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Quantum optics in static spacetimes: How to sense a cosmic string
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We study the inQuence of static gravitational fields on the spontaneous emission and the Lamb
shift of atoms. To illustrate the procedure we consider a two-level atom coupled by a dipole interac-
tion to a massless scalar quantum field in a general static Riemann space and work out the Einstein
coefBcient and the radiative energy shift. To treat an example, the general scheme is applied to
a cosmic string spacetime. The possibility is discussed to detect, at least in principle, the cosmic
string via the modified spontaneous emission.

PACS number(s): 42.50.—p, 04.62.+v, 98.80.Cq

I. INTRODUCTION

It is well known that the decay rate for spontaneous
emission, and accordingly the respective Einstein coefIi-
cient, is not an inherent property of the atom but de-
pends on the particular vacuum in which the atom is
located. Similarly the shift of the atom's energy level,
the Lamb shift, depends on the surroundings. In a con-
fined space, for example, realized by a cavity, for mirrors
causing boundary conditions and in dielectric media the
mode structure of the electromagnetic Geld is modified as
compared to the empty Minkowski space. Consequently,
the decay rate and Lamb shift differ from their free-space
values. These values refer to atoms at rest or in uniform
motion. For accelerated atoms, spontaneous excitation
and radiative energy shifts have been worked out in [1]
and [2] with the intention to analyze quantitatively the
distinct contribution of vacuum fluctuations and radia-
tion reaction.

The basis of all the considerations mentioned above
was a flat spacetime. The inclusion of the influence of
inhomogeneous gravitational fields amounts to the tran-
sition to a curved Riemann space. In the following we
restrict ourselves to static gravitational Gelds or space-
times, respectively. We will give a general discussion of
the spontaneous decay and Lamb shift in this physical
situation. An important application could be found in
the astrophysical context where the Einstein coefIicient
is modified for example in the strong gravitational Geld
of collapsed stars. This modiGcation enters the interpre-
tation of the spectroscopical data.

Below we will study a simpler application of our gen-
eral scheme in choosing as static Riemann space the
spacetime of a straight cosmic string which is flat every-
where outside the string but shows a conical topology.
This demonstrates how a nontrivial topology influences
spontaneous emission and Lamb shift. A cosmic string
could, only in principle, of course, be sensed this way.
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We shall consider a model consisting of a two-level
atom and a scalar quantum field interacting via a cou-
pling of dipole type. The more realistic calculation based
on an electromagnetic vector potential would follow the
same lines. We are interested in the total amount of con-
sidered effects only. Therefore, we do not discuss the
contributions of vacuum fluctuations and radiation reac-
tion separately.

The structure of the paper is as follows. In Sec. II we
quantize in the canonical way a Klein-Gordon Geld which
is minimally coupled to the gravitational field. We intro-
duce the two-level atom and solve the equations of mo-
tion for the coupled atom-field system in the Heisenberg
picture. In a perturbation approach we find the sponta-
neous decay rate and the energy shift for the atom and
discuss the Minkowski limit. In Sec. III we apply this
general scheme to the case of a cosmic string spacetime.
We study the quantized Klein-Gordon Geld and find the
Lamb shift as well as the decay rate for a two-level atom.
The results are compared with those in the literature.
Finally we point out the possibility of sensing a cosmic
string.

We use units such that 6 = c = 1. Greek indices run
from 0 to 3 and latin indices from 1 to 3.

