe effect (2o = 0.

10-3 10-2
a/a,

1, h = 0.5, k = 4 x 10™* Mpc ™ 'standard recombination).

—

110-8 104

In

the adiabatic case, temperature fluctuations are enhanced in gravitational wells such that ©® and ¥ partially cancel, yielding
O+ ¥ = %lII in the matter-dominated epoch. For the isocurvature case, the ISW effect creates a net total of @9 + ¥ = 2¥
reflecting the anticorrelated nature of radiation and total density fluctuations. After last scattering at a., this SW contribution
[analytic only, Eq. (31)] collisionlessly damps from the monopole. The rms temperature fluctuations [numerical only, Eq. (10))
acquire contributions after a. from the ISW effect due to the radiation (early) and curvature or A (late) contributions. These
contributions are relatively more important for, Eq. (10) adiabatic models due to the partial cancellation of ®¢ and ¥ at last
scattering. Since A domination can only have occurred comparatively recently, the late ISW effect is also less important in a

A compared to an open universe.



51 TOWARD UNDERSTANDING CMB ANISOTROPIES AND THEIR . . . 2607

log(k*Mpc)

Streaming
Oscillations

Acoustic

log(l)

FIG. 3. Qo = 1 adiabatic full photon spectrum (h = 0.5, standard recombination, left panel). Shown here and in Figs. 4, 6,
and 7 is the contribution to the anisotropy per logarithmic k and [ interval (AT/T)?, [Eq. (9)] with equally spaced contours up
to a cutoff set to best display the features in question. The strong correlation between ! and k merely reflects the projection
of a scale on the last scattering surface to an angle on the sky. At logio = 2, SW contributions fall off and are replaced by the
acoustic peaks (saturated here). The detailed structure can be traced to the radial eigenfunction X_(x) = j:(x) which governs
the projection and free-streaming oscillations (right panel). The logarithm is to base 10.

anisotropy in k and ! defined by Eq. (9).2 The pure yields both early and late type contributions. As we shall

spherical Bessel functions j;(xz) show that the series of
ridges and filamentary structures are due to the struc-
ture of the radial eigenfunctions themselves. Notice that
the largest modes (smallest k) project onto the monopole
and do not contribute to anisotropies.

Now let us move onto the more complicated A and

see (see Sec. IV), inside the horizon during the radiation-
dominated era, the potential decays due to pressure. This
leads to a significant early ISW term which is projected
onto a somewhat larger angle than the SW effect itself
since it originates closer to the present. That this is
present before A domination is clear from Fig. 4(a). Be-

open cases. For A models, the ISW term in Eq. (31) cause the early ISW effect approaches its maximum of

log(k*Mpc)

(a) z=5

Early ISW

-2.75

-3.25

-3.75

0.5 1 1.5 27 log(1)

FIG. 4. A adiabatic photon spectrum (Qo = 0.1, h = 0.5, standard recombination). Unlike the 29 = 1 case, this scenario
has significant contributions from after last scattering through the early and late ISW effect. (a) The early ISW effect arises
if horizon crossing is near radiation domination, and projects onto a second ridge which is more prominent than the SW ridge
at intermediate but not large angles. (b) After A domination, the late ISW contributions come free streaming in from the
monopole yielding a boost in the low-order multipoles for a small range in k, due to cancellation with SW contributions at the
largest scales and crest-trough cancellation at smaller scales. Scales depicted in Figs. 5(a) and 5(b) are marked here by dashed
lines. The logarithm is to base 10.

2For representation purposes, we chose the initial weights of the k modes to correspond to |C4|?> « &k and |C;|? o k™3 for
the adiabatic and isocurvature modes, respectively. This does not sacrifice generality since one can easily scale the figure to an
alternate initial weighting. Note all contour plots of the anisotropy represent the numerical results.
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[T — ®](n) ~ 2¥(n) and the adiabatic SW effect is
given by approximately %\Il(m), the early ISW ridge is
more prominent than the SW ridge in adiabatic models.
However for scales that enter the horizon during matter
domination, the decay in the potential due to radiation
is much less significant. Thus the height of the second
ridge drops significantly at larger scales }see Fig. 4(a)].

After A domination a/ag = (0/924)'/3, the potential
once again decays. Note however that for typical values
of Qo 2 0.1, this decay begins only comparatively re-
cently leading to late ISW contributions. This has three
significant consequences.

(a) The largest modes contribute little to the
anisotropy due to the projection effect. Notice that the
late ISW contribution intersects the | = 2 edge of Fig. 4
at a smaller scale than the SW effect. In Fig. 5(a), we plot
the analytic decomposition of contributions to a k-mode
slice corresponding to these large scales. The smaller
late ISW contribution in fact partially cancels the SW ef-
fect. Since the SW contribution has not undergone free-
streaming oscillations at A domination, the two effects
contribute coherently and cancel due to the decay of the
potential.

(b) Since the potential is still decaying at the present,
the late ISW effect can boost the low-order multipoles
for all scales. In Fig. 5(b), we plot a smaller mode and
show that the late ISW effect is positive definite. Recent
contributions have not free streamed to the oscillatory
regime. The ridge structure of Fig. 4 is due to the late
ISW effect adding with every other ridge in the SW free-
streaming oscillation.

(c) Contributions are spread out over a time compa-
rable to 7. As we shall see in Sec. VB, this implies
cancellation of the late ISW contribution as the photon
travels through many wavelengths of the perturbation
[27]. Thus late ISW contributions are rapidly damped as
the scale decreases leaving only those scales that project
onto large angles.

Together these factors imply that if the k¥ modes are
equally weighted (scale invariant), the result will be a rise
toward low multipoles from the late ISW contributions
[28]. On the other hand, if scales that are superhorizon
sized at late ISW generation are strongly weighted, there
is a relative suppression of low multipoles due to SW and
ISW cancellation.

Open adiabatic models follow similar physical princi-
ples yet still yield significantly different anisotropies for
sufficiently low Qo. Both the late ISW contribution at
large scales and the early ISW contribution at small
scales contribute near the maximum of 2¥(7,). On most
scales, the combined ISW effect completely dominates
over the SW contributions (see Fig. 6 and [29]). How-
ever, just as in the A case, the late ISW contributions
boost the anisotropy in a larger angle than the SW ef-
fect for a given k mode. Notice where the late ISW ridge
intersects [ = 2. For the largest mode k = /—K, the
SW effect consequently can contribute mildly and cancel
part of the late ISW effect as in the A case. Moreover,
this projection effect implies that at these scales, the late
ISW effect itself is increasingly suppressed with [ [see
Fig. 5(c)]. These curvature scale contributions however

51

are themselves suppressed by the cutoff in the poten-
tial near the curvature scale from the Poisson equation
(13). This converts the SW ridge into a peaked struc-
ture and curves the contours of the ISW ridge away from
k = v/—K. Of course a change in the underlying power
spectrum that weights the k£ modes can partially or com-
pletely remove this effect.

At smaller scales, the late ISW effect completely dom-
inates the low-order multipoles [see Fig. 5(d)]. Finally
notice the evolutionary effect of geodesic deviation. Com-
paring Figs. 4 and 6, we see that the fluctuations are more
rapidly carried to high multipoles than in the A case.

Isocurvature models differ significantly in that the po-

05— T T T T T I
——— (a) ]

(AT/T),,

e — — e —

[ Open Adiabatic

T e e e e K

2 4 6 8 10
{

FIG. 5. Analytic separation of adiabatic large-angle

anisotropies (2 = 0.1, h = 0.5, standard recombination,

arbitrary normalization). Scales are chosen to match the fea-
tures in Figs. 4 and 6. A models: (a) At the largest scales,
e.g., here k = 10™* Mpc ™!, the SW effect increasingly dom-
inates over the late ISW effect due to projection. However,
since the potential decays, the late ISW effect partially can-
cels the SW effect if the mode is superhorizon sized at A
domination. (b) Intermediate-scale peaks in Fig. 4 are due to
the late ISW boost of the higher SW free-streaming ridges.
Open models: (c) The maximum scale corresponds to the
curvature radius k = +/—K. For this scale, the SW effect
projects broadly in I peaking near | ~ 10. For the late ISW
effect, this scale projects onto the monopole and dipole near
curvature domination thus leaving the ISW contributions to
decrease smoothly with I. (d) At smaller scales, correspond-
ing to the large ridge in Fig. 6, the late ISW effect projects
onto ! ~ 2-10 and completely dominates leading to a rising
spectrum of anisotropies.
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(b) z=0

FIG. 6. Open adiabatic photon spectrum (Qo = 0.1, h = 0.5, standard recombination). (a) Like the A case, the early ISW
effect contributes significantly to intermediate angle anisotropies. (b) However, as already noted in Fig. 2, the late ISW effect
appearing at the left is much more significant than the corresponding A effect. Thus on all angular scales, the total ISW
contribution dominates the SW effect. Contours curve away from the curvature scale logi0(k Mpc) = —3.8 due to suppression
of the potentials from the Poisson equation. Scales depicted in Figs. 5(c) and 5(d) are marked here with dashed lines. The

logarithm is to base 10.

tentials grow until full matter domination. Strong early
ISW contributions which are qualitatively similar to the
SW term will occur directly after recombination and con-
tinue until full matter domination (see Fig. 2). Thus the
projection of scales onto angles will follow a continuous
sequence which merges the SW and early ISW ridges (see
Fig. 7).

For the A case, the early ISW effect completely domi-
nates that of the late ISW effect. Thus the analytic sep-
aration shows that the total ISW and SW effects make
morphologically similar contributions and the boost in
low-order multipoles is not manifest. Moreover, the
two add coherently creating a greater total effect un-
like the adiabatic case [see Figs. 5(a) and 5(b)]. Open

log(k*Mpc)

¥

/ /SW + Early ISW

isocurvature models behave similarly except that the late
ISW contributions near its maximum (late ISW ridge) is
not negligible. It is thus similar to the adiabatic case
[cf. Figs. 5(d) and 8(d)] except that it does not usually
dominate the total anisotropy.

Notice also that since there is no curvature cutoff in
the potentials, the SW and early ISW ridge extends all
the way to the largest mode k = v/—K. The projection
ridge intersects k = /—K at | ~ 10 which is the scale
the (o = 0.1) curvature radius subtends at a distance
Mo [see Fig. 8(a) and Appendix A]. This is indicative of
the fact that the lowest eigenmodes k — v/ — K, k— 0all
contribute to curvature scale fluctuations (see Sec. VIB
and Appendix A).

Open

SW + Early ISW

Late ISW

0.5 1 1.5 2

log()

FIG. 7. A and open isocurvature photon spectrum (Qo = 0.1, h = 0.5, standard recombination). Unlike their adiabatic
counterparts, the potential grows in the radiation domination era only to turn over and decay in the curvature and A dominated
era. The early ISW contribution will thus smoothly match onto the SW contribution. This has the effect of merging the SW
and ISW ridges to make a wide feature that contributes broadly in I. For A models, the early ISW effect completely dominates
over the late ISW effect. Scales depicted in Fig. 8 are marked here by dashed lines. The logarithm is to base 10.
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IV. INTERMEDIATE SCALE EVOLUTION:
ACOUSTIC OSCILLATIONS
AND STANDARD RECOMBINATION

As the perturbation enters the horizon, we can no
longer view the system as a single fluid. Decoupled com-
ponents such as the neutrinos free stream and change the
entropy fluctuation. However, above the photon diffusion
scale, the photons and baryons are still tightly coupled
until last scattering. Since even at recombination the dif-
fusion length is much smaller than the horizon 7, it is
appropriate to combine the photon and baryon fluids for
study [30-32]. In this section, we show that photon pres-
sure resists the gravitational compression of the photon-
baryon fluid, leading to driven acoustic oscillations [6].

