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Gravity's rainbow: Limits for the applicability of the equivalence principle
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Limits for the applicability of the equivalence principle are considered in the context of low-
energy e8'ective field theories. In particular, we find a class of higher-derivative interactions for the
gravitational and electromagnetic fields which produce dispersive photon propagation. The latter is
illustrated by calculating the energy-dependent contribution to the deQection of light rays.
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I. INTRODUCTION

The deflection of light by a gravitational field was one
of the most striking predictions of general relativity. The
observation of this efFect was also one of the earliest
experimental verifications of Einstein's theory [1]. The
topic has presently matured to the stage where gravita-
tional lensing is applied by astronomers for a variety of
purposes [2], and, in particular, it is providing an exciting
new probe of the dark rnatter [3].

By the equivalence principle, photons fall freely along
lightlike geodesics in curved spacetime, and all photons
are deflected in a gravitational potential by the same an-
gle independently of their energy or their polarization.
Things change when one goes beyond the standard min-
imal coupling of the electromagnetic and gravitational
fields. For example, in quantum electrodynamics, virtual
electron loops will induce curvature couplings in the effec-
tive action of low-frequency photons [4,5]. In such a case,
photon propagation can be influenced by tidal eKects
coming from local spacetime curvature. Using the one-
loop effective action for @ED, Drummonds and Hathrell
[5] studied the propagation of photons in Schwarzschild,
Robertson-Walker, and gravitational-wave spacetimes.
Apart from the Robertson-Walker background where the
curvature is spatially isotropic, they found that the prop-
agation of photons was polarization dependent (gravi-
tational birefringence). In particular, they considered
light rays following transverse orbits in the Schwarzschild
background, and found a polarization-dependent deflec-
tion angle. Similarly, gravitational bire&ingence was also
found to occur in Reissner-Nordstrom spacetimes [6].

In the context of string theory, Mende [7] also ob-
served limits for the applicability of the equivalence prin-
ciple. Since strings are extended objects, their propaga-
tion also feels tidal eKects arising from the curvature of
spacetime. Mende argued that this would imply energy-
dependent deflection of light. Specifically, for photons
following transverse orbits passing a spherically symmet-
ric mass, the deflection angle would have a contribution

proportional to the square of the photon energy. Fur-
ther, Mende argued that such a result would be a clear
signature of string theory. We will show that such energy-
dependent light scattering can also be produced within
the context of a low-energy efFective action for the elec-
tromagnetic field in curved spacetime [8].

The paper is organized as follows. In Sec. II, we estab-
lish the framework of our calculations. We review the ge-
ometric optics approximation, and illustrate how higher-
derivative interactions can modify the photon trajecto-
ries. The form of interactions which can lead to photon
propagation with dispersion is also established. In Sec.
III, we consider various eight-derivative interactions, and
show that they produce dispersive eÃects, such as energy-
dependent deflection of light. Finally, Sec. IV presents a
discussion of our results. Throughout the paper, we em-
ploy the conventions of Ref. [9], and we use units where
h=c=G=1.

II. GEOMETRIC OPTICS APPROXIMATION

Here, we will give a brief review of the geometric op-
tics approximation for more details, see Ref. [9] and the
references therein. We begin with the Maxwell action

where I"„=8~A„—0 A„. We impose the Lorentz gauge
condition

%~A„= 0,
in which case the equation of motion may be written as

V'"E„=V' A —B„"A„=0

In the geometric optics approximation, one assumes that
the electromagnetic waves have a wavelength which is
much smaller than the radius of curvature of the back-
ground geometry, or the scale for variations of the am-
plitude of the wave front. The gauge potential is written
as
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where a„ is a slowly varying amplitude, and 0 a rapidly
varyiiig phase. [It is understood that one takes the real
part of the right hand side of Eq. (4).) The wave vector
k„= V„O is normal to surfaces of constant phase, and
light rays are defined by "& ——k~. When this ansatz
(4) is inserted into the equation of motion and the gauge
condition, the leading terms come &om the derivatives of
the phase. Thus Eq. (3) yields

(5)

(7), the equation of motion becomes

V'"F„„+ '(R„V'"+2V' R „)F = 0,
90vr

where the Bianchi identity for the Riemann tensor has
been applied in the last term. Inserting the geometric
optics ansatz (4) and applying the Lorentz gauge condi-
tion, we find

while Eq. (2) produces 45vr
(9)

k"a = 0P (6)

at leading order —i.e., light rays are null geodesics, and
the polarization is orthogonal to the wave vector. At
next order, Eq. (3) also yields a propagation equation
for the amplitude, k"V'„a + z(V'„k")a„= 0. One can
continue with a systematic expansion of post-geometric-
optics corrections, which would be necessary to realize
the full wavelike character of the solutions —e.g. , diffrac-
tion or interference. For our purposes, though, we re-
strict our attention to the leading-order geometric optics
equation. It is also assumed above and in the following
that the perturbation of the background metric by the
electromagnetic waves is negligible.

