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Spherical gravitational wave antennas and the truncated icosahedral arrangement
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A spherical gravitational wave detector can be equally sensitive to a wave from any direction, and
also can be able to measure its direction and polarization. We derive a set of equations to describe
the mechanics of a spherical antenna coupled to an arbitrary number of attached mechanical res-
onators. A special arrangement of six resonators is proposed, which we term a truncated icosahedral
gravitational wave antenna. An analytic solution to the equations of motion is found for this case.
We Bnd that direct deconvolution of the gravitational tensor components can be accomplished with
a specified set of linear combinations of the resonator outputs, which we call the mode channels. We
develop one simple noise model for this system and calculate the resulting strain noise spectrum.
We conclude that the angle-averaged energy sensitivity will be 56 times better than for the typical
equivalent bar-type antenna with the same noise temperature.

PACS number(s): 04.80.Nn, 95.55.Ym

I. INTRODUCTION

Confirmed detection of gravitational waves &om astro-
physical sources will found a new astronomy and allow
direct investigation of the gravitational force under ex-
treme conditions. The best current antennas, such as the
LSU ALLEGRO detector [1], are sensitive enough to de-
tect a gravitational collapse in our Galaxy, if the energy
converted is a few percent of a solar mass. However, the
conventional wisdom is that we need to look at least 3
orders of magnitude further in distance, out to the Virgo
Cluster, to have an "assured" event rate of several per
year. This requires improving the energy resolution of
the detector by 6 orders of magnitude. The best known
methods for improving cryogenic resonant-mass detec-
tors will contribute by lowering the noise temperature
T &om its current value of 7 mK. It is commonly be-
lieved that quantum noise will present a formidable bar-
rier for improvement by more than 10, not quite enough
for "assured" detection.

There are other ways to improve resonant-mass an-
tennas that are independent of the noise temperature.
One way is to increase the cross section of the antenna.
Another is to construct many antennas, each aimed in
a different direction, so every source direction and po-
larization will be in the most sensitive part of at least
one antenna pattern. This method adds the ability to
determine source direction and polarization. A "spher-
ical" antenna will provide all three advantages in a sin-
gle instrument. We use the word "spherical" for any
shape that approximates a true sphere and has equiva-
lent quadrupole vibrational modes.

The important question becomes the following: What
quantitative improvement can a sphere actually deliver' ?

We have invented a design for a nearly spherical antenna,
which we call a truncated icosahedral gravitational wave
antenna (TIGA) that provides an elegant solution to cer-
tain complications of a spherical antenna, and lets us cal-
culate the quantitative improvement. We conclude that

a TIGA will be about 56 times more sensitive in energy
than the typical equivalent bar-type antenna with the
same noise temperature T . Combined with a quantum
limited T, this is a suKcient factor to increase our range
by more than the desired factor. If we further assume
construction of a set of detectors for different frequencies
(a "xylophone" ), the sensitivity is further improved and
waveform information can be obtained.

It was recognized long ago [2] that a sphere is a
very natural shape for a resonant-mass detector of grav-
itational waves. A &ee sphere has five degenerate
quadrupole modes of vibration that will interact strongly
with a gravitational wave. Each &ee mode can act as a
separate antenna, oriented toward a different polarization
or direction. Wagoner and Paik [3] found a set of equa-
tions to determine the source direction in the celestial
hemisphere &om the &ee mode amplitudes. They also
calculated the angle-averaged energy absorption cross
section of a sphere. Compared to a bar with the same
quadrupole mode frequency and a typical length to di-
ameter ratio of 4.2, the improvement in cross section is
about a factor of 60.

That result was ignored, perhaps because a simple
spherical resonator is not a practical detector. One re-
quirement for practicality is a set of secondary mechan-
ical resonators. All successful cryogenic bar-type de-
tectors have such resonators; they act as mechanical-
impedance transformers between the primary vibrational
modes of the antenna and the actual motion sensors, pro-
ducing an essential increase in the electromechanical cou-
pling. We expect that a sphere with five primary modes
will require at least five secondary resonators. Another
requirement is a clear method for spatial deconvolution
of the signal, so we can determine its direction and po-
larization. A third requirement is a way to quantify the
noise when multiple motion sensors are used.

It is not hard to imagine that the presumed advantages
of a sphere may be lost due to these practical require-
ments. In order to determine the feasibility of a spher-
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ical antenna, the complications of extra modes needs to
be addressed. Our analysis is an extension to multimode
antennas of the type used by Michelson and Taber to
discuss a bar antenna with a single secondary resonator
[4,51

We present here detailed calculations for the sensitiv-
ity of a spherical detector for a case where the secondary
resonators have a particular useful symmetry. A brief
review of some of these results has been previously pub-
lished [6].