ATotal xISW *SW ONumerical Total
1 n S L | n 1 "

2 4 [ 8 10
{
FIG. 8. Analytic separation of isocurvature large angle
anisotropies (2 = 0.1, h = 0.5, standard recombination,

arbitrary normalization). Scales are chosen to match the fea-
tures in Fig. 7. In general, isocurvature models have strong
early ISW contributions which mimic and coherently boost
the SW effect. A models: (a) Notice that the shape of the
SW and ISW effects are identical at large scales. (b) Even
at the late ISW peak, the early ISW contributions are so
strong that the late contributions are never apparent, unlike
the adiabatic model. Open models: (c) As with A models,
radiation epoch contributions are significant making the SW
and ISW contributions similar for large scales. (d) Near the
peak of the curvature ISW contribution however, the relative
contributions are similar to the adiabatic case.
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A. Driven acoustic oscillations

At intermediate scales, neither radiation pressure nor
gravity can be ignored. Fortunately, their effects can
be analytically separated and analyzed. Since photon-
baryon tight coupling still holds, it is appropriate to ex-
pand the Boltzmann equation (6) and the Euler equation
(14) for the baryons in the Compton scattering time 7!
[33]. To zeroth order, we obtain ©; = V, = V4, and
©; =0 for I > 2. There is therefore no electron velocity
induced Doppler shift from a scattering event, since the
photons are already isotropic in the baryon rest frame.
Again this implies that the photon-baryon evolution is
adiabatic A, = %A., even when the general evolution is
not. The first-order expansion yields

N B . 220
eo+m®0+k C’GO—F, (32)
where the photon-baryon sound speed is
1 1
2 _
“T31+R’ (33)
and the forcing function is
. R . k2
F=-%—- ——&—- 0.
1+R 3 (34)

The techniques established in our recent analysis of adi-
abatic fluctuations in a flat universe [6] work equally well
for the general case. Under this formalism, the gravita-
tional driving forces are treated as known external po-
tentials in which the photon-baryon fluid oscillates. The
right-hand side determines the effect of gravity through
the time dilation effect and gravitational infall k2¥. No-
tice that the SW effect due to the photon’s subsequent
climb out of the potential well partially counters infall
[6]. The dilation term & also drives the oscillation and is
important at horizon crossing for modes that cross dur-
ing radiation domination. We shall see in Sec. IV C that
this becomes an ISW contribution after last scattering
that can counter or even overwhelm the SW term.

The left-hand side of Eq. (32) represents an oscillator
whose restoring force is due to the photon pressure. This
homogeneous F' = 0 equation can be solved by the WKB
approximation:

6. = (1 + R)™Y*coskr, ,

(35)
0y = (1 + R)™Y*sinkr, ,
where the sound horizon is
n
Ts = / cadn,
0

2 1 V1+ R+ /R+ Req
= ———4/6/Reql s 36
3 keq / q n 1 + /_Req ( )

with Req = R(7eq). Notice that if the sound speed is
constant, the dispersion relation becomes w = k¢, as ex-
pected of acoustic oscillations. The solution in the pres-
ence of the source F, constructed by Green’s method, is

(6]
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1/4 V3 . 17 .
[1-+ Bn)]/400(n) = @o(0)coskr, (n) + Y2[00(0) + LR(0)@0(0)]sinkr, ()
+ Y3 (7 a1+ R\ Asinfkra () — kra () F () 37
o [ a1+ RN sinfir, (o) - kra (1) (37)

and k®; = —3(09+%&). Although the potentials in F' can
be approximated from their large- (Sec. III) and small-
(Sec. IVB) scale solutions, to show the true power of
this technique, we instead employ their numerical values
in Fig. 9. The excellent agreement with the full solu-
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FIG. 9. The acoustic oscillations (2 = 0.2, h = 0.5, no
recombination). The photon-baryon fluid acts like an oscilla-
tor in a potential well. The dipole, i.e., the photon velocity
V., is increasingly suppressed with respect to the monopole
as (1+R)™'/2, where the v/3 accounts for the three degrees of
freedom in the dipole. Scales which reach an extrema in the
monopole at last scattering will correspond to the so-called
“Doppler peaks” in the anisotropy spectrum. Also displayed
here is the semianalytic approximation described in the text,
which is essentially exact. The small difference in the numer-
ical amplitudes of ® and ¥ is due to the anisotropic stress of
the neutrinos. Whereas the isocurvature case has Q¢ = Qp,
the adiabatic model has Q; = 0.06 and a consequently
smaller R.

[

tion indicates that our technique is limited only by our
knowledge of the potentials. In almost all models, the
potentials can at least be approximated from the cal-
culated matter power spectrum at the present and the
general principles of their evolution (see, e.g., [6]).

Some common features of these acoustic oscillations,
valid for both isocurvature and adiabatic fluctuations,
are worthwhile to note. At the start of the oscilla-
tion, the amplitude of the monopole increases with R
(i-e., 2h?) due to a reduction in the pressure restoring
force. Although both the monopole and the dipole sub-
sequently decrease, the dipole does so more rapidly due
to an additional factor of 7, = ¢; (1 + R)"l/z. Thus,
when last scattering freezes in the adiabatic oscillations,
the temperature fluctuations will be dominated by the
monopole. Furthermore, the amplitude of the monopole
is itself modulated since inside a potential well, the com-
pressional phase of the oscillation is enhanced and the
expansion phase suppressed, if ¥ is comparable to ©p
[see Fig. 9]. This can also be viewed as a shift in the
zero point of the oscillations due to gravity. From the
oscillation phase, all even peaks for the adiabatic and
odd peaks for the isocurvature models suffer this sup-
pression. In models where the pressure is relatively low
(high Q,h?), the expansion phase may be hidden entirely
in the final anisotropy spectrum [6].

Those features which distinguish isocurvature from
adiabatic fluctuations are also apparent by inspection.
For adiabatic initial conditions, the driving potentials are
constant until Jeans crossing, at which point they decay
(see Fig. 9). On the other hand, for the isocurvature sce-
nario, they grow from zero to a maximum at Jeans cross-
ing. Thus the forcing function imitates coskr, and sinkr,
in the adiabatic and isocurvature scenarios, respectively,
and stimulates the corresponding mode of temperature
fluctuations.

B. From the Jeans to diffusion scale

Well below the Jeans scale, the gravitational driving
force can be ignored and the photon-baryon fluctuations
behave as simple oscillatory functions, until the break-
down of tight coupling at the photon diffusion scale. At
this point, photon fluctuations are exponentially damped
due to diffusive mixing and rescattering. We can account
for this by expanding the Boltzmann and Euler equations
for the photons and baryons, respectively, to second or-
der in 77! [34]. This gives the dispersion relation an
imaginary part, making the general solution

O = A(1 + R)~Y*D(n, k)coskr,
+B(1 + R)~Y/*D(n, k)sinkr, , (38)

where the damping factor is
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D(n, k) = e~ */k0)* (39)

with the damping scale
2
k52=1/ LB +4(1+R)/5 (40)

6 T (1+ R)?
Diffusion thus dissipates these acoustic waves leading to
energy input and spectral distortions in the CMB [35,36].

The amplitudes of these oscillations, i.e., the constants
A and B, are determined by the total effect of the grav-
itational driving force in Eq. (32). However, a simpler
argument suffices for showing its general behavior. As
shown in Sec. IIIB, isocurvature fluctuations grow as
A, ~ —aCy until Jeans crossing. Since the Jeans cross-
ing time is aj ~ keq/k, the isocurvature amplitude will
be suppressed by keq/k. On the other hand, adiabatic
fluctuations which grow as a? will have a (keq/k)? sup-
pression factor. This simple argument fixes the ampli-
tude up to a factor of order unity.

We obtain the specific amplitude by solving Eq. (16)
under the constant entropy assumption § = 0. The latter
approximation is not strictly valid since free streaming of
the neutrinos will change the entropy fluctuation. How-
ever, since the amplitude is fixed after Jeans crossing,
which is only slightly after horizon crossing, it suffices.
Under this assumption, the equation can again be solved
in the small-scale limit. Kodama and Sasaki [8] find that,
for isocurvature fluctuations,

\/_ keq

A=0, B= ————C’ (iso), (41)

whereas the adiabatic perturbations,

5 (keq)’
A=—(-—93) Ca, B=0 (adi), (42)
4\ k

if k> keq, k2 > —K, and kn > 1. As expected, the
isocurvature mode stimulates the sinkr, harmonic, as op-
posed to coskr, for the adiabatic mode.

We can also construct the evolution of density per-
turbations at small scales. Well inside the horizon,
A, = 40, by Eq. (11). The isocurvature mode solution

11— Y=

[3f

which decays with the expansion since At goes to a con-
stant. In Fig. 10, we compare these analytic approxima-
tions with the numerical results. After damping elimi-
nates the adiabatic oscillations, the evolution of pertur-
bations is governed by diffusive processes.

A similar analysis for adiabatic perturbations shows
that diffusion damping completely eliminates small-scale
baryonic fluctuations. Unlike the isocurvature case, un-
less CDM wells are present to reseed fluctuations (see
Sec. V), adiabatic models consequently fail to form galax-
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therefore satisfies (RD/MD)
A,/Cr = -6 (k_kﬂ) (14 R)~Y4D(a, k)sinkr,.  (43)

The tight coupling limit implies A, = %A,, which re-
quires (RD/MD)

Ay/Cr=1~- i ( e‘*) (1+ R)~Y4D(a, k)sinkr, .

(44)

This diffusive suppression of the adiabatic component for
the baryon fluctuation is known as Silk damping [12].
After damping, the baryons are left with the original en-
tropy perturbation Cj. Since they are surrounded by a
homogeneous and isotropic sea of photons, the baryons
are unaffected by further photon diffusion. From the pho-
ton or baryon continuity equations at small scales, we

obtain (RD/MD)
V/Cr = V4 /Cr

3f( >(1+R )~%/“D(a, k)coskr, .  (45)

As one would expect, the velocity oscillates 7/2 out of
phase with, and increasingly suppressed compared to, the
density perturbations. Employing Egs. (43) and (44),
we construct the total density perturbation by assuming
that free streaming has damped out the neutrino contri-
bution (RD/MD),

Ar/Cq
a 3V6 keq 1,1 3/4 :
= - “aR-1(1
Tta [1 Tk R™'(1 + R)**D(a, k)sinkr,
(46)
From this equation, we may derive the potential
(RD/MD)
—4R- (1+R)3/4D(a,k)sinkrs], (47)

ies. All adiabatic examples shown here, including the
open ones, are for CDM universes.