For our purposes, an important feature of the above
leading-order equations is that they are invariant under
a constant scaling of the wave vector, k~ -+ ak„. Thus,
to this order, all solutions will behave identically inde-
pendent of the &equency of the photons. Thus physical
effects, such as the bending of light rays, are independent
of the photon energy E. Note that this scale invariance
does not hold for the post-geometric-optics corrections,
which do then yield &equency- or energy-dependent re-
sults. In the problem of light ray deflection, these correc-
tions, which produce contributions proportional to 1/E,
signify diffractive (i.e. , wavelike) effects. In contrast,
the effects which we determine in the following section
are proportional to E and modify the light rays in the
leading-order approximation.

Now we will consider modifying the Maxwell action
by adding higher-derivative interactions, as may occur in
an effective field theory. Assuming that the former are
quadratic in the electromagnetic field strength, they will
generically modify the light-cone condition (5) within the
geometric optics approximation. Throughout the follow-
ing, we still impose the Lorentz gauge condition (2), and
so Eq. (6) remains unchanged. To illustrate the modifica-
tions produced by higher-derivative interactions, consider

Ii ——— ' d xQ—gR„F"F
360~

which arises as an interaction in the one-loop effective
action for QED [4,5]. Here, A, is the Compton wave-
length of the electron, and a is the fine structure con-
stant. There are other terms involving R„„and R, but
they will be unimportant when considering photon prop-
agation in a background spacetime which is a solution of
the vacuum Einstein equations. Combining Eqs. (1) and

as the new leading-order equation (where k2 = k~k&).
While the light cone has been modified away &om k2 = 0,
the new equation is still invariant when the wave vector
is scaled. Thus the resulting photon trajectories are still
frequency independent. The coupling to the Riemann
tensor in Eq. (9) does break local Lorentz invariance, and
this equation has been found to produce polarization-
dependent light propagation [5].

To have dispersive results, then, the leading-order
equation cannot be invariant under scaling of k„. Thus
one must consider interactions with more derivatives,
and, in particular, the interactions must contribute to the
electromagnetic equations of motion with more deriva-
tives of the gauge potential. With this in mind, a natural
extension of Eq. (7) is then

a4
I2 ——— d x g—g R„„V'pF""V'~F

4
(10)

where P is a dimensionless coupling constant and A is the
(length) scale associated with the effective interaction.
Combined with the Maxwell action (1), this new term
leads to an equation of motion

7' F" —PA V' 7' (R"" V'F )=0
and, in the leading order of the geometric optics approx-
imation, one finds

k (a„+2PA R„„k"k a ) = 0

We will assume that the effective action is constructed
pertvrbatively in the coupling P. Within such a frame-
work, even though Eq. (12) is not invariant under scaling
of k» the light-cone condition remains k = 0. The sec-
ond factor in parentheses would define spurious charac-
teristics which are nonperturbative in P. Alternatively,
one may say that perturbatively we wish to calculate
to modification of Eq. (5) at order P, and so expect to
find k = O(P) in general. Substituting the latter into
the term proportional to P in Eq. (12), we in fact have
k = O(P ) and so there is no perturbation of the light
cone to the order which we are calculating.

There are other six-derivative interactions similar to
I2 where the indices are contracted in different ways, but
in the equations of motion the higher-derivative terms
are proportional to k again, or to the gauge condition
k a, which vanishes. Thus we found that there are no
six-derivative interactions which will produce a dispersive
light-cone condition. To obtain an energy-dependent re-
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suit, one needs to consider interactions with both more
derivatives and more background curvatures in order to
avoid the above contractions.

III. DISPERSIVE INTERACTIONS

Hence these equations produce dispersion, and should
lead to energy-dependent light deHection in a gravita-
tional potential.