We begin by introducing the quadrupolar decompo-
sition of the gravitational Beld in Sec. II. Section III
reviews the fundamental mechanical equations and the
eigenfunction expansion for a general antenna. Sec-
tion IV reviews the quadrupolar eigenfunctions for a
sphere and shows that they exactly match the quadrupo-
lar decomposition of the gravitational Beld. A derivation
of a general model for coupling resonators to a sphere
is presented in Sec. V. A special geometry (the "TIGA
configuration") is introduced that simplifies the behav-
ior of the coupled system, and allows us to obtain a gen-
eral analytic solution. A direct, one-to-one, readout for
each of the quadrupolar components of the gravitational
Beld is provided by a linear combinat;ion of the resonator
outputs, called "mode channels. " The behavior of the
complete system is illustrated with a numerical simula-
tion of its response to waves with different directions and
polarizations. Section VI develops a simple noise model,
and calculates the resulting "spectral sensitivity" of the
detector. Section VII compares the spectral sensitivities
of several detectors.

The detector is more easily described in the "labora-
tory frame, " denoted by unprimed coordinates and in-
dices, with its origin also at the center of mass of the
detector, and z axis aligned with the local vertical. In
this frame, the primary physical effect of a passing grav-
itational wave is to produce a time dependent "tidal"
force density f (m, t) on material at coordinate loca-
tion x, with mass density p, which is related to the metric
perturbation by

fGvv( t) ) &2( )—2P

We notice that this force can be written as the gradient
of a time-dependent scalar potential:

( .I
f, (a, t) = 7';C(~, t) = V'; ) px, h,—i, (t)xi, . (3)

( g, a )
This scalar potential is a quadratic form in the spatial

coordinates. It is natural to look for an alternate expres-
sion that separates the coordinate dependence into radial
and angular parts. Because the tensor h, ~ is t;raceless, the
angular expansion can be done completely with the five
ordinary spherical harmonics of order 2, which we denote
by Y (0, P) or Y . We call the resulting time dependent
expansion coefficients, denoted by h (t), the "spherical
amplitudes. " They are a complete and orthogonal repre-
sentation of the Cartesian metric deviation tensor h;~(t).
They depend only on the two wave-frame amplitudes and
the direction of propagation, and are defined by

II. QUADRUPOLE DECOMPOSITION
OF THE GRAVITATIONAL FIELD

4(a, t) = pr ) h —(t)Y (4)

A gravitational wave is a traveling time-dependent de-
viation of the metric tensor, denoted by h„.We follow a
common textbook development for the metric deviation
of a gravitational wave, which Bnds that only the spatial
components h;~ are nonzero, and further can be taken
to be transverse and traceless [7]. The tensor is simpli-
Bed if we initially write it in the "wave frame, " denoted
by primed coordinates and indices. It is a coordinate
frame with its origin at the center of mass of the detector,
and the z' axis aligned with the propagation direction of
the wave. Since we restrict ourselves to detectors much
smaller than the gravitational wavelength, only the time
dependence of h; ~ will have significant physical effects.
Thus, the most general possible form for the spatial com-
ponents of the metric deviation in the wave frame can be
written as

Yj ——

Y2 ——

Y4 ——

(Y22 + Y2 —2)

x (Y2 2 —Y22) =

(Y-+ Y.—.) =

(Y2—i —Y2i) =

I5 (*' —y')
16m

15 2xy
16m r2

15 2yz
16' r2

15 2xz
16m r2

(5b)

(5c)

(5d)

Y5= Y20=
I5 (3z2 —r2)

16vr r 2 ~3
(5e)

We have found it convenient to use a set of spher-
ical harmonics Y that are linear combinations of the
usual complex-valued. spherical harmonics Y2 . We de-
fine them by

h+ (t) h'„(t) o
h'„(t) —h+(t) o

0 0 0

where h+ and h'~ are the wave amplitudes for the two
allowed states of linear polarization, and are called the
plus and cross amplitudes.

They are normalized such that IY . Y dA = b

To transform the metric perturbation to the labora-
tory frame we perform the appropriate rotations, using
the y convention of the Euler angles [8]. Ordinarily, with-
out making any assumptions about the source, we do not
know the initial state of the polarizations; we may there-
fore ignore the rotation about the original z' axis because
this rotation only mixes the two polarizations and has no
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effect in determining the direction of the wave. We de-
note the rotation about the y' axis by P and the rotation
about the new z axis by p. The spherical amplitudes
can now be written in terms of the gravitational wave
amplitudes:

hq (t) = h+ (t) 2 (1 + cos P) cos 2p + h'„(t)cos P sin 2p,
(6a)

h2(t) = h+(—t) 2 (1 + cos P) sin 2p + h„(t)cos P cos 2p,
(6b)

(6c)

(6d)

(6e)

hs (t) = h'+ (t—) 2 sin 2P sin p + h'„(t)sin P cos p,
h4(t) = h+(t) 2 sin 2p cosy+ h'„(t)sin p sing,

hs(t) = h+(t)-', y 3 sin' P .