C. The “Doppler peaks” and free streaming

If last scattering occurs before diffusion has damped
the acoustic oscillations in a given mode, e.g., in the stan-
dard recombination models, they will be frozen into the
CMB. A generalization of the free-streaming equation of
(31) gives the resulting anisotropies
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FIG. 10. Small-scale isocurvature evolution and photon dif-
fusion (o = 0.2, h = 0.5, no recombination). At small scales
gravity may be ignored, yielding pure adiabatic oscillations.
Perturbations in the photons damp once the diffusion length
grows larger than the wavelength kp < k. Likewise the adia-
batic component of the baryon fluctuations also damps leav-
ing them with the original entropy perturbation. After dif-
fusion, the photons and baryons behave as separate fluids,
allowing the baryons to grow once Compton drag becomes
negligible @ > aq4. Photon fluctuations are then regenerated
by the Doppler effect as they diffuse across infalling baryons.
The analytic approach for the photons in this limit applies
between the drag epoch and last scattering aq < a < a..

1) = [0 + )(n) X} (x — x4)

1d
+0O1 (7« E%XL(X - Xax)

+/7¢—@Xxx—yw#. (48)

Here we obtain the diffusion damped fluctuation at last
scattering from Eq. (37) by the replacements [6]

[©0 + ¥](ns) = [O0 + ¥](7:)D (s, k)
(49)
91(77*) - @1(77*)'D(7)*, k) 3

where the damping factor is averaged over the finite du-
ration of last scattering:

D(nu, k) = / dnie~Te~(k/kp)* (50)

Since the visibility function 7e~7 goes to a § function
for large 7, this definition also coincides with the tight
coupling limit, Eq. (39). For analytic approximations of
the visibility function see [6,37].

As we have shown in [6], Eq. (48) describes the final
anisotropies due to acoustic oscillations to high accuracy
for any given model. However, for the task of recon-
structing the model from observations, it is useful to have
a simple estimate of Eq. (48). As we have already seen
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with the Sachs-Wolfe effect, the presence of the radial
eigenfunctions X! in Eq. (48) merely represents the pro-
jection of a spatial scale onto an angular scale on the
sky today. The wave numbers of the peaks in the spec-
trum will correspond to the modes in which the monopole
reaches an extrema at last scattering: for adiabatic fluc-
tuations k,, = mm/r;(n.), whereas for isocurvature fluc-
tuations k,, = (m — 3)7/rs(n«), where m is an integer
> 1. The first oscillation is thus at approximately the
sound horizon at last scattering 75(7.). This fluctuation
is seen as an anisotropy in the multipole [, ~ k.79,
which corresponds to the angle subtended by the scale
k.. at the distance of the last scattering surface. In the
small-angle approximation

g = sinh[xo — Xx] (51)

:\H

which reduces to rg = 1o — 1. for a flat universe.

The rapid deviation of geodesics in an open universe
causes a given scale to subtend a smaller angle on the sky.
In older universes (larger present horizon 79 from vary-
ing h or A), the distance to the last scattering surface
increases, also reducing the angle a given scale subtends.
However, this effect tends to cancel with the correspond-
ing increase in the sound horizon at last scattering. The
imperfect cancellation in the A case pushes the peak to
somewhat smaller angles.

In Fig. 11, we plot the angular location I, = wrg/r,(n.)
from which the series of peaks can be obtained as de-
scribed above. This simple estimate does remarkably well
in tracing the higher peaks which are dominated by pure
acoustic effects. For the first peak, the potentials are
still large enough at last scattering to play a subsequent
role. As mentioned in Sec. IV A, the potential decays af-
ter horizon crossing due to radiation growth suppression
if the universe is not fully matter dominated. For scales
that cross the horizon before last scattering, this drives
the acoustic oscillations. Afterwards it changes the grav-
itational redshift that the photon would otherwise suffer
from the SW effect. We call the latter the early ISW ef-
fect. Since the sound horizon is always smaller than the
particle horizon, it contributes to scales between the first
acoustic peak and scales which cross the horizon during
full matter domination.

For the adiabatic mode, the early ISW effect partially
or fully removes the SW redshift, uncovering the intrinsic
fluctuation ©¢(7n.) from the initial conditions and adia-
batic growth, as well as a contribution up to ®(7.) from
the time dilation. This can be seen in the additional con-
tributions to the rms temperature fluctuations after the
fluctuation crosses the horizon in Fig. 12(a). Since the
potential has already decayed by curvature or A dom-
ination, further decay does not significantly affect the
radiation. For scales that cross well after radiation dom-
ination, the late ISW effect is more significant and serves
to distinguish between A and open models. At interme-
diate scales, both effects are important. However, since
the late ISW contributions are cancelled at small scales
(see Sec. V B), the total anisotropy is relatively smaller
here.
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For isocurvature models, the potential continues to
grow outside the horizon in the radiation-dominated
epoch [see Fig. 12(b)]. Therefore, evolution weights the
large scales more heavily than the small. In fact, the first
acoustic oscillation at last scattering is not prominent
due both to this enhancement of the large scale and the
continuing growth of the potential which enhances the
second oscillation. This evolutionary tilt toward large-
scale anisotropies can be countered by changing the ini-
tial power spectrum. However, the corresponding en-
hancement of small scale matter fluctuations makes reion-
ization likely in this model. In this case, anisotropies are
destroyed and then regenerated by diffusive effects. It is
to this subject we now turn.

1500 — .
r Approximate Peak Location 1
r 0,=0.06 h=0.5 1
Open Numerical Adiabatic
1000 - ° O 1st Peak ¢, 7
r X 2nd Peak (,/2 1
~* r A 3rd Peak 4/3 1
FoA ]
500 ~o__ 4
L K _
H o A TTRTThgee--ol T
- (a)
1 1
0.1 1
QO
L T i " ]
1200 [ Approximate Peak Location -

0,=0.01 h=0.8 ]
1000 ]
Numerical Adiabatic

O 1st Peak ¢,

800 - Open ]
p X 2nd Peak (/2 A
~* A 3rd Peak 4/3 |
600 |- "/
400 [ A
ool _©° BT

o 9

aro Ok
1
i
1
1
1
1
'
'
1

FIG. 11. Angular scale of the “Doppler peaks” (standard
recombination). The physical scale of the peaks is simply
related to the sound horizon at last scattering. Peaks in the
anisotropy today will correspond to multiples of the angle that
this scale subtends on the sky I, = 7rg/7s(n.), as discussed in
the text. Vaiying A or h increases both the sound horizon at
7« and the present horizon 7o leaving little effect. For open
models, a given scale will correspond to a smaller angle by
geodesic deviation. This simple analytic estimate (lines) for
the peak location is valid for pure acoustic contributions and
underestimates the scale of the first peak in low Qoh? models
due to neglect of the early ISW effect.

V. SMALL-SCALE EVOLUTION:
DIFFUSION EFFECTS AND REIONIZATION

Below the photon diffusion length, even photon-baryon
tight coupling breaks down. Since the photons diffuse
among the baryons, the two fluids must be treated sep-
arately. Moreover, if the Universe is reionized, the dif-
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FIG. 12. The total ISW effect on |0 + ¥|rms (20 = 0.1,
h = 0.5, standard recombination, k = k3 x 107% Mpc™1).
(a) Adiabatic models (€2, = 0.06). The decay of the poten-
tial as the scale enters the horizon due to pressure growth
suppression causes the early ISW effect which boosts scales
approaching the first acoustic oscillation. The largest scales
which enter after radiation domination are boosted by the
late ISW effects due to the rapid expansion in open and A
models, leaving a deficit at intermediate scales. (b) Isocur-
vature models (o = Qo). Scales which enter early during
radiation domination do not grow as much due to the sup-
pression in the potential. This enhances the large scales with
respect to the small. Notice that the second adiabatic os-
cillation (k3 = 20) can be comparable to the first since the
turnover in ® occurs later. Only at the largest scales is the
distinction between open and A models manifest in the rms
temperature fluctuations.
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fusion length can grow to nearly the horizon size at last
scattering. The window for adiabatic oscillations closes,
and degree scale anisotropies in the CMB will be dom-
inated by diffusive effects. Isocurvature baryon models
also behave quite differently from adiabatic CDM models
with respect to the matter. For the decoupled CDM, den-
sity perturbations grow regardless of ionization, provid-
ing potential wells into which the baryons may later fall.
Their absence in the baryonic isocurvature case makes
the ionization history a crucial ingredient for structure
formation under this scenario. Consequently although we
retain generality for CMB anisotropies, we concentrate
on the isocurvature model when discussing the effects of
reionization on the matter.

A. Matter evolution: Compton drag
1. Partial or full ionization

Due to the lack of Silk damping, baryon isocurvature
models typically have high-amplitude small-scale fluctu-
ations which can collapse immediately after standard re-
combination at z ~ 1000 [2]. It is possible that enough
energy is released to immediately reionize some fraction
z. of the electrons. This model will effectively behave as
if recombination did not occur at all.

Although the tight coupling approximation predicts V4
and A, go to zero inside the diffusion length, its break-
down keeps this from being exactly satisfied (cf. Fig. 10).
The single fluid Jeans argument of Sec. III becomes in-
valid. In the diffusion limit where S ~ A, > A, the ef-
fect of radiation pressure on Ar in Eq. (16) is exactly can-
celed by the entropy term. After complete matter domi-
nation, the evolution equation and its solution therefore
become identical to the pressureless case, i.e., all modes
grow by the same factor D(a) [see Eq. (19)].

We can quantify this with the Compton drag argument
of Sec. ITC. After z4 = 160(Qoh2)_1/sme_2/5, the baryons
are effectively released from photon pressure. Thus, per-
turbations will grow such that Ar(a) = [D(a)/D(aq)]Cr
for @ > a4. An excellent empirical approximation (see
Fig. 13) to the behavior at intermediate times is given by

Ab/C'I = g(avad) )
with the interpolation function

D(a.1)
D(az)

Glay,az) =1+ exp(—az/a1), (52)

where if a1 > a3, G(a1,a2) = D(a1)/D(az). The veloc-
ity Vr is given by the continuity equation (16). Notice

that this properly accounts for growth in an open and/or
A universe.

2. Late ionization
Now let us consider more complicated thermal histo-

ries. Standard recombination may be followed by a sig-
nificant transparent period before reionization at z;, due
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FIG. 13. Open isocurvature baryon evolution under par-
tial ionization (Q¢ = 0.2, h = 0.5). The baryons are released
to grow in pressureless linear theory after Compton drag be-
comes negligible. Since this epoch becomes earlier as the ion-
ization fraction is decreased, present-day fluctuations will be
larger for low x., if normalized to the ionization independent
fluctuations at large scales. Unlike the CDM base, baryons
have no potential wells into which they might fall after the
drag epoch and the transfer function is extremely sensitive to
the ionization history.

to some later round of structure formation. There are
two effects to consider here: fluctuation behavior in the
transparent regime and after reionization. Let us begin
with the first equation. Closely following recombination,
the baryons are released from drag essentially at rest and
thereafter can grow in pressureless linear theory. The
matching conditions then imply that % of the perturba-
tion joins the growing mode [34], yielding present fluctu-
ations of ~ 2CD(z = 0)/D(z ~ 800) where the residual
ionization makes the drag epoch z ~ 800 < z,. The evo-
lution is again well described by the interpolation func-
tion (52) so that Ay(a) = G(a,a:)Cr. By this argument,
the effective redshift to employ is z; ~ %800 ~ 400-500.
We take here z; ~ 450.