II. SPONTANEOUS EMISSION AND LAMB
SHIFT IN STATIC SPACETIMES

Spontaneous emission and the Lamb shift are quan-
tum optical effects which are caused by the coupling of
the atom to the quantum vacuum. We give a general
treatment of both effects for cases in which the vacuum
mode structure is not the standard one attributed to an
inertial reference system in inGnite Minkowski space. We
include gravity in changing to a static Riemannian space-
time. The scheme is flexible enough to allow for bound-
aries such as Gxed or moving mirrors and cavities. To
make the calculation transparent, we restrict our atten-
tion to a real scalar massless quantum Geld coupled to a
two-level atom.
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A. Scalar quantum field

A static spacetime is characterized by the existence
of a timelike Killing vector field which is hypersurface
orthogonal. For our purpose it is more convenient to use
the following characterization: There exists a coordinate
system such that the components of the metric tensor g„
[signature (+, —,—,—)] do not depend on the timelike
coordinate t = x . Furthermore, the components go~ for
j g 0 vanish. With regard to field quantization we follow
closely the scheme of Fulling [3,4], which is analogous to
the Minkowski case.

The minimally coupled massless Klein-Gordon equa-
tion in curved spacetime reads

sf=0,

where f dp(k)b'(j, k) f(k) = f(j ) T.he general solution of
the Klein-Gordon equation (1) may then be written as

1
dV(i)

2E'.

x a, Q, (x)e ' "+a @;(x)e*

Imposing the canonical commutation relations for the
field

(10)

where Z~ = B~(~~g~g~"8 ) = g" V'~V' is the co-

variant d'Alembert operator. Equation (1) can be de-
rived from the Lagrangian l: =

2 glglg"")9 Qo)„Q. The
conjugated momentum vr and the Hamilton function H
are defined as

08
vr =, H = d x(~o)pP —8) .

To solve Eq. (1), one separates variables with regard to
the time coordinate t in making the ansatz

leads to the commutation relations for the creation and
annihilation operators of Klein-Gordon particles:

[a~, a),] = [a., a&] = 0, [a~, a&] = b(j, k) . (12)

N~ = a -az is the respective number operator for particles
2 2

in the mode j. Its expectation value is a constant of
motion. Particles are thereby defined as having the wave
functions P(t, x) in first quantization. The renormalized
operator

[x denotes the spatial coordinates (xi, x2, xs)], which
leads to the eigenvalue equation

Therein K is a positive, time-independent differential op-
erator that is Hermitian with respect to the scalar prod-
uct:

dy(j )E,'at a,

gives the evolution of the free field with respect to the
coordinate time t. The vacuum is defined as the state l0)
which satisfies a~ l0) = 0 for all j .

B. Two-level atoms

(5)

(Ii F2) = dp(i)fi(j)f2(j) . (6)

The index j may belong to a point spectrum or a contin-
uous spectrum or both. The symbol jdp(j) may there-
fore contain sums and integrals. A nontrivial example is
given below in Eq. (54). Equations (5) and (6) lead to
the orthonormality and completeness relations

We assume it to be self-adjoint and possessing a com-
plete set of eigenfunctions @~(x) which may obey cer-
tain boundary conditions. We take the eigenvalues E'.
to be non-negative. Then any function I', in the Hilbert
space can be written as I"; = J dIJ, (j)f;(j)Q~(x), where
the measure p(j) is defined such that the scalar product
(5) becomes

H (~) = EpRs(r), (14)

where Rs ——2l+)(+l —
2l

—)(—l. We introduce the op-
erators R~ =

l
+)(p l, Ri = —(R + R+), and R2

—'(R —R+). The latter models the dipole momentum
operator. They obey the commutation relations

To obtain a static situation as far as physical processes
are concerned. , we consider a single pointlike two-level
atom at a fixed space point specified by coordinates x
const. The physical time attributed to the atom is its
proper time 7 which is related to the time coordinate t
according to dr/dh = ggpp(x ) = const The at.om pos-
sesses stationary energy eigenstates l+) and

l

—) with en-
ergies + 2EO. In realistic situations the non-Minkowskian
spacetime will act as a gravitational field causing shifts
of the atomic energy levels [5—7]. They are assumed to
be included in Eo and must not be confused with the
radiative energy shift discussed below.