If the laboratory x axis points south and the laboratory
z axis is the local zenith, then the source has a zenith
distance = P and an azimuth (degrees east of north along
the horizon) = p.

The five orthogonal spherical amplitudes h are the
complete set of measurable quantities of the local gravi-
tational field. The determination of the source direction
follows immediately by inversion of Eq. (6). Explicit
formulas for this can be found in work soon to be pub-
lished [9,10]. The position determination is only unique
within a hemisphere; sources in opposite directions are
indistinguishable.

III. THE CENERAL ANTENNA

The mechanics of a general antenna can be described
by ordinary elastic theory. Forces acting on the body
will cause a deformation described by the displacement
vector u(a, t), where m is the equilibrium position of a
mass element. The equations of motion are then

p = (A+ p)V(V' m) + pV' m+ ) f,

Each spatial eigenfunction, 4' (m), is the time indepen-
dent part of the solution for unforced harmonic oscillation
at the eigenfrequency u, and. is found by solving

where the Lame coeKcients A and p specify the elastic
stiffness of the material and P f represents the sum of
external force densities acting on the body [11].

In this paper we include two forces in P f First, the.
signal or gravitational force density f w from Eq. (2).
Second, if objects are attached to the antenna, there will
exist a reaction force between the object and the surface
of the antenna. Thus we choose to express the coupling
to other objects, such as secondary resonators, as if they
were external forces in Eq. (7). This device lets us parti-
tion the equations of motion in a convenient way.

A solution to the differential equation (7) can be found
by the standard eigenfunction expansion. This allows
a separation of the spatial and time dependence of the
displacement vector:

~(~;, t) = ) a (t) 4 (~;).

—pu) % = (A+ p)V'(V'. 4' ) + pV %

subject to the time-stationary boundary conditions,
which for a sphere require that the total force per unit
area at the surface vanish in the direction normal to the
surface. The quantity a (t) is the time-dependent mode
amplitude. The mode index m enumerates the discrete
set of modes, which obey the usual orthogonality prop-
erty

f (a) 4„(~)d'x= N b „.
V

(1O)

The normalization constant % is arbitrary.
Combining the equations above, and using orthogo-

nality to eliminate the summation, we find the standard
result, one forced harmonic oscillator equation for each
mode amplitude:

a (t) + ~ a (t) = % (a) ) f (m, t) d z .
pN

When comparing different calculations, one source of
possible confusion is the arbitrary choice of normalization
constant N . It determines the units and the precise
physical interpretation of both the mode amplitudes a
and the eigenfunctions 4'

The mode amplitudes are a complete set of collective
coordinates for the description of the antenna motion.
All the interactions with the outside world, including
gravitation, can be included as separate terms in the "ef-
fective force" on each mode. An eKcient approximation
scheme will use only those modes needed for an accurate
description of the antenna. Only a few of the "overlap
integrals" with f w in Eq. (11) are large, so that only
a few of the mode amplitudes are strongly coupled to
gravitational waves.

IV. THE UNCOUPLED SPHERE

Let us consider a perfectly homogeneous and isotropic
sphere uncoupled from the outside world. Its eigenfunc-
tions were found over a hundred years ago by Jaerisch [12]
and Lamb [13]. More elegant derivations, using modern
notation, were found by Ashby and Dreitlein [14], and
Wagoner and Paik [3]. We summarize their results.

The eigenfunctions of a sphere can be described in
terms of spherical harmonics Ye (9, P). Looking at the
overlap integral in Eq. (11) we see that we need only
consider odd-parity Inodes. For a sphere of radius B the
eigenfunctions are written

Ne~ = [ne(r)r + Pe(r)BV'] Ye (8, P), E even. (12)

The radial eigenfunctions ne (r) and Pe (r) determine the
motion in the radial and tangential directions, respec-
tively. There are five quadrupole modes of vibration
which strongly couple to the force density of a gravi-
tational wave, and are all degenerate, having the same
angular eigenfrequency u . They are distinguished only
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FIG. 3. The dimensionless eigenfrequency of the uncou-

pled quadrupole modes of a sphere, wDR~&~, as a function of
Poisson's ratio.

FIG. 1. The shape of the quadrupole modes. The shading
indicates the amplitude of radial motion. The dark regions
have little or no radial motion; the lightest regions have the
maximum of radial motion.

j2 is the spherical Bessel function of order 2. The
longitudinal and transverse wave vectors are given by
q = pro/(A + 2p) and k = pro/p, respectively. The
boundary conditions

by their angular dependence. Figure 1 shows the shape of
the quadrupole modes. For the remainder of this discus-
sion we will only consider the quadrupole (l = 2) modes
so we will drop the E in our notation.