Now let us consider the effects of reionization at z;.
After z;, Compton drag again prevents the baryon per-
turbations from growing. Therefore the final perturba-
tions will be Ap(ag) ~ Ap(a;)D(ao)/D(aq). Joining the
transparent and ionized solutions, we obtain

avfr = { G S

G(a:,a)G(a,aq), a > ag, (53)

which is plotted in Fig. 14. Since perturbations do not
stop growing immediately after reionization and ioniza-
tion after the drag epoch does not affect the perturba-
tions, we take ag = min(1.1a;,aq4).

B. Photon evolution:
The Doppler and small-scale effects

We now need to examine the evolution of photon tem-
perature perturbations in light of these results for the
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FIG. 14. Open isocurvature baryon evolution in late reion-
ization scenarios (Qo = 0.2, h = 0.5). Here the Universe is
suddenly reionized to z. = 1 at redshift z; after a transparent
period 1000 > 2z > 2;. Perturbations are released from drag
following recombination only to suffer its effects once again
between the ionization and drag epochs z; > z > z4. Thus
the final fluctuations will be larger for later reionization.

matter. As the diffusion length overtakes the fluctuation,
acoustic oscillations in the photons are washed away (see
Fig. 15). Since the baryon velocity can grow after z4
so that V;, > V,, Doppler shifts off moving electrons
will regenerate temperature perturbations. Yet since
k > kp, these perturbations will be erased as the pho-
tons travel across several wavelengths of the perturba-
tion and are rescattered. Unlike the acoustic oscillations,
photon evolution before last scattering is inconsequen-
tial. This is true even in late ionization scenarios. The
large acoustic fluctuations frozen in at recombination be-
come anisotropies as they free stream to the reionization
epoch, where they are damped as e™" by rescattering.
Thereafter, fluctuations are regenerated by the Doppler
effect at last scattering exactly as in the partially ionized
case. Doppler anisotropies therefore can be completely
described by the matter fluctuations at last scattering
(38].

Moreover, since the optical depth decreases only due
to the expansion, last scattering will extend for a period
of time comparable to 7,. The later last scattering is,
the thicker the last scattering surface. Cancellation be-
tween photons which last scattered off a crest or trough of
the matter perturbation will severely damp the Doppler
effect on scales smaller than the thickness. Together,
J
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FIG. 15. Small-scale isocurvature temperature evolution
under partial reionization (€0 = 0.2, h = 0.5, numerical). If
the Universe stays transparent after standard recombination
at z. ~ 1000, the acoustic oscillations in the photon fluid will
be frozen. However these large fluctuations are suppressed by
diffusion damping in partially reionized models. Although the
Doppler and other diffusive effects regenerate fluctuations at
small scales, these effects are also suppressed under the diffu-
sion length (i.e., the thickness of the last scattering surface).

this implies that the higher the ionization fraction z.,
the more severely damped these anisotropies will be (see
Fig. 15). One must be careful however to avoid overpro-
ducing spectral distortions in the CMB due to scattering
off hot reionized electrons. Under most plausible ioniza-
tion scenarios, fully ionized open models are ruled out by
the low Compton-y distortion [4].

We can analytically account for these effects by us-
ing the weak-coupling approximation [38], which treats
the photons as diffusing across independently evolving
baryon perturbations. Moreover, because of the cancel-
lation of the Doppler effect, ordinarily negligible contri-
butions become significant and must also be included in
this formalism, e.g., the late ISW effect [27] and second-
order contributions {3,39]. The dominant second-order
correction, called the Vishniac effect [40,41], couples V,
to the spatial dependence of the scattering probability,
i.e., since ne ~ (ne)(1+Ap), let 7 = 7(14+ Ap) in Eq. (3).
Note that this effect is included in the analytic, but not
the numerical, calculation. Ignoring curvature and tak-
ing the ordinary Fourier transform, we obtain the formal
solution for the kth mode of the Boltzmann equation®
[27]:

[0 + ¥)(n, k, 1) = [© + U](na, k, p)e*r(a=me=m(10:1) 4 [Opsw + Orsw + Ov](n, k, ), (54)

with kp = k - 4, the optical depth 7(71,72) = f:: 7dn, Opsw the Doppler and SW contributions, @isw the late ISW
effect, and Oy the Vishniac effect. As noted above, scattering rapidly damps out the contributions from before the

3Since the Vishniac effect is not linear, we must consider k-mode coupling. Therefore, in this and the following sections where
power spectra are employed, we restore the k index of the perturbations to avoid confusion.
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drag epoch as e~ 7. Thus the photon temperature perturbation is a function of the matter perturbations alone. These

source terms are explicitly given by

n ' > !
Opsw (n, k, 1) = / (@0 + ¥ — ipVp)re™ (T Mkt =m gy’

nd

n . 1 k3 1
Osw(n, k,p) = / 2Wem T M eikn(n'=m g/ (55)

nd

n ' . '
Ov (n, kyp) = / —i S V(' k) B[k — K |)re T meku gy
Nd

k!

where recall that the plane-wave decomposition is defined
such that v-vy(n, x) = —ipVy(n, k)exp(ik-x) [see Eq. (5)].
The visibility function 7e~" picks out the epoch of last
scattering, and the second-order nature of the Vishniac
term is reflected in the mode coupling sum.

For scales smaller than the thickness of the last scatter-
ing surface, as determined by the width of the visibility
function 7e~7, the Doppler, SW, and Vishniac effects will
be cancelled by oscillation in the integrand of Eq. (55) for
all but the perpendicular x = 0 mode. Analogously ¥e~"
defines a thickness of the “gravitational last scattering
surface” under which contributions are also cancelled.

Linear theory flows are irrotational, 4 - v oc pk, and
gravitational redshifts are absent in the direction perpen-
dicular to the oscillation. Both the Doppler effect and the
SW effect thus vanish for 4 = 0, implying severe cancel-
lation. Because |¥| < |V,| on small scales, the residual
Sachs-Wolfe effect can be neglected. By angularly aver-
aging the first of Egs. (54), we obtain the residual effect
on the monopole [38],

1 Vo .
@0 jad ZA‘Y >~ ?T, (56)

which feeds back through Eq. (54) into the uncanceled
p = 0 mode [41]. This 4 = 0 mode is also how all ef-

P(k)
(km0)®

'9 + ‘II|12‘ms(7707k) =m

f

fects avoid cancellation. Small-scale density perturba-
tions, with oscillations perpendicular to the line of sight,
can be in bulk motion parallel to the line of sight. The
result is the Vishniac effect: a small-scale temperature
anisotropy due to the increase in probability of scatter-
ing off an overdense region. The late ISW effect is similar.
But note that in the A case, the thickness is compara-
ble to 79, implying cancellation occurs up to scales near
the present horizon. Thus whereas in the open case one
sees a gentle roll off of contributions in /, in the A case,
anisotropies fall sharply even from the lowest I.

This method is valid for calculating these secondary
fluctuations for either the isocurvature or adiabatic sce-
nario, under any ionization history in which last scatter-
ing occurs after the end of the drag epoch.* In Fig. 10,
we show that this approximation (56) compares well with
the numerical result, roughly between the drag epoch and
last scattering, as expected.

Integration of Eq. (55) determines the present rms
temperature perturbations as a function of the under-
lying matter fluctuations P(k) = |Ar(no,k)|?. For late
last scattering, the integrands in Eq. (55) are wide bell-
shaped functions. The functions ©®psw and Oisw are
therefore approximately Fourier transforms whose contri-
bution to the rms can be approximated using Parseval’s
theorem [38,39,41]:

/0 do|Gpsw (z) + Gisw(@)|? + |Gy (2) Iy (k) P (k)] (57)

where z = 71/n9. The growth is accounted for by the conformal time integrals over

Gpsw (z) = mp [27 + 2‘7} e~ Tmm),

Dy Dy

2
Glsw(w) =3 (%) ngHng [

D D
Gy(z) = D£_+nge—f(n,no) ,

ODO

b a
Do Qg

D a
e _ 22| o—m(mmo)
Do ao] e , (58)

where Do = D(70) and the time-independent mode coupling for the Vishniac effects is [39]

“For baryonic compact object dominated models, the density of free electrons may be so depleted that last scattering occurs
before the drag epoch even with maximal ionization. Though the analysis is more complicated, it remains true that scattering
attempts to equalize V; and V,. This boosts V; and suppresses V, at large scales and vice versa at small scales [4].
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Iy (k) =

1672 7

The Vishniac effect peaks strongly to small scales,
whereas the first-order Doppler and integrated Sachs-
Wolfe contribution have the same scale dependence re-
flecting the cancellation process [27].

In summary, cancellation occurs because in the dif-
fusive and free-streaming limit photons travel through
many wavelengths of the matter fluctuation source. Can-
cellation is particularly severe for the Doppler and SW
effects due to a lack of a perpendicular mode, but is also
present for the late ISW and Vishniac effects.

VI. MATTER AND TEMPERATURE
POWER SPECTRA

The relative amplitudes of the £ modes which form
the power spectrum are often set by an ab initio ansatz.
Taking a more agnostic approach which allows for future
empirical determination of the weights, we examine the
transfer functions, e.g.,

P(k) = |Az(ao, k)|* = |T(k)Cr(k)|? (isocurvature)
= |T(k)Ca(k)|? (adiabatic)

for the matter. For CMB anisotropies, each [ mode
evolves differently and thus possesses its own transfer
function. We present here the full [-k space structure of
the anisotropy transfer function. To illustrate the effects
of altering the k& weighting, we also present a few specific
examples for the underlying spectrum. Perhaps the sim-
plest possible choice is a random-phase pure power law in
k initially, i.e., |Ca|? « k™ and |Cy|? o k™ for adiabatic
and isocurvature modes, respectively. Although this may
not be realistic near the curvature scale where geometric
effects can introduce novel features [42], these toy models
do illuminate the general case.

A. Matter transfer function
1. Adiabatic models

For adiabatic models, the matter transfer function is
affected by the dynamics and matter content only. Since
in low Qg models matter-radiation equality occurs late,
the scale at which the transfer function turns over due
to radiation growth suppression is larger. Furthermore,
growth in the matter dominated epoch is suppressed due
to curvature and/or A. Combining the standard fitting
formula for the numerical results [43] with our analysis
of growth rates, we may write the total transfer function
as

In(1 + 2.34q)

T'(k) = D(no) 2.34q

(1 + 3.89¢ + (16.1¢)>

+(5.469)% + (6.71¢)%"V/4 , (59)

oo 1
4 (kms))s / d-'// d(cosb) (1 — cos?0)(1 — 2y cosb)? P[k(1 + y* — 2y cos6) /2] P(ky)
o Jo -1 (149 — 2y cosh)?

P(k) Pk)

f

where g = k/[QohZexp(—2€)] and is valid for 2, < Q.
Aside from the small Q; dependence to account for cou-
pling with the photons, g « k/keq. For scales that enter
before equality, the perturbations grow as a? until Jeans
crossing at ay o (keq/k). Thus the transfer function is
flat at large scales and goes smoothly to k=2 at small
scales.