To explicitly display such dispersive light scatter-
ing, we now turn to the specific background of the
Schwarzschild metric in standard coordinates [9]

PA'3=—
4

d xQ —g R" ~~R„~""V' Fp~V'pF„(13)

where P and A are the coupling and scale, as above. The
equation of motion for the electromagnetic Geld becomes

Prom the last section, then, we have learned that in
order to produce a dispersive modification of the light-
cone condition, we need an interaction which is quadratic
in the Geld strength, has four derivatives of the gauge
potential, and has more than one background curvature
or derivatives of the background curvature. In this sec-
tion following these criteria, we construct a number of
eight-derivative interactions, and show that they lead to
energy-dependent photon propagation. We begin with a
simple extension of Eq. (10), where a second curvature
tensor is introduced:

ds' = — —
~

dt'+
~

1 —
~

dr'
~ )

+r (d8 +sin 8dg ) (16)

We introduce the vierbein e „(a= 0, 1, 2, 3),

e „=diag (U, 1/U, r, r sin 8)

satisfying g„„=rl b e „e where U = (1 — )i~2 and
rl b = diag( —1, 1, 1, 1). The Riemann tensor is conve-
niently expressed as

R&"~~ = ——[g~ g" —g" g" + 3U "U —3U" U ]r3

(17)

V'„F" —PA 9'„V'p (R" ~~R„~""V' Fp~) = 0 . (14) using the bivectors

This [along with the gauge constraint (6)] yields in the
geometric optics approximation

k a + 2PA R" ~~R„" k kpkpk„a~ = 0 .

yrpv p v v p,
U~b —e~ eb —e~ eb

In the Schwarzschild background, the leading-order
equations (15) may be written as

As desired, these equations are not invariant under scal-
ing of the wave vector, and the higher-order term is
not proportional to the original light-cone condition k .

k'h b +( Xb a'=0,
6M'where ( = 2PA, and using k = e "k~

(19)

X b
——

~
—k'A+ k'm'

kpkgA
kok2 k

—kpk3 k2

—koki A.
k2A+ k2m2

—kik2 k2
—kgk3 k2

kok2 k
—kgk2 k2

k2jt2
—k2k3B

kpk3 k
—k, k, k'
—k2k3B

k2l2 )
(2o)

where we have defined l = kp —kz, m = k2 + k3,
A = (4l + 5m2), and B = (5l + 4m ). Note that
k2 = —l2 + m3. To have a nontrivial solution of (19),
the determinant of the matrix in square brackets must
vanish:

k [k (1+(k )][k +4(l +4(l m +(m ]

x[k +4/m +4(m l +(l ] =0. (21)

Here the four factors actually correspond to the eigenval-
ues of the matrix, and the polarization associated with
a given light-cone condition will be given by the corre-
sponding eigenvector. To simplify the analysis, consider
photon trajectories in the plane 8 = m/2, which corre-
sponds to kz ——0 (or kg = 0), in which case m = ks.

(1) For the eigenvalue kz the polarization eigenvector

is a = (—kp, ki, o, k3) = k . This is, of course, the ex-
pected unphysical polarization which is associated with
the leading-order gauge invariance, a~ ~ a~ + k~—i.e.,
since the gauge condition (6) was not used in the O(P)
term in Eq. (15), one must have X bkb = 0.

(2) The polarization corresponding to the second eigen-
value k (1 + (k ) is a = (—kpk31kik3) 0) kp —k, )
kskb —(0, 0, 0, kz). Now the vanishing of the eigenvalue
yields k = 0 or k = —1/g. The latter result is nonper-
turbative in the coupling, and so the only relevant result
is the original light cone k = 0. Note that in this case
the polarization is degenerate with that in case (1), and
so it is also unphysical. Purther note that k . a = 0 is
satisfied here independent of whether or not one imposes
k' =0.

(3) For the third eigenvalue, one finds a generalized
light-cone condition: k + ('(4l4 + 4l m + m ) = 0. The
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corresponding polarization is a = (—ki, kp, 0, 0), which
also satisfies the Lorentz gauge condition. Thus this case
corresponds to photons with a radial polarization.

(4) The final eigenvalue yields k + ((4m + 4m l +
l4) = 0 for a polarization a = (0, 0, 1, 0) along the z
axis—i.e., orthogonal to the 8 = vr/2 plane. Note that
the Lorentz gauge condition is also satisfied here.