The Hamilton operator of the free atom which de-
scribes its dynamics with respect to w is given by



51 QUANTUM OPTICS IN STATIC SPACETIMES: HOW TO. . . 2593

[Rs(r), Rg(r)] = +Rg(r), [R+(r), R (vr)] = 2Rs(r),

[R2(r), Rs(r)] = iRi(r) . (15)

C. Heisenberg equations of motion for the coupled
atom-field system

We work in the Heisenberg picture. The atom is locally
coupled to the quantum field via the scalar analogon to
the electric dipole interaction

H (r) = dR2(r)P(t(r), x ),
where d is a small positive coupling constant. The time
evolution of the &ee quantum field with respect to the
atom's proper time ~ is determined by

I dt,

/goo
(22)

which is the energy of the photon as measured in the
reference frame of the atom.

This set of coupled differential equations cannot be
solved analytically. Therefore we follow an approxima-
tion scheme with regard to the coupling constant d (com-
pare [8—10]). We first solve each equation formally and
then expand it to first order in d. These solutions are
then used to solve the other equations up to second or-
der in d. The solution to each of these equations will
thereby be split into a free part (index f) which is present
also without a coupling (d = 0) and a source part (index
s), which results from the interaction between atom and
field.

Let us first treat the field operators az. Formal inte-
gration of Eq. (19) gives

E (o) = f dlo(j)E,' at. a,—. af(r) = e ' j( 'oaf. (ro),

a,'(r) = id ' — d7'R2(r')e . ' '. &,*(x=)

2E'- ~0
2

(23)

(24)

The total Hamilton operator of the complete atom-Geld
system then reads

a = I~+a'+0". (18)

d
af (r) = —isa~(r) —i—d[a, (r), R2(r)P(r, x )]d7- 2

. @;(x=)i' af (r) —id —' Rg(r),
2E:

(19)

Herewith we can write down the Heisenberg equations of
motion:

;( ) = '- ' K*(E, + E.)R ( )
.d&(x ) . f

2E'
2

—(*(E,—Ep)Rf (r)] . (25)

Here we made use of the ( function

where the corresponding Green function has been used.
In order to calculate a'(t) to first order in d we may re-
place R2 in Eq. (24) by its free part (determined below).
Then one gets, in the limit v —+ oo,

d—Rs(r) = —td[Rs(r), R2(r)f(r, xp)]
d7

dRi (r)P(r, x—), (20)

1 P
((x) = lim (—i) dr e' = lim . = ——ivr8(x),

T~oo 0 ~~o X —Z6 X

cj—Rp (r) = +&EoR~ (r) —id[Re (r), R2 (r)P(r, xp)]
d7

= kiEpR~(r) + dRs(r)g(r, xp), (21)

where we have introduced

(26)

where 7 denotes the principal part of the corresponding
integrals.

In the same way we get, for the atomic operators,

Rsf(r) = Rsf(rp),

Rs(r) = '- d~(~) &fa,'(r) &*(E2 Eo)R+(r) + &*—(E2+ Eo)R'-(r)
2 2E'

4, ,'( )C*(E, + E.) —0,*,' ( )C(E. + E ) R'( ) .
2S'. -

2

—oj;a,. (o.) ((Eo + Eo)R~(a) + j(E, —Eo)R (o) ),
Rf ( ) Rf ( )

+iEp(~ —~p)

Ra(o) = '~f ~p(j)

(28)

(29)

(30)

Again, the source part solutions B3,B+ are correct only to Grst order in d.
Now, in order to solve Eq. (20) to second order in d it is convenient to make use of the fact that equal-time atomic

and field operators commute and rewrite (20) in the form
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—Rs(~) = —d dp(j)
d7

Ri(&)@'a~(&) + @,'a,'(&)Ri(&)
2E,'-

We insert the erst-order expressions for a~ and R~ we have just found and obtain, for the difFerential equation,

—Rs(~) =
d7.

where

d2
0;@ [(.'*(E —Eo) + (,'*(E + Eo)], ( ) ( )

2E' /2E„'

tliga (j(E—a —Ea) + ((Ra + Ra)]aa (a)a~ (v))Ra(a),

f f ff
dp(j) 4i Ri (r)a~ (r) + @g ag (~)Ri (r)