The definition of the adiabatic transfer function em-
ployed here carries information about the growth from
equality to the present in the form of D(n,). However,
in comparing different Q¢ models, the epoch of equality
shifts. A more useful choice requires equal potentials ® at
the initial epoch (below the curvature scale). Specifically,
this amounts to considering the quantity T'(k)/(Qoh2)2
due to the k2, from the Poisson equation (see Fig. 16).

This has the added benefit that the k-space SW con-
tribution will also be the same. If the total ISW con-
tributions after last scattering are negligible, this nor-
malization of the transfer function is identical to a large-
angle anisotropy normalization for scale-invariant spec-
tra. For tilted spectra, one must account for changes
in the k to ! space projection through n9 — n.. Since
n =12 < 0.9 models approximately satisfy these con-
ditions at the largest scales (see Sec. IIID), the relative
amplitude of anisotropy normalized matter fluctuations
on various scales can be read directly from Fig. 16. Mat-
ter fluctuations at the 84~ Mpc (k ~ 0.1h Mpc~1) scale
decrease with increasing A in amplitude for fixed A due
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FIG. 16. The adiabatic matter transfer function (h = 0.5,
Q, = 0.01). The transfer function has been scaled by
(Qh?%)~2 to compare different o values by requiring the
same initial gravitational potential & (below the curvature
scale). For scale invariant n = 1 A models, this normalization
is equivalent to that determined by large-scale anisotropies,
since the SW effect dominates all but the lowest multipoles.
Therefore, the approximate relative amplitude of matter fluc-
tuations can be directly read off from this plot. For open
models, this is not true due to a more significant ISW effect
and curvature effects at large scales which relate the potential
to the initial power spectrum.
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to a change in equality rather than A growth suppression
[44].

For open adiabatic models, the situation is more com-
plicated. As we have shown, the late ISW, not the SW,
effect dominates the large-angle anisotropies. From this
we would expect that the anisotropy normalized matter
amplitude would decrease relative to Fig. 16. However,
this can be countered by the suppression of the gravita-
tional potential (SW and ISW) effects from the curva-
ture term in the Poisson equation (13). If the underlying
spectrum is taken to be |C4|? o k, these effects in fact
nearly cancel. However, we have reason to believe that
the presence of a curvature scale may influence the initial
conditions. For example, in the specific open inflationary
case calculated in [42], the boost from the late ISW effect
dominates and further lowers the relative normalization
of matter fluctuations.

2. Isocurvature models

In contrast to the adiabatic case, the isocurvature
matter transfer function exhibits relatively complicated
structure. On scales larger than the Jeans length, the
matter gains a k% — 3K tail through the feedback mech-
anism (see Sec. IIIB) and grows as D(a) after radiation
domination. Below this scale, the perturbations have
damped oscillations around the initial conditions C; until
the end of the drag epoch. Since the Jeans scale goes to
a constant in the matter dominated epoch, this implies
that the transfer function will have a significant peak at
the maximal Jeans scale. Note that if the Universe is
not sufficiently matter dominated at last scattering, this
scale could be less than its absolute maximum. Thus as
the ionization fraction decreases, the peak in the trans-
fer function moves to smaller scales (see Fig. 17). Since
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FIG. 17. The isocurvature matter transfer function
(€0 = 0.2, A = 0.5, numerical). The baryon perturbations
will have a prominent peak at the maximal Jeans scale since
perturbations grow as D(a) outside this scale, with a k2 — 3K
tail, and are suppressed inside it. The acoustic oscillations
damp away in the highly ionized case since last scattering
is delayed and the diffusion length grows. This leaves a flat
small-scale tail in the transfer function. Note also that in the
low ionization scenarios, the Jeans length may not grow to its
maximum matter dominated value by last scattering, leading
to a smaller scale for the peak. The growth suppression due
to A is less significant than that from curvature domination.

isocurvature models are motivated by the desire to satisfy
observational estimates of Q¢ ~ 0.2, we will concentrate
on the effects of ionization history rather than matter
content.

We can in fact deduce some of the properties of the os-
cillatory regime from our simple analysis. In Sec. IV B,
we have shown that the oscillations decrease as (1 +
R)™ Y4k, /k until they absolutely disappear for scales
smaller than the diffusion length k& >> kp, leaving a con-
stant tail in the transfer function. However, after the
drag epoch, all scales grow as D(a) so that the flat tail
will have an amplitude which is dependent on the ion-
ization history. Notice furthermore that the oscillations
become less prominent if last scattering is delayed, since
both the (1 + R)~1/% and diffusion suppression increase.

For A models, the change in the growth rate boosts
the amplitude of the transfer function. Since neither the
Jeans scale nor the drag epoch depends on A itself, the
shape of the transfer function is the same aside from the
lack of curvature effects at the largest scales. Analytic
fitting formula may be adapted from the fully ionized
case given by [45], modified to account for the growth
rates presented in Sec. V A.

Since large-scale structure measurements indicate that
P(k) o k™' at intermediate scales 1072 < k/h < 1
Mpc™!, which fall just below the maximal Jeans scale,
the isocurvature scenario must have an initial spectrum
of n ~ —1, at least at these scales [46]. If the initial
spectrum is assumed to be a single power law, this im-
plies a very steep matter power spectrum at large scales
since Ar o (k?—3K)C;. In other words, an isocurvature
spectrum with index n corresponds approximately to an
adiabatic spectrum of n + 4 at large scales, e.g., n = —3
yields scale invariance. The steep n = —1 implies large
amounts of small scale power which allow for the early
collapse of structure and reionization [2].

B. CMB anisotropies

1. Large angles

As we have shown in Sec. IIID, the total Sachs-Wolfe
effect can lead to interesting structure in the anisotropy
at large scales in an €y < 1 universe. But how dependent
are the features on the underlying power spectrum? In
Fig. 18, we show the full contributions to the anisotropy
in both [ and k as given by Eq. (9) for adiabatic mod-
els. Although we have chosen to represent a |C4|? « k
weighting, any initial power spectrum can be obtained
from scaling by |[C4|%2/k. The full information of the
two-dimensional radiation transfer function is contained
here. Notice that integration in log;ok yields the total
anisotropy o [(2{ + 1)C; and in log;ol gives the rms tem-
perature fluctuation for a given k mode.

The adiabatic Q¢ = 1 case shown to full scale in the
top left panel of Fig. 18 shows the tight k-l correlation
of the projection from last scattering (see Sec. IIID).
The SW effect contributes at large physical scales and
the acoustic peaks at small physical scales. An expanded
view in the top right panel shows the break between the
two effects around log;ol = 1.5 and log;o(k Mpc) = —2
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for this model. Pivoting the underlying power spectrum
around this value of k£ simply emphasizes one effect over
the other.

The situation is more complicated for A and open mod-
els. The ISW term contributes to anisotropies for inter-
mediate values of k. For low Q¢ ~ 0.1-0.3 the early ISW
effect fills the gap between the SW ridge and acoustic
peaks of the Q¢ = 1 model (see Secs. IIID and IV C). The
main contribution comes directly after horizon crossing
for these intermediate k values and thus projects onto

log(k*Mpc)

lower | modes than the SW effect.

At still larger scales, late ISW contributions become
important. For A models, they lead to low ! contribu-
tions since most fluctuations have not had time to free
stream to high multipoles and those which have are can-
celled. For intermediate k, the late ISW effect adds in
quadrature to the SW effect. Yet for the largest k£ modes,
the SW effect itself has not free streamed and the late
ISW effect will partially cancel it. Thus, depending on
the k& weighting of the initial power spectrum, the late

Q=1 (expanded)

FIG. 18. The full adiabatic photon power spectrum. The logarithmic contributions to the anisotropy in I and k [see Eq. (9)]
are plotted here. Whereas in the Qo = 1 case only the SW ridge and acoustic peaks are prominent (top left and close up,
top right), the A and open cases show more complicated structure due to the ISW effect. Depending on the initial weightings,
represented here as |C4|?> o k, certain features may be emphasized over others. Notice the A late ISW effect at low I and
intermediate k& and the comparatively small open SW contribution at the foot of the ISW ridge. The logarithm is to base 10.
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FIG. 19. Large-angle anisotropy dependence on the initial
power spectrum |Cr|? « k™ or |Ca|?> « k™ for isocurvature
and adiabatic scenarios, respectively. (2 = 0.1, h = 0.5,
standard recombination.) Notice that for red spectra, ge-
ometric and/or cosmological constant effects play a role in
determining the anisotropy whereas for very blue spectra,
12C; « 12 for all models. Isocurvature models with n ~ —1 to
fit large-scale structure will thus not be extremely sensitive
to open or A dominated universe effects. The normalization
here is arbitrarily matched at the quadrupole.

ISW term can have different effects. In Fig. 19, we plot
the anisotropies for single power-law weightings. Notice
that the boost in the low multipoles from A only occurs
for intermediate values of the slope. On the other hand,
for isocurvature models, the A contributions to the late
ISW effect are never prominent due to the dominance of
the SW and early ISW effects.

For €y =~ 0.1-0.3 open adiabatic universes, the to-
tal ISW effect almost always overwhelms the SW effect.
There are two exceptions. Below a certain scale, the late
ISW effect is thickness cancelled. Moreover these scales
were superhorizon sized at radiation domination so that
the early ISW effect does not contribute either. At the
largest scales, the projection carries the late ISW effect
onto the unobservable monopole and dipole. Thus just as
in the A case, the relative weight of SW versus late ISW
increases at large scales. Again, the SW and late ISW
contributions at the largest scales tend to cancel. This is
more important for curvature as opposed to A late ISW
contributions since the horizon size at curvature domi-
nation is smaller than that at A domination. Indeed for
somewhat higher Q¢ open models (2 ~ 0.5-0.8) where
the SW and late ISW contributions are more compara-
ble, cancellation can lead to a suppression of large-angle
anisotropies [5].

On the other hand, for the largest modes the ampli-
tude of late ISW contribution itself decreases with I due
to the projection. Yet to have any net effect, the ini-
tial power spectrum must rise sharply to large scales to
counter the k2/K Poisson equation and k3 “volume” sup-
pression. Even the k! rise toward large scales in recent
predictions of an open inflationary model [42] does not
overcome this suppression. Thus it is difficult to obtain
a spectrum with falling anisotropies in an open universe;
in most cases the lowest-order multipoles will show a rise

in the anisotropy with ! (see Fig. 19). This is often fol-
lowed by a dip due to the transition between late and
early ISW domination.

Open isocurvature models do not suffer Poisson sup-
pression, which makes curvature scale peculiarities man-
ifest. Anisotropy contributions come from k’s all the way
to the curvature scale k = /—K or k = 0. Notice that
this covers an infinite range in logiok, and yet the contri-
butions retain exactly the same l-space structure. As we
discuss in Appendix A, the radial eigenfunctions X (x)
have the peculiar property that even as the effective wave
number v = k/v/—K — 0, they possess structure on
order of the curvature scale and are exponentially sup-
pressed thereafter. Although the functions are complete,
no random-phase superposition of them will ever produce
structure above the curvature scale. As k — 0, all modes
contribute at the angle the curvature scale subtends when
the anisotropy was generated, e.g., at approximately the
distance 19 —  ~ no for the SW and isocurvature early
ISW effect. .