To leading order, one has k = O(g) in either of the last
two cases. Hence if one applies k = 0 in the O(g) contri-
butions, one has I = m2 and so (3) and (4) both produce
the same perturbed light-cone condition k + 9/i = 0.
Thus to the order of accuracy which we are calculating
there is no gravitational bire&ingence here —i.e., all phys-
ical polarizations will follow the same trajectories. One

may also note that for radial motion (ks ——0), one has
l2 = m = 0 in the 0(() contribution, and this light cone
reduces to the usual k~ = 0.

Now we calculate the modifications to the deflection
angle for photon trajectories which begin at y m —oo
and approach the central mass parallel to the y axis in
the x-y plane with an impact parameter 6 [9,10]. In the
Schwarzschild background using standard coordinates,
the generalized light-cone condition is

both polarizations,

pcs
4 4

d x g gR "—~"R „p V'„FppV'"F ~

(25)

In this case, the equation of motion for the electromag-
netic field becomes

V Il~ —pA V '7 (B iR ~PIvlV"P l 1) = 0 (26)

where the square brackets indicate that the expression
is antisymmetrized in p and v with a factor of 1/2. In-
serting the geometric ansatz (4) and applying the gauge
constraint (6) produces the leading-order equation

2205vr /3A M2E2

128 rp

Note that both this result and AP = 4M/rp are leading-
order expressions, which are corrected by terms which
are higher order in M/rp.

A second interaction which produces similar dispersive
results is

k a +PA R~„piR " k k k"k~"a = 0 (27)

+r k k +r sjn 0k~k~=0

ds = B(r)dt + A—(r)dr + r de + r sin OdgP (22)

with

A(r) = 1—

B(r)= ~1—

2M' f 9(E b t1—
) l " )

2M ) / 9$E'6
~ )' ~l'

The deHection angle is then given by [10)

Working perturbatively in (, it is sufficient to use the
classical value for l2 = kpkp —kiki —E b /r above,
where E is the energy of the photon and b the impact
parameter [9]. Following Ref. [5], the simplest way to
determine the deflection angle from the light-cone condi-
tion is to consider the wave vector k„as a null vector in
an effective metric

One may now follow the procedure used above to de-
termine the modified light-cone condition for photons
in a Schwarzschild background. A simpler approach for
this specific case yields a general light-cone condition
namely, contract Eq. (27) with a . Upon applying the
gauge condition (6) and extracting a factor of a2, one
obtains

k + R R " "k),k„k"k = 0 .
2

(28)

Thus we have a general light-cone condition which de-
scribes all polarizations, and so there will be no gravita-
tional birefringence in any background. [Note that the
unphysical polarizations do not satisfy A: = 0 in this
case, because in arriving at Eq. (28) we have used the
gauge constraint in the O(P) terms. ] In the Schwarzschild
background, this light cone becomes

k + —(9l + 9m —3k (29)
drdP+~=2 r ~~ B{v0)

B(r)
(23)

dr hA(r) r2 bB(rp) —hB(r)
r (~~ 1)i/2 rp2 (~ —1)s/2

0 0

Inserting bA(r) = 8B(r) = —9$E b /r22onse obtains for

where rp is the distance of closest approach (at which k"
changes sign). For the unperturbed Schwarzschild met-
ric, Eq. (23) yields AP = 4M/rp [10]. Expanding A(r)
and B(r) in power of ( and keeping only the linear terms,
one obtains an integral for bing:

where as above, we use ( = ~", , l2 = kp —ki,
and m2 = k2 + ks. To leading order, k = O(P) and
m2 = l + O(P) and so Eq. (29) reduces to k + z(l .
Hence up to a factor of 2 we have recovered precisely
the same dispersive light cone as in the analysis of the
interaction Is (for the physical polarizations). The mod-
ification to the deflection of light is therefore one half the
angle obtained in Eq. (24).