2EI

. d2)@, ]2
dp(j) ', [~(E —E ) —~(E. + E.)] —— dp(~) ', Ã(E —E ) + ~(E'+ E )] R. ( )

vr . d'f@, ]' f

dp j dp k

K(&) —("(&)] + X(&) —('*(~)] = —2~i [~(*)+ ~(u)] (33)

has been used. We also dropped terms a~aI, and a.a& because they will not make any contributions in what follows.
For the expectation value in an arbitrary atom state (which may be a combination of ~+) and

~

—)) and a field state
which is an eigenstate of the number operator representing n~ particles in the mode j we obtain, to second order in d,

—( ())= — —.
' o+ js( ())

with

I'p = — dP(j) 0;(x ) [b(E, —Ep) —b(E, + Ep)],
2

2

I p dp p +j + ~ Ej Ep + ~ Ej + Ep & + 2n& (36)

which contain the characteristic quantity

n~ = a.a~

0;(i)=— d
@~-(&-) .

2'
n~ is the expectation value of the particle number in the field mode j. Note that the second h function in Eqs. (35) and
(36) makes no contribution because both energies E~ and Ep are positive. I'p and I'p then agree for nz ——0. 0 (x )
characterizes the coupling of the atom with the field mode j. It depends on the atom (via the coupling constant d)
as well as on the quantum field at the position z of the atom [via the mode functions vP&. (x )].

In the same way we treat the difFerential equation (21) and obtain, to second order in d,

—Rg(7) = +xEpRy(r) + dP(r, x&z)Rs(T)
d7

= djEaRa(a) +jdy(j)

+-, dj (j),El (('(E~ + Ra) —C(E. —Ea)I R+(a) + I(*(E~ —Ea) —((E. + Ea)IR-(~))f f

+— dp(j) dp(k) itj~Q&af, (w)a (w) ((Ej, + Ep)R+(7) + ((Ej, —Ep)R (7)2 2E' +2E„'

+@;@aa,' (~)a,'(~) O'(Ea —Ea)R+(~) + C'(Ea+ Ea)R'-( ) )
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d Z—(R~(~)) = +i
~
Ep+ Ep + —I'p

~ (R~(~))
d7 2 )

+&
I

E~ + I'~ -l (R+(&))) (40)

Thus, we get, for the expectation value for an arbitrary
atom-field state,

Cartesian coordinates the mode functions read g~

(2m) ) e'" with E~ = ~k~. We assume that the atom is
at rest and immersed in a thermal bath with temperature
T = (k~P) . Because the particles are represented by a
scalar bosonic field their average number in the mode j
is given by n~ = (e~@& —1) i. Then we get for the decay
rate and frequency shift of a two-level atom

where we have introduced

Ep —= —, ds(j) f~;(*-)
2f 'P

x (1 —2n, ), (41)

d2
r,-'" = —"E,8' (45)

(46)

as another characteristic quantity depending on 0'(x )
of Eq. (38).

It is now straightforward to solve the equations of mo-
tions (34 ) and (40) of the expectation values. Integrating
(34) yields

Eznin.
p

d' ( 'P
dxx

i16vr2 p (x + Ep
( 2

!xi1—

'P

x —Ep)

(R3(r)) +
~

(R3(0)) + —
~

e ' (42)
Ir, r 1 I'pl —r

2 I'p)

Equation (42) describes the time dependence of the mean
value of the energy of the atom. Let us assume that the
particle state is the vacuum (n~ = 0, 1'p = I'p). If the
atom is initially (7 = 0) in the upper state ~+), Eq. (42)
describes the exponential decay to the lower state

~

—) at
a rate I'p. Accordingly, I'p of (35) with (38) gives the
vacuum Einstein Ag coefIicient

(43)

describing the rate of spontaneous emission for the [+) ~
~

—) transition. The lineshape is Lorentzian because it is
an exponential decay. Similarly, (42) shows that for n~
0 the ground state is stable. For n~ g 0 ground state
stability and the decay rate are correspondingly modified.