The radial eigenfunctions are given by Ashby and
Dreitlein:

1
n(r) = cB j2(qr) + 6d—B—j2(kr),

OT T

d j2(qr) 5 k 1 d
C j2(kr)

dT T

k' 2d d j2(kr)
j2(qr) + 6d—

2 2 TdT dT T

v =-R

v=R

(i5)

=0

6
&( ) = j.(q ) + d —[ j2(kr)l .

BT
(l4)

Their dependence on Poisson s ratio is shown in Fig. 2.

(16)

determine the uncoupled mode frequency wo. Its depen-
dence on Poisson s ratio is shown in Fig. 3. Inclusion of
a normalization condition
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FIG. 2. The value of the normalized eigenfunctions,
(solid line) and P (dotted line), at the sphere surface, as func-
tions of Poisson's ratio.

FIG. 4. The normalized eigenfunctions c (solid line) and d
(dotted line) as functions of Poisson's ratio.
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vector component of antenna motion normal to the sur-
face on which they are mounted. Thus it seems natural to
restrict our consideration to resonators of this type. The
alternate possibility, interaction with transverse compo-
nents of the antenna motion, is under consideration by
others [9].

Designate the location of each resonator j by m~. Then
the normal displacement, z~, of the sphere surface under
resonator j, is given by

0.598 z (t) =i, .) a (t)@ (a, ). (20)

0.596
0.25

I

0.3
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Poisson's Ratio
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FIG. 5. The fraction y, which determines the effective
length of the sphere, as a function of Poisson's ratio.

N—:3mR

determines the constants c and d. These coeKcients spec-
ify the shape of the eigenfunctions. They are all weakly
dependent on Poisson's ratio, as shown in Fig. 4.

The gravitational effective force for mode m of the
sphere Fs, from Eq. (11) is

Fs @ yew ds
Vo

(18)

Solving the integrals, using Eqs. (3) and (12) we find

Fs(t) = —ph (t)B [cj2 (qR) + &dj 2 (kB)]15

= —h (t) ms yR.
2

V. SPHERE WITH RESONATORS

A. Equations of motion

We have just shown that measurement of the
quadrupole modes of a sphere measures all of the spatial
dependence of the gravitational Geld, but a simple spheri-
cal resonator is not a practical detector. As mentioned in
the Introduction, one requirement for practicality is a set
of secondary modes or mechanical resonators. All current
bar antennas use resonators that interact only with the

Thus we have that each spherical component of the grav-
itational field determines uniquely the eQ'ective force on
the corresponding mode of a sphere, and they are all iden-
tical in magnitude. We can interpret the effective force
F in each mode as the product of the physical mass of
the sphere ms, an effective length yR, and the gravita-
tional acceleration zh . The factor y is a weak function
of Poisson s ratio, and is shown in Fig. 5.

By mechanical resonator we mean a small elastic sys-
tem that has one of its own normal modes tuned to be
resonant with the frequency of the antenna. The antenna
surface motion excites this mode, and there is resonant
transfer of momentum between the resonator and the an-
tenna. Hence it acts as a resonant mechanical trans-
former, turning small motions of the large antenna into
large motions of the small resonator. Each resonator j is
constructed to obey a one-dimensional harmonic oscilla-
tor equation:

m~ [q (x, t) + z.(x, t)] = k~q (x., —t) + F. (x-, t).

(21)

l z

I

ms

I

I

/

I

z+q

kR

lAW'

FIG. 6. Schematic of a one-dimensional resonator attached
to the surface of a sphere.

The displacement of the resonator, relative to the sphere
surface, is denoted by q~. Because q~ is a relative dis-
placement, the inertial displacement of the resonator
mass is q~ + z~, hence the peculiar form for the left-hand
side of the equation above. Each resonator is assumed
identical, and the mass mR and spring constant k~ of
each are tuned to match the &equency of the five sphere
modes so that k~/m~ = u . Any random or noise forces
that act between the small resonator and the sphere are
included in F . A schematic of the one-dimensional sys-
tem is shown in Fig. 6.

The values of the relative radial displacements of the
sphere surface, at the resonator locations, can be grouped
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together into a "pattern vector" for a particular mode,
because they describe the pattern of radial displacement
for that mode. These column vectors in turn may be col-
lected together to form a "pattern matrix" H~~ de6ned
by

(z~) = aB (22)

where a = o.(R). From Eq. (12) we find

B ~ =&-(~~ &~).

Because the wave functions are invariant to