A final eight-derivative interaction which produces
dispersive light propagation was found by ex~ending
Eq. (10) by introducing extra background derivatives,
rather than an extra curvature tensor:
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I5 ——— d x i/ g—V'(pV' )R p„„V'~F ~V' F"
4

(30)

k a + 2pA V' V~R ~""k krak„k ap = 0 . (31)

To calculate the light-cone conditions in the Schwarzs-
child background, we followed the same method. that was
used in the analysis of I3 above. The leading-order equa-
tions may be written

kb b+gX b a =0) (32)

where rl = 60PA M/r . The matrix X g is a lengthy ex-
pression involving k, which we will not display explicitly
here. As before, the modified light-cone conditions are
given by the vanishing of the eigenvalues of the matrix in
square brackets, and the corresponding eigenvectors give
the associated polarizations. If we consider photon tra-
jectories in the plane 8 = m/2 and we apply k = O(P) in

X g, we find (1) k = 0 for the two unphysical polariza-
tions, (2) k + gCl = 0 for the radial polarization, and
(3) k —i)Cl2 = 0 for the polarization orthogonal to the
plane of motion, where

C= 1 — ko — 7—( 3M' 2 f 15M)
(33)

Since the light cones for the radial and 0 polarizations
differ, this case also provides an example of gravitational
birefringence. Calculating the deflection angle as above,
we find an energy-dependent contribution

PAsME2
hap = +504

Po
(34)

where the plus sign corresponds to the radial polariza-
tion and the minus sign to the 0 polarization. Note that
this result is one order lower in the M/ro expansion than
the previous result (24). This reduction occurs since the
present interaction (30) involves a single Riemann ten-
sor, while the previous interactions have two curvature
tens ors.

IV. DISCUSSION

In this paper, we have found some explicit field the-
ory interactions that produce dispersive photon propaga-
tion, in the context of an effective field theory where the
Maxwell action is modified by higher-derivative terms.
Such dispersion was not observed in earlier studies sim-
ply because the effective actions considered previously
did not include suKciently high numbers of derivatives.
The final case also provides a new example of gravita-
tional birefringence. One may ask whether there will

where V(~V' )
= 2(V'~V + V' V'e). After adding Is to

the Maxwell action (1), the equation of motion for the
electromagnetic field becomes

v s" —px'v v (vi v~iz-» v s )
= 0

We then insert the geometric optics ansatz (4) to obtain

be other eight-derivative interactions which will produce
dispersion, and clearly the answer is yes. The three in-
teractions that we have considered, though, are represen-
tatives of three classes of interactions, which produce the
same leading-order equations in the geometric optics ap-
proximation. It is not hard to verify that Eqs. (15), (28),
and (31) are unique. For instance, there is only a single
way to contract four wave vectors and one polarization
with a double derivative of the background curvature ten-
sor, and this is the combination appearing in Eq. (31).
Thus,

Is = — d xQ gV(p—V )R p„„V'~F V~F""
5

(35)

leads to precisely Eq. (31) as the leading-order equations
of motion. The two interactions I5 and I5 differ by total
derivatives, and also terms which d.o not contribute to
these leading-order contributions; i.e., they do not con-
tribute to the dispersion.

In Eqs. (24) and (34), we have found contributions
to the deflection angle of the light rays, which depends
on the square of the photon energy. This behavior is the
same as that found for string theory by Mende. One may
ask then if interactions of the form discussed here ap-
pear amongst the higher-dimension interactions included
in the low-energy effective string action. There are two
alternative approaches to constructing these low-energy
actions. First, it can be determined from the cr model P
functions, which define the low-energy string equations
of motion [11,12]. Unfortunately, o model calculations
involving background metric and gauge fields have not
been carried out to sufhcient order to detect terms of the
form suggested here. Alternatively, the higher-derivative
terms in the low-energy action can be determined by
requiring that the resulting field theory reproduce the
string scattering amplitudes to the corresponding order
in n'p [11,13], where p here represents a typical mo-
mentum Rom the scattering process, and. o.' = A, t is
the string scale squared (essentially, this corresponds to
the Planck scale squared). Interactions of the form (13),
(25), or (30) would contribute to a scattering amplitude
of two photons and. two gravitons the contribution of
I5 to a two-photon and one-graviton amplitude vanishes
on shell. A suKciently detailed study of the low-energy
effective action for a heterotic string has been made to
detect terms of the form discussed here [13], but unfor-
tunately one finds that these terms do not appear in
this action. This suggests that Mende s dispersive ef-
fect, which should be universal to all string theories [7],
must be produced by an interaction at an even higher
order in the n' expansion (or the expansion in numbers
of derivatives) than considered in the present paper. So
one would expect that the dependence on the radius of
closest approach is even more dramatic than the ro ap-
pearing in Eq. (24). Additional Riemann tensors would
also increase the power of the central mass appearing in
the dispersive contribution to the deflection angle.