We turn to Eq. (40). In a first approximation we may
ignore the second term on the right-hand side. Then we
find

(R~ (~)) (R~ (0))e+ {Eo+EP) e I'P ~/'2
(44)

D. The Minkowski case

For later use and to test our results we compute the
decay rate and Lamb shift for the Minkowski case. In

Let us discuss the case nz ——0, I'p ——ro first. Regard
some state which is a superposition of [+) and

[
—) and

note that the imaginary part of (R+(w)) gives (Rq(w)) of
(16). Equation (44) then shows that the dipole oscillates
with Eo + Ep and decays in amplitude. The latter is a
consequence of the decay to the ground state

~

—) with
rate I'0 as discussed above. Ep represents a shift in the
transition &equency. It is present although the particle
field is in its vacuuin state. Ep of (41) with n~ = 0 may
accordingly be identified with the vacuum Lamb shift of
the two-level atom in the general physical situation dis-
cussed here. If real particles are present (nz g 0) the
modified shift is again given by (41).

The equilibrium value for the atom's energy is

(II ) = (Rs).qEp ——
~

——+
i Ep,(

(48)

We have discussed spontaneous emission and Lamb
shift for a two-level atom at rest in a static space-
time. Boundaries such as mirrors or cavity walls may
be present. For vacuum (n~ = 0) the results are given
by the Einstein coefficient (43) and the Lamb shift (41).
The generalization to the nonvacuum case is based on
(35), (36), and (41) (cf. Sec. VII of [1]). These formulas
representing the interaction of the atom with the parti-
cle field are generally valid. They reflect the fact that
the vacuum and the particle modes in general, represent
a global structure whereas the atom and its interaction
with the field are localized pointlike. Accordingly we
have to solve the respective eigenvalue problem in (4)
and (7) of the classical particle field. (For photons one
would refer to the respective equations for the vector po-
tential. ) This specifies the eigenvalues E', the eigenfunc-
tions g~(x) and the integration measure dp(j). These
are the quantities which are influenced by the gravita-
tional field (represented as static spacetime), by bound-
aries and by topological peculiarities of the spacetime.
Their modification represents the deviation &om the sim-
plest situation in empty flat Minkowski spacetime. The
localized field-atom interaction enters the final formu-
las via the modulus squared of the composed quantity
0'(x ) = d@z(2: )(2E') taken at the position 2: of the
atom. It is the fact that the classical modes gz (x) enter
the final formulas in such a simple way, which facilitates
the evaluation of the physical e6ects considerably. We
demonstrate this in the following example.

which exhibits the fermionic nature of the two-level atom.
These results agree with results obtained in [1] and [2].
They correspond to those of the electromagnetic case
[8—10].

E. Discussion
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III. HOW TO SENSE A COSMIC STRING
i 8, — 8—(rO„) —8 — cl

~
P(t, x) = 0 .

(,
(5o)

In this section we will apply the above scheme to the
case of the spacetime of a cosmic string. We consider
a static straight string that lies along the z axis. The
metric then reads [13,14]

d8 = dt —dz —dr —b r dp (49)

The Klein-Gordon equation in the cosmic string space-
time (49) takes the form

where the range of variables is 0 & p & 2', 0 & r &
oo, z, t E (—oo, +oo), and the parameter 6 is given by
b = 1 —4Gp, where p is the mass per unit length of
the string and G is Newton's gravitational constant. For
b ( 1 the (p, p) surface gets a conical topology. The
spacetime is locally fiat (except for the apex of the cone)
and can be interpreted to have a deficit angle bp = 8aGp.
For 6 = 1, equation (49) describes Minkowski spacetime
in cylindrical coordinates. It is therefore the topology
and accordingly the symmetry of the Minkowski space
which has been changed. For grand unified theory (GUT)
strings which are to be expected cosmologically the pa-
rameter b is very close to 1: (1 —b) 10 (& 1.