For a random phase k-scale-invariant potential, the in-
finite number of decades in log;ok as & — 0 causes a
divergence in the anisotropy, if no cutoff is assumed [see
Fig. 20(a)]. Moreover, any spectrum that places even
more power on scales k < /=K will result in the same
final anisotropy. This peculiarity can be seen in Fig. 19
for open isocurvature models with n < —3. Note how-
ever that “k-scale invariance” does not imply equal power
on all physical scales since all low k eigenfunctions have
curvature scale power. Physical scales above the present
horizon do not contribute to anisotropies. For the adia-
batic case, the suppression of such scales from the Poisson
equation prevents this effect from becoming manifest for
reasonable n.

This indicates that for open isocurvature scenarios we
must alter the power spectrum from k-scale invariance
to have enough power at small scales to form galax-
ies. For spectra that are strongly tilted to small scales,
anisotropies converge to approximately (2! + 1)C; o< 12
and become independent of n and the model. This occurs
for n 2 1 for isocurvature and n 2 5 for adiabatic condi-
tions where recall that there is a k* difference in the cor-
respondence of n to the matter power spectrum. Because
fluctuations are dominated by the smallest scale fluctu-
ations present, i.e., those at the photon diffusion length
kp, Eq. (8) implies that C) is constant in ! as required.
For an isocurvature scenario with index —1 < n < 0,
which is of interest for structure formation, this asymp-
totic value has not yet been reached and (2! + 1)C; I
approximately. This corresponds to an effective COBE
DMR slope of neg ~ 2 [5] implying that isocurvature
models have significantly steeper anisotropy spectra than
the standard CDM model in which neg ~ 1, but not as
steep as one might have naively thought. In Fig. 20(b),
we show such an n = —1 weighting. Notice that bleeding
from smaller £ modes than the main k-l projection ridge
is responsible for filling in the low-! anisotropy.

In summary, we have identified several independent
causes of a downturn of anisotropies at low I: (a) the
Poisson equation curvature cutoff; (b) SW and late ISW
cancellation; (c) eigenfunction curvature cutoff. The first



2622

effect only occurs in open adiabatic models and manifests
itself for Q9 < 0.3. The second effect is most signifi-
cant when the SW and late ISW effects are comparable,
e.g., open adiabatic models with Q¢ ~ 0.5-0.8 [5] and
comes from scales which are superhorizon sized at the
epoch of late ISW generation. The last effect applies if
the initial spectrum gives significant weight to randomly
phased low-k contributions and if the contributions are
generated early enough to project onto an anisotropy in-
stead of a monopole fluctuation, e.g., open isocurvature
models with n < —3.

Two effects can give an upturn relative to the under-
lying power spectrum: (1) late ISW contributions; (2)
high k-mode power bleeding into low {. The late ISW
effect predicts a rise toward low ! because of crest-trough
cancellation at small scales. In a A universe, this cutoff
scale is on order the present horizon so that contributions
are already falling sharply with [ at low {. For open uni-
verses, the late ISW effect contributes earlier and has a
smaller scale cutoff. Thus the signature of the anisotropy
transfer function is a rise with angle to a plateau at low
l. However, since the k modes which contribute to this
effect are the intermediate ones, this effect is only man-
ifest if the initial spectrum gives them weight. For pure
power laws, this requires a roughly scale-invariant po-
tential: k3®2 = const. In an open universe, the Poisson
cutoff can change the plateau to a dip in the anisotropy at
low-1. For the opposite case of small scale-weighted power
spectra, n 2 —1 for isocurvature and n 2 3 for adiabatic,

n=-3

1.5

log(l)
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the higher k ridges in the projection effect contribute
strongly to low-l multipoles. This implies that there is
a maximum slope with which low-order multipoles can
rise, C; ~ const.

If any such features are detected in the observed spec-
trum and are statistically significant considering cosmic
variance, some variation of the standard CDM picture
will be necessary. However, even though a simple tilt
(single power law) in the power spectrum cannot mimic
such features, it is clear that more complicated initial
spectra can. This degeneracy between the initial condi-
tions and the evolutionary effects is lifted by assuming an
ab initio model. In this case, large-scale anisotropies are
a simple yet powerful probe of the underlying cosmology
as is well known. Alternatively, once the fundamental
cosmological parameters, e.g., Qg, h, A, are known, they
will tell us what the initial conditions for structure for-
mation are.

2. Intermediate to small-scale anisotropies

In standard recombination scenarios, acoustic oscilla-
tions determine the structure of anisotropies for both adi-
abatic and isocurvature modes. Since these oscillations
contain a great deal of structure, it is obvious that more
cosmological and model information can be extracted
here than at larger angles. Moreover, once coverage of

n=-1

FIG. 20. The full open isocurvature photon power spectrum for |Cr)? o k™. (a) Curvature scale weighted n = —3. The
lack of a Poisson cutoff in the isocurvature potential makes the nature of the open universe eigenfunctions apparent. The
projection ridge crosses minimum eigenvalue k = /—K (front edge) at roughly ! ~ 10, corresponding to the fact that the
lowest eigenfunction still has structure only around the curvature scale. This leads to the cutoff to low multipoles depicted
in Fig. 19. (b) Small-scale weighted n = —1. The main projection ridge does not dominate the anisotropy at the low-order
multipoles. Power from smaller physical scales (high k) bleeds in to boost the anisotropy. Thus anisotropies do not rise as

rapidly with ! as predicted from the one-to-one conversion of k onto I. For this model nes ™~ 2 at large angles. The logarithm
is to base 10.
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the sky at these angles becomes more complete, these
measurements will be more immune to uncertainties from
cosmic variance.

The angular scale of the peaks is determined by the
projection of the sound horizon at last scattering onto
the sky today and is independent of the underlying power
spectrum. Three cosmological quantities, with their cor-
responding dependence on fundamental parameters, en-
ter into its construction: (a) rs(n.) =~ f(Qoh2, Qph?),
the sound horizon at last scattering; (b) mo — 7. =
F(Q0h%, h,Q22h?), the distance to the last scattering sur-
face; (c) K = f(Q0h2, h, 24h?), the curvature. The first
task is to distinguish between adiabatic and isocurvature
scenarios. For adiabatic models, the peak ! values follow
the series (1:2:3:4.-.), whereas for isocurvature models
(1:3:5:7---). Since the first peak is contaminated by the
early ISW effect (see Fig. 21), the higher peaks are the
most reliable measure of this effect. On the other hand,
this rise to the first peak can also be used to separate
isocurvature from adiabatic models. We have noted in
Sec. IV C that the first isocurvature oscillation is low in
amplitude. Only in adiabatic models does the first oscil-
lation truly stand out as a peak.

Once adiabatic and isocurvature models are distin-
guished, the location of the peaks is uniquely predicted
by the cosmological parameters. However, the degen-
eracy in the dependence on Qoh?, Qxh2, h, and Quh?
does not allow inversion of the relation [47]. For exam-
ple, an Q, = Q¢ = 1, h = 0.5 adiabatic model predicts
lpeak ~ 400 and h = 1.0 predicts I eax ~ 500 which can
mimic projection effects from curvature and A. Of course,
if one is willing to restrict Q3h2% to lie within the nucle-
osynthesis bounds, its effect on r;(n.) is negligible. On
the other hand, the geodesic deviation due to K with low
Qo and A = 0 is a severe and easily tested effect. If the
angular location of the peaks turns out to be multiples
of a high | > 400-500, then curvature must almost cer-
tainly be present in the model since no reasonable change
in 7,(n) or o — 1. can account for it [48].

Since isocurvature acoustic oscillations are likely to be
erased by reionization, let us concentrate on lifting the
degeneracy for the more plausible adiabatic case. We
can use the deviation of the first peak from the acoustic
series predicted above for this purpose. The early ISW
effect pushes the peak to larger scales for low Q¢h? uni-
verses. Moreover, the amplitudes of the peaks contain a
large amount of cosmological information as well. Even
though this depends on the underlying power spectrum, a
minimal assumption, such as a pure power law only over
the range of the peaks, would be sufficient to allow in-
teresting constraints on cosmological parameters. As we
have seen, lowering Qoh? boosts the first peak relative to
the higher peaks due to early ISW contributions and rais-
ing Q,h? boosts the odd numbered peaks over the even,
due to reduction in the pressure relative to the gravita-
tional force. In fact, these opposing & dependences nearly
cancel for the first peak if Q¢ = 1 and QA2 is given by
big bang nucleosynthesis. This is not true for the higher
peaks [6,32]. Thus the relative amplitudes of the series
of peaks contain crucial cosmological information. These
important tests will depend on having experimental in-
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formation for anisotropies [ 2 200.

Considering the present experimental focus on I
200 anisotropies, it would be useful to extract infor-
mation from the ratio of large- to intermediate-angle
anisotropies. For instance, in the n = 1 model of
Fig. 21(a), the rise to the first peak is more dramatic
in low Qoh? universes. Unfortunately, this of course
depends on the specific model in question. However,
in general, lowering Qoh? increases the intermediate
anisotropies through the early ISW effect, whereas in-
creasing ,h% does the same through the acoustic oscil-
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FIG. 21. Intermediate- to small-scale anisotropies. (a) Adi-
abatic models. Projection of the sound horizon at last scat-
tering onto the sky today determines the angular scale of
the “Doppler peaks” (cf. Fig. 11). The sound horizon is the
same physical scale for open and A models with fixed Qo but
geodesic deviation makes it correspond to a smaller angle in
the open case. Compared with the flat case, the A model has a
somewhat smaller angular scale due to the imperfect cancella-
tion between the increase in the age of the Universe today and
at last scattering. (b) Isocurvature models. Anisotropies in
the standard recombination scenario (z. ~ 0) produce far too
large fluctuations on arcminute scales due to the steeply rising
spectrum. Reionized models have their adiabatic fluctuations
damped out by photon diffusion and a cancellation suppressed
Doppler effect. Notice that large-angle anisotropies are im-
mune to ionization history effects for the open case but not
for the A case. This and the difference in the damping scale
are mostly due to the projection effect.
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lations. For large scales, the late ISW effect can boost
anisotropies a comparable amount in the open but not
the A case. However one must recall that in the open
case there is also Poisson suppression of the power spec-
trum and other curvature effects.

Of course, allowing the thermal history to deviate
from the standard recombination scenario introduces an-
other degree of freedom which complicates the extraction
of cosmological information. If reionization is low, the
acoustic peaks which are damped as e~ 7 in amplitude
below the horizon at last scattering may still be observ-
able. However if the ionization is high, the detailed in-
formation in the acoustic oscillations is lost to us. This
is likely to be the case for isocurvature models. If the
initial spectrum is chosen to be consistent with large-
scale structure n ~ —1, the large fluctuations at small
scales could result in early reionization. Normalized to
large-scale anisotropies, standard recombination models
also produce excessively large intermediate scale adia-
batic oscillations in the standard recombination scenario
[see Fig. 21(b)]. Reionization is therefore also necessary
for isocurvature models.

In this case the sole feature is the damping scale which
measures the photon diffusion length at last scattering.
In Fig. 21(b), we show the effects of altering the ioniza-
tion history of open and A isocurvature models. Assum-
ing a cosmological model, the damping scale fixes the ion-
ization history. On the other hand, assuming an ioniza-
tion history (e.g., fully ionized), it essentially probes the
horizon size at last scattering as projected via geodesic
deviation. Although A models are older and yield a larger
distance to the last scattering surface, the geodesic de-
viation effect pushes the damping scale of open models
to even smaller angles. Notice that this also makes the
open universe large-scale anisotropies nearly independent
of ionization history since these angles correspond to su-
perhorizon scales at last scattering.