If one considers studies of low-energy string actions,
there is one eight-derivative interaction which is in fact
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universal to all string theories [14]:

I3
d .g- (2R

512m
o p, v "(7l

+R pp R„„~ R ~""R"~„P) (36)

SAP 10
A2„ (37)

where Azg is the wavelength of the photon measured in
angstroms. So the visible spectrum ranging from 4000 to
7000 (A) would be spread over an angle of about 6 x 10
arc sec. Clearly, as such, gravity's rainbow would be
unobservable.

where g(s) is the Riemann zeta function. We have also
indicated that this effective action is in D dimensions,
since typically string theories are constructed for D & 4.
If the spacetime is then compactified down to four di-
mensions via a Kaluza-Klein ansatz [15], then new vec-
tor particles will appear in the effective theory arising
&om off-diagonal components of the metric, which mix
the four-dimensional spacetime with the compact direc-
tions (e.g. , g„s A„). The D-dimensional Einstein ac-
tion provides the standard Maxwell action (1) for these
vectors upon compactification. Similarly, one finds that
upon compactification the above interaction yields inter-
actions of the form of Eqs. (13) and (25), e.g. , using
Rs p&

— V I'"p~—+. ). Therefore the above string in-
teraction produces dispersive propagation as described in
our present analysis for these Kaluza-Klein vector fields.
The latter, of course, correspond to particular modes in
the string spectrum.

Finally, we consider the magnitude of the deHection
angles that we have calculated. Ultimately, we expect
that this dispersion would only be observable in very ex-
otic circumstances, but to begin let us evaluate Eq. (34)
with solar parameters for which the leading-order deflec-
tion angle of general relativity is b, P = 4M/ro ——1.75"
[9]. The length scale A is the microphysical scale asso-
ciated with the processes that induce our effective inter-
action. Here, we will choose the interaction scale to cor-
respond to the Compton wavelength of the electron, i.e. ,
A = A, 2.4 x 10 ~ m, as it would be if Eq. (30) arose
as a higher-order term in the derivative expansion of the
one-loop effective action for QED. (Clearly the effect will
be more suppressed if we choose a shorter length scale,
e.g. , the Planck scale in a string effective action. ) In this
case, it is natural to choose the dimensionless coupling
constant to be of the order of the fine structure constant,
i.e. , P o.). With these choices, the dispersive deflec-
tion angle for a radially polarized photon grazing over
the limb of the sun (i.e., ro 7 x 10 m) is given by

Now we also wish to consider situations in which the
dispersion would become more pronounced. If we con-
sider Eq. (24) or (34) with A and P fixed as above for the
QED (i.e. , A = A, and P n), there are three options:
increase the photon energy, decrease the radius of closest
approach, or increase the central mass. With any of these
options, we are limited by the approximations entering
into our calculations. The deHection of much higher-
energy photons is certainly greater, but one must remem-
ber that the applicability of the effective action is lim-
ited to photon wavelengths greater than the interaction
scale A, which we are here considering to be the Compton
wavelength of the electron. Thus one could only consider
photons up to the x-ray portion of the spectrum. The
deHection is also increased with a reduction in the radius
of closest approach ro. This radius would be minimized
by considering a black hole for which one might achieve
ro M. Such a scenario, though, runs into conHict with
another approximation made in our scattering angle cal-
culations, namely, M/ro (( 1. In principle, one could
carry out those calculations in more detail if one wished
to consider M/ro 1. With this choice then, one would
actually want to decrease (rather than increase) the cen-
tral mass M. Here the limitation is the validity of the
geometric optics approximation, which requires that the
photon wavelength be much smaller than the radius of
curvature of the spacetime geometry. In a Schwarzschild
geometry, then, one demands that A h ( ro/M M .
Thus at least M must be greater than A„which was a
lower bound on the photon wavelength. Certainly, one
could imagine then that dramatic dispersion would be
produced for x rays by a black hole of M 10 g,
for which the gravitational radius would be of the or-
der of the Compton wavelength of the electron. It seems,
though, that such an object (with M 10 M~) and
the dispersed x rays are unlikely to be observed. It may
also be interesting, though, to consider photon propa-
gation beyond the geometric optics approximation. It
may be that effective interactions of lower dimension than
considered in Sec. III could produce dispersion in situa-
tions with large and rapidly varying curvatures, as could
possibly be created by gravitational collapse. In conclu-
sion, while the dispersive photon propagation appearing
in the present analysis in principle presents a violation
of the equivalence principle, it appears to be beyond the
practical limits of observations.
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