Many authors have studied quantum field theory in
cosmic string spacetimes. For a treatment of the scalar
quantum field we refer to [15]. There and in the refer-
ences quoted therein one also finds a discussion of Killing
vectors and conserved quantities. See [16] for a treat-
ment of the self-adjointness problem for scalar fields. Of
special interest for us are Refs. [17—19], where the Unruh-
DeWitt detector in the spacetime of a cosmic string was
investigated. To evaluate complicated mathematical ex-
pressions, in all three cases a quantization condition has
been introduced in restricting b to be integer. By this
physically realistic strings are excluded. We will show
that because of the simplicity of our approach such a
condition need not be imposed to make the calculation
tractable.

A. Quantum fields in cosmic string spacetime

Following [15] we expand P in terms of cylindrical modes.
Using the notation of the previous sections, one finds

4(~, *) = f ~~. (~ 4, + ~,'0;), (51)

where

e*"'e' J~i~yb((r) .
2~ b

(52)

Therein J„(z) denotes Bessel functions and the entities
E~ = ((2 + r2)i~2, K, and lb correspond to energy,
z-linear momentum, and z component of angular mo-
mentum. ( gives the momentum perpendicular to the
string. For the quantum numbers j = (r, l, () one has
l C Z, v C (—oo, +oo), and ( E (0, +oo). The commuta-
tion relations for the operators a . and a~ read

a, , a, = b(j, j') = bi) b(r —K') b(& —&')
2 Q((I (53)

In Eq. (51) the measure is defined such that

I dp~. b(j, j') = 1, i.e. ,

dp., = ) f d((f d~.

B. Two-level atom in the spacetime
of a cosmic string

We will consider an atom that is at rest relative to the
string (dt = dr). We get, from (38) and (52),

~ "(&-) = ' =, J('i~yb(&r-) (55)@~(*=)

where r denotes the distance between the atom and the
string. Putting this expression into Eqs. (36) and (41)
and assuming that the atom is immersed in a thermal
bath with temperature T = (k~P) yields

IP(")=2
oo d2

d(( ) 8 25E J~i~yb((r )(1+2n, )b(E, —Eo)

d' ( 2
0 1+

8vr 6 q
e~~o —1)~

x
dx ) J(/~/b(ZEor~)

1 —z' =l= —OO

(56)

Ep'(r ) =

L=—oo ~

d2 OO

d0 cos0
32vr2b

2 l ( P
e~@~ —1) pe + Eo Eq Eo)

(2l('P
x ) Ji', iib(xr coso)

(
1—

e~* —1y ~~+E.
P

x —Eoy
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Equations (56) and (57) give the exact expressions for the decay rate and the frequency shift of a two-level atom at
rest in a thermal bath in the spacetime of a cosmic string. In general (i.e. , for 6 g 1), they depend on the radial
distance r between atom and string but never on the coordinates p and z what was to be expected because of the
symmetry properties of the spacetime.

The Minkowskian case is easily recovered. It follows from g&+ Jl&l((r ) = 1 [20] that the decay rate (56) and
frequency shift (57) take the Minkowskian form (46) and (47) for 6 = 1.

Let us discuss the dependence of the decay rate on the distance r to the string. In the limiting case r = 0, i.e. ,
when the atom is located on the string, one can make use of g&+ Jl&l/b(0) = Jp (0) = 1, to obtain

pcs (0) dmin.1
P

Ece (0) Emin.1

For small distances Epr « 1 we may expand the Bessel functions [20]

(E „)I&l/b

JILI/b(Eor ) ~ ~ F
for l g 0

) I'I+I l

J.(E.&-) = 1 —(E"-)'+&((E"-)')

(60)

(61)

and get, for realistic values of b close to 1,

I"'( ) = —I'p'" 1 —Ep a
6 0 a

2(E2r2)1/b 1)—
I (2+ 2/6)

(62)