As for the amplitude of the regenerated fluctuations,
we may employ the analysis of Sec. VB to gain insight
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FIG. 22. Isocurvature temperature power spectrum. In
this fully ionized z. = 1, low Q¢ = 0.1, h = 0.5 model,
the ISW effect makes a contribution equal to and with the
same scale dependence as the cancelled Doppler (plus SW)
term (DSW). The second-order Vishniac term (V') dominates
at small scales. The analytic approximation (solid) fails at
large scales where cancellation arguments are not applicable.
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into the numerical results. In Fig. 22, we show a com-
parison of isocurvature temperature power spectra from
the numerical and analytical calculations. The numeri-
cal calculations are purely first order and do not include
the Vishniac contribution. The Doppler and SW (DSW)
fluctuations are increasingly suppressed by thickness can-
cellation as last scattering is delayed, as reflected in the
time integrals of Eq. (58). The late ISW effect is of course
independent of ionization but increases as 2y decreases.
For the fully ionized, low ¢ = 0.1 universe shown here,
the late ISW contribution thus more than doubles the
temperature fluctuations at intermediate scales. On the
other hand, the Vishniac effect depends quadratically
on the amplitude of the matter fluctuations and thus is
larger for later last scattering. In our detailed numeri-
cal study [4], we show how these various effects can be
combined to yield the minimal anisotropies for the isocur-
vature model.

Reionized adiabatic models look similar to isocurva-
ture models in that the sole feature is at the diffusion
scale at last scattering. If no underlying power spectrum
is assumed, it may be difficult to distinguish between
the two. However, as large-scale structure measurements
reach to larger scales and CMB experiments to smaller
scales, it will be possible to entirely remove the ambigu-
ity of the initial power spectrum (see, e.g., [49]). Consis-
tency between the matter and radiation power spectrum
is indeed the ultimate test of any model for structure
formation. As we have seen, the difference in the matter
and temperature transfer functions on the same scale can
remove all doubt about the question of adiabatic versus
isocurvature initial conditions and/or standard recombi-
nation versus reionized thermal histories.

VII. DISCUSSION

We have comprehensively studied the evolution of den-
sity and temperature perturbations with an arbitrary
spectrum of adiabatic and isocurvature perturbations in
a critical, open, and A dominated expanding universe.
By employing an analytic treatment, we provide model-
independent insight into the formation of anisotropies
that is confirmed by its agreement with the full numeri-
cal calculation. It thus becomes possible to separate and
interpret each physical process that generates these per-
turbations.

Our treatment identifies numerous sources of anisot-
ropies. Curvature effects due to geodesic deviation and
in the definition and dynamics of the fluctuations them-
selves give rise to peculiarities in the anisotropy spec-
trum which may soon be constrained by the observations.
Moreover, gravitational redshift effects due to the pho-
ton’s climb out of the potential well (SW effect), as well
as decay or growth in the potential due to radiation (early
ISW effect), and the decay due to the rapid expansion in
an open or A dominated universe (late ISW effect) carry
specific signatures that may be identifiable in the large-
angle anisotropies. However, the manifestation of these
effects in a particular model will depend on the initial
power spectrum. In examining the dependence on initial
conditions, we also present a particularly simple deriva-
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tion of the 1 (adiabatic) and 2 (isocurvature) coefficients
multiplying the gravitational potential in the SW effect.

Smaller-angle anisotropies carry information which is
less dependent on the power spectrum. We have investi-
gated the nature of acoustic oscillations which give rise
to peaks in the anisotropy as well as diffusion damping
which is responsible for its small-angle cutoff. Moreover,
we have provided a very simple formula which predicts
the angular location of the peaks as a function of the mat-
ter content and geometry of the universe. The physical
origin of their relative heights is also clarified. In reion-
ized models however, acoustic oscillations are damped
and give way to last scattering effects due to baryons in
infall. At intermediate scales, this leads to the Doppler
effect, whereas at small scales significant second-order
Vishniac contributions must be considered.

Since the principles outlined here are valid for any
model, they can also be used to evaluate currently popu-
lar models for structure formation. At the present how-
ever, it is not even clear which model, if any, is consis-
tent with the large-scale structure data alone, much less
the detailed features in the CMB anisotropies. Despite
the success of the elegantly simple standard CDM model
for structure formation, it is becoming increasingly clear
that some modification either in the model or our under-
standing of its implications is necessary (e.g., see [50] for
a review). Normalized to large-scale anisotropies, stan-
dard CDM predicts matter fluctuations which imply a
moderately antibiased picture of galaxy formation [51]
and more small-scale power than is observed for peculiar
velocities. It is also difficult to understand the dynamical
measurements implying a low €2y at small scales in this
picture [52]. The obvious solutions within the context
of CDM are to either change the initial power spectrum
from Harrison-Zel’dovich n = 1, or lower ¢ to move
the equality cutoff to larger scales. Indeed the shape
of the matter power spectrum alone seems to indicate
Qoh ~ 0.25 [43], and determinations of a high Hubble
constant h ~ —0.8, if confirmed, also support low g
models due to the age problem [53].

We have fully examined the consequences these stan-
dard solutions have for CMB anisotropies. The signature
of low £y models at large scales depends on the under-
lying power spectrum. Particularly in the case of open
models, where we ezpect deviations from a single power-
law spectrum at the curvature scale, this ambiguity can
change the relative amplitudes of anisotropies to mat-
ter fluctuations as well as the shape of the large-scale
anisotropies themselves. For A models, this is perhaps
less of a concern. The boost in low-order multipoles from
the late ISW effect can be used to constrain n = 1 mod-
els [54]. The acoustic peaks provide a better handle on
the underlying cosmology from both their angular loca-
tion and relative heights. Even with complications such
as gravitational wave contributions, which can boost the
large-scale anisotropy relative to the matter [55], the in-
formation contained in the acoustic peaks is not lost.

Another possible alternative is to abandon adiabatic
fluctuations in favor of isocurvature ones. This model
also changes the relative amplitude of matter versus tem-
perature perturbations. However, given the likelihood of
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reionization, the thermal history of baryonic isocurva-
ture models can be adjusted to match the observations.
The fundamental probe here is the slope of the matter
and temperature power spectra. Present indications are
that n ~ —1 (implying n.g = 2) from large-scale struc-
ture measurements. The discrepancy with flat large-scale
anisotropies with n.g ~ 1 [56] is beginning to indicate
that no single power-law model is adequate [26]. While
this is not necessarily surprising for the open version,
it would require a dramatic break in the power spec-
trum to counter the heavily small-scale weighted power
required by large-scale structure. Perhaps more damag-
ing to this model is the growing body of intermediate
scale | ~ 50-200 anisotropy measurements. If a steep
rise toward [ ~ 200 is confirmed [57], there will also
have to be an additional break below the curvature scale.
Furthermore, there are indications that even large-scale
structure measurements themselves do not fit with sin-
gle initial power-law isocurvature models, due to lack of
features in the matter transfer function [43].

Finally a change in the matter content, e.g., adding
massive neutrinos [58] or topological defects [59], is an-
other possibility. Although we do not explicitly consider
such exotic models, the principles outlined here remain
valid. Sachs-Wolfe contributions and acoustic oscillations
are determined from the gravitational potential in the
same way in these models. Thus once the evolution of the
matter is understood, the implications for anisotropies
readily follow.

Given that none of these alternatives provide a com-
pelling ab initio model for structure formation, it is per-
haps best to keep an open mind to all of the possibili-
ties. As the large-scale structure and CMB anisotropy
data continue to accumulate, the general principles for-
mulated here will aid in the empirical reconstruction of
a consistent model for structure formation.
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APPENDIX A:
OPEN UNIVERSE NORMAL MODES

1. The radial representation

Fluctuations in an open universe must be decomposed
in the eigenfunctions of the Laplacian v Q;; = —k?Q.
To gain intuition about these functions, let us examine an
explicit representation. In radial coordinates the three-
metric becomes

vijdz*dz? = —K~'[dx? + sinh®x(df? + sin?0 dé?)],
(A1)

where recall x = /—Kn. Curvature makes the surface
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area of a shell at distance 7 increase as —K ~'e?X rather
than 7?2 for super-curvature distances x > 1. The Lapla-
cian can now be written as

ij - o (. 0Q
50— _ 2 2, 7%
Y?Qi; = —K sinh™“x [ax (smh X BX)

1 8 (. ,0Q . _2,0°Q
51—0%<sm9———)+sm 96(1)2 . (A2)

Since the angular part is independent of curvature, we
may separate variables such that @ = X! (x)Y™(0,9)
where 12 = k2/(—K) = —(k%/K +1). From Eq. (A2), it
is obvious that the spherically symmetric ! = 0 function
is

sin(vyx) sin(kA7)

=vV-K+—"—"—. A3
v sinhy ksinh(Anv—-K) (A3)

X2(x) =

As expected, the change in the area element from a flat to
curved geometry causes v/— K7 — sinhy in the denomi-
nator. The higher modes are explicitly given by [18,19]

X, () = ()" MR+ )T

d'*+1(cosvy)
. hl
xsin X d(coshy)!+1’ (A4)
and become j;(k7) in the flat space limit. Here
- k2 —K)---(k* — KI?
My = F =KL (B Z KD (A5)
(k? — K)

which reduces to unity as K — 0. It represents our
convention for the normalization of the open universe
functions.

It is often more convenient to generate these functions
from their recursion relations [20]. One such recursion
relation is

d 41 ! -1
— = —kX
dn~v 2141 "%
l+1 K 1+1
o [1 1(z+2)k2] kXL, (A6)

which is of the same form as the Boltzmann equation (6)
for (© + ¥)/(2l + 1) in the free-streaming limit. This
is quite natural since free-streaming photons arrive at
the observer on radial geodesics as an examination of
Eq. (A1) shows. Thus the solution of the free-streaming
Boltzmann equation in the absence of the ISW term is
obvious:

Oy(n, ’:7)

— 7. l _
2l +1 - [90 + ‘I'](WH"’)XV(X X*) ’

(A7)
where we have assumed that the boundary condition at
last scattering is given by the monopole fluctuation as
is appropriate to the SW effect. The ISW effect acts
like an impulse (¥ — ®)é7n at some intermediate time 7
which then free streams to the present. The full solution
therefore is
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O(n, k) 7l
28T (@0 + U1, k) XL (x — Xe
2+ 1 [©0 + ¥](n4, k) X, (X — Xx)

+ /n[‘i’ - ®)(n, B)XL(x - x')dn'.  (A8)

Let us now examine the peculiar nature of the eigen-
functions. Since they are complete for £k > /—K, i.e.,
k > 0, should 27/k or 27 /k be considered the effective
wavelength? In Fig. 23, we plot the spherically symmet-
ric | = 0 mode given by Eq. (A3). The argument in favor
of k is that its first zero is at = m/k. This is related
to the completeness property: the zero crossing prop-

1E T =

E | (a) XSE

10-! N

. N\ v=4.2,1,0.5,0.25,0 ]

102 ) .
1070 | ;
10-4 3 é
10»68 L | d

- 0.6

l

[(20+1)M[0)]1/2 X

FIG. 23. Radial eigenfunctions of an open universe X} (x).
(a) The isotropic I = 0 function for several values of the wave
number v = k/v/—K. The zero crossing moves out to arbi-
trarily large scales as v — 0, reflecting completeness. How-
ever, even as this “effective wavelength” becomes infinite, the
function retains prominent structure only near the curvature
scale x = 1. A random superposition of these low v modes
cannot produce more than exponentially decaying structure
larger than the curvature scale. (b) Low-order multipoles in
the asymptotic limit » — 0. If most power lies on the cur-
vature scale, the | mode corresponding to the angle that the
curvature radius subtends will dominate the anisotropy. The
normalization is appropriate for comparing contributions to
the anisotropy (2l + 1)C;/4w. Also shown is the location of
the horizon x = nov/— K for several values of Q2. If contribu-
tions to the anisotropy come from a sufficiently early epoch,
the dominant ! mode will peak at this value.



51 TOWARD UNDERSTANDING CMB ANISOTROPIES AND THEIR . .. 2627

erty shows that as £ — 0 we can obtain arbitrarily large
structures. However, even in this limit, the amplitude
of the structure above the curvature scale is suppressed
as e X. The effective scale of the prominent structure
thus goes to the curvature scale favoring k~! = 1//—-K
as the effective wavelength. In fact, the e behavior is
independent of the wave number and [, if x > 1.

This peculiarity in the eigenmodes has significant con-
sequences. Any random-phase superposition of the eigen-
modes X! will have exponentially suppressed structure
larger than the curvature radius. Even though complete-
ness tells us that arbitrarily large structure can be built
out of the X! functions, it cannot be done without cor-
relating the modes. This is even if the structure has sup-
port only to a finite radius which is above the curvature
scale.

Is the random-phase hypothesis and the lack of struc-
ture above the curvature scale reasonable? The funda-
mental difference between open and flat universes is that
the volume increases exponentially with the radial coor-
dinate above the curvature scale V(x.) ~ [sinh(2x.) —
2x.] as the line element of Eq. (Al) shows. Structure
above the curvature scale implies correlations over vast
volumes [29]. It is in fact difficult to conceive of a
model where correlations do not die exponentially above
the curvature radius. The random-phase hypothesis is
claimed to be valid for adiabatic inflationary perturba-
tions [42]. However, a definitive answer to this question
for isocurvature models awaits the invention of a mech-
anism for generating such perturbations in a consistent
model for structure formation.

2. General angular functions

Although the radial representation suffices for many
purposes, often one needs the full machinery of the gen-
eral normal mode decomposition. Formally, the angular
and spatial fluctuations of the full radiation field are de-
composed into [10]

O(n,%,7) = D Ou(n, k)Gi(x,7), (A9)
=0
where
Gi(x,7) = (k) ' Qi )P (x,7),  (A10)
and
Py = 1, P - 'Y ’
Py = 337 — 1Y),
PII—:—l = 20+1 (”P’2 1)
1+1 + 1 (All)
l
(3112 ts zH—l)
I ETLAN >
with parentheses denoting symmetrization about

the indices. For flat space, this becomes G; =
(—i)'exp(ik - x)Py(k - v), where P is an ordinary Leg-

endre polynomial. Notice that along a path defined by
fixed v, the flat G; becomes j;(kn) after averaging over
k directions. Traveling on a fixed direction away from
a point is the same as following a radial path outwards.
Thus fluctuations along this path can be decomposed in
the radial eigenfunction. We shall see that this argument
can be generalized to the open universe case and allows
one to interpret Eq. (A10) more easily.

We can also use the properties of G; to simplify the
Boltzmann equation (3). The anisotropic stress pertur-
bation of the photons, defined as

» dQ 1
11:,154/4 (77 -3 )G(W,x,‘v), (A12)
is therefore related to the quadrupole moment:
%%ﬁ"{jnij = 1—10@2G2 . (A13)
The recursion relation
7 G = - Glx(n), ¥(m)
1P d"] ’
; 0 ; 0
8 G+ A By =G
l 2 K
= k{zl 1 [1 — (% - l)ﬁ] G-
l+1
e Gz+1} , (A14)

which follows from Egs. (A10) and (Al11) [21], completes
the simplification of Egs. (3)—(6). Here we take x(7) to be
the integral path along 4. By comparing Egs. (A6) and
(A14), the open universe generalization of the relation
between G; and the radial eigenfunction is now apparent:

Gi[x(n),v(n)] = My X, (n).

The only conceptual difference is that for the radial path
that we decompose fluctuations on, 4 is not constant.
This also clarifies the interpretation of the recursion re-
lation for G; [Eq. (A14)]. Finally by employing these
definitions and assuming random phases, we may write
the temperature correlation function as [10]

(©*(10,%,7)0O(70, %, 7,))

L%

— M, (k) k3
272 k

TR |©1(n0, &) I*Pi(v - ¥')

(A15)

where P; is a Legendre polynomial. This implies the

definition of C; in Eq. (8).
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APPENDIX B: SINGLE FLUID
AND OTHER USEFUL RELATIONS

Above the horizon, the entropy perturbation S is con-
stant, and all perturbation quantities can be obtained
from the solution for the total density perturbation Ax.
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TABLE I. Commonly used symbols. Time variables a, z,
7, and x are often used interchangeably with special epochs
listed here under scale factor a entries. Component density
A; and velocity V; are defined in Secs. IIC and IID, with
i = b for baryons, v for photons, v for neutrinos, and ¢ for
collisionless cold dark matter. Note that V, = ©;.

After radiation becomes negligible, both the isocurva-
ture and adiabatic modes evolve in the same manner:
. 2
AT—}-EAT =4nGp (i> Ar. (B5)
a ag

For pressureless perturbations, each mass shell evolves as

(1+4+a)Ba+4)[1+ (1+a)t/24

Combining the total continuity and Euler equations in Symbol Definition Equation

(16) yields the second-order evolution equation Ar Total density fAluctuation (11
e CMB temperature fluctuation (3)
d? fd 1 k> 1 3K h A SN CMB monopole fluctuation (6)
daz  ada + a? (E;) ( T k2 -9 T e, CMB !th multipole fluctuation (6)
|® + ¥|ims CMB rms fluctuation (10)

E\2 3K I Anisotropic stress perturbation (12)

= (—> (1 - —2) jis, (B1) v Gravitational (Newtonian) potential (13)

keq k P Gravitational (curvature) potential  (13)
n Conformal time (1)

where v Curvature normalized wave number (31)
3a 5 a or Thomson cross section (3)
f=—7r-—- , T Thomson optical depth (3)

4+3a 21l+4a Curvature normalized distance (31)

) 9a a 6+ 7a D Diffusion damping factor 239;

g=2+ - = > Ie] Drag growth factor 52

4+3a  2(1+a)? Ca Initigal adiabatic spectrum (17)

(B2) Cr Initial isocurvature spectrum (17)
A 8 a? C Anisotropy power spectrum (8)

2 ) D Pressureless growth factor (19)

3(4+3a)(1 +a) F Gravitational driving force (34)
.8 a Hubble parameter (2)
= A L a1 L2 N, Neutrino lth multipole (6)
3(4+30)(1+0) K Curvature (1)

R Normalized scale factor 3py/4py (14)

where recall that o is normalized to unity at matter- S Entropy fluctuation (16)
radiation equality. Here we have taken the anisotropic T Matter transfer function (59)
stress II = 0 and assumed that the Universe is in the Vir Total velocity amplitude (11)

matter- or radiation-dominated epoch. The solutions to b ¢ Radial eigenfunction (A3)
-the homogeneous equation with S = 0 are given by a Scale factor (1)
ag Present scale factor (1)

1 ag Compton drag epoch (15)
Us=[a®+ %a2 - ga - 1_96 + 1?6 va + l]m ) Qeq Equality scale factor (1)

a; Ionization epoch (53)
(B3) a. Recombination epoch (7

1 cs Photon-baryon sound speed (33)
Up=—+—, k Laplacian wave number (4)
ava+1 k Renormalized wave number (4)

kp Diffusion damping wave number (40)

and represent the growing and decaying mode of adia- keq Eq“a‘lity horizon wave number (18)
batic perturbations, respectively. Using Green’s method, ! M“l_t‘P‘?le number (5)
the particular solution in the presence of a constant en- Te Projection factor (51)
tropy fluctuation S becomes Ar = C4,U,4+CpUp+SUy, Ts Sound ho,nz?n . ) (36)
where Uy is given by Te Electron ionization fraction 3)

2 2 1/2
Ulzi(k) (1_3k_12{) 3a® +22a + 24+ 4(4 + 3a)(1 + a) 3 (B4)

a separate homogeneous universe. Since a density pertur-
bation can be viewed as merely a different choice of the
initial time surface, the evolution of the fractional shift
in the scale factor, i.e., the Hubble parameter H, must
coincide with A, It is simple to check that the Friedman
equations do indeed imply
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. 2

H+ %0 =anG, (i) H, (B6)
a ag

so that one solution, the decaying mode, of Eq. (B5) is

Ar o« H [34]. The growing mode A « D can easily be

determined by writing its form as D o« HG yielding

. a HY\ .
-+2—=]1G=0, B7
G+ (a + H) (B7)
which can be immediately solved as
da
D H [ ——. B8
@ [ (B8)
Note that we ignore pressure contributions in H

[cf. Eq. (20)]. If the cosmological constant A = 0, this
integral can be performed analytically:

3 3(1+=z)/?
a1+ 2 + 2 iy /2 277, (o)
where z = (25" — 1)(a/ao). In the more general case,
a numerical solution to this integral must be employed.
Since before curvature or A domination D o a, the full
solution for A, where the universe is allowed to pass
through radiation, matter, and curvature or A domina-
tion, can be simply obtained from Egs. (B3) and (B4),
by replacing a with D normalized so that D = a early
on.

With the solution for A7 and the definition of S
[Eq. (21)], all component perturbations can be written
in terms of Ar. For example, in the baryonic isocurva-
ture scenario,

1
4+ 3a

Ap = [45 +3(1 + a)A7], (B10)

and
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Au = %(Ab - Sbu)a
(B11)

Ay = 3(Ap— Sty) -
The fact that in this model the curvature perturbation
vanishes initially when the Universe is radiation dom-

inated allows us to set Sy, = Siy. The velocity and
potentials can be written as

. -1
dA
e 38 (1o2) T L [l 1)

“ka 44+ 3a da l1+a

3 (keq\’ 3K\ '1+a
= | — 1 - — A
¥=-3 ( k k2 az ~
where note that constant entropy assumption requires

that all the velocities V; = Vp. The relation for the
velocity may be simplified by noting that

n(a) 2kﬂ[m_ 1] RD/MD,

(B12)

R

Qo a0

R

QH

arccosh [1 + ] MD/CD,

(B13)

where CD denotes curvature domination with A = 0. For
A # 0, it must be evaluated by numerical integration.
Before curvature or A domination,

a 1+ a)l/2
2= %keq, (B14)

which can be used to explicitly evaluate (B12). Finally,
in Table I we list some commonly used symbols in the
paper and the equation in which they first appeared.
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