For large distances Epr )) 1, on the other hand, one gets, for the asymptotic behavior of the Bessel functions [20],

Jl)l/b(Eor. ) = for —) Eor —)) 1
b

A7

vr 5 /l/

4 6
for —« Epr

l~
(2LI l

exp ——ln
]

2~1zl 6
I
eEr )

32/sl'(~) (E r )'/s 6
'

6

2 /' vr ilicos
i

Eora~Eor. q 2 6

(64)

(65)

One sees that in this case the Bessel functions with ~l~ & bEpr fall oK rapidly. This is a consequence of the localized
absence of the mode functions discussed in detail in Ref. [15]. Furthermore the number of Bessel functions with
~l~ 6Epr is very small so that the sum in (56) may be approximated as

+Ep br

) Jill/b(~Eora) ) .
l=—Epbr

+Ep br

cos
i
xEor~-

vrxEor I 2 6 4)

E=—Ep br
vrxEpr

1 + sin
/

2xEpr 6) (66)

pcs dmin.1
P g P

+Epbrx ) . Jill/b(*Epr )1 —x' =l= —Ep br~

When integrating over x we can neglect the rapidly os-
cillating term in (66) and get

(66) we would find that the emission rate is oscillating
depending on the distance.

It is also possible to eliminate the integral in Eq. (56).
For this we use the following relation which can be proved
with the series expansion of the Bessel functions:

min.1
b P

dmin.
P

+Ep br

l=—Ep br

1 1

i/'I —~2 7rEpr

(67)

X 2 1
J& (a&) = —) Ji+2&+2b (2a) ~

A:=0

(6S)

The emission rate tends to the Minkowski value as the
distance grows. If we do not neglect the second term in

Then we can write down the following exact expression
for the emission rate:
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1--. 1
I p ( ) = —I p ) ) ~1+zili/b+zk(2EO )

b Epr l= —oo k=p

(69)

It can be taken as a starting point for numerical evalu-
ations. Figure 1 shows the emission rate of a two-level
atom, compared to the Minkowski value, as a function of
Eor for b = 0.9.

For the unrealistic case of a "quantized string" with
b = n g 8, we use the generalized addition theorem
for the Bessel functions [17]. It leads to

I cs

I mill.

1.10

1.08

1.06

1.04

1.02

1.00

0.98

4 — 6 8 10

sor

OO 1/b —1

) J~~[/b(«or) = b ) Jo(2xEorsinrrkb) .
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FIG. 1. Decay rate of a two-level atom as a function of the

distance of the atom from the cosmic string for b = 0.9.

In this special case we obtain, for the decay rate,

I p'(r ) = —I'p'"'
b

dmin
b

)
1/6 —1

k=p

r 1+

x
dx Jo(2xEor sinrrkb)

1 x2

1/b —1
sin(2Eor sinzkb)'l

2Eor sinrrkb
k=1

(71)

The result (71) is equivalent to that found in [17—19].

C. A detector for cosmic strings

The decay rate of an atom in a cosmic string spacetime
depends on its distance from the string. Therefore it is,
in principle, possible to use radiating atoms to detect
cosmic strings. By varying the position of the atom one
can determine the location of the string and the string
parameter b. Note, however, that the change of the decay
rate is significant mainly for distances smaller than the
particle's wavelength r ( 1/Eo (see Fig. 1). Heuristi-
cally one may say that the atom senses the string only

if the emitted (or absorbed) particle characterized by its
wavelength "overlaps" with the string. Because we are
in the dipole approximation this does not imply that the
atom itself has to "overlap" the string. But of course
one has to be aware of the fact that the modification of
the Minkowskian result essentially amounts to a factor
1/b which makes it very small. For us the cosmic string
spacetime served only as an example. In generalizing al-
ready published results we wanted to demonstrate the
easy handling of our expressions. The modification of
the Einstein coeKcients in strong gravitational fields of
stars would be a more relevant astrophysical application
of the scheme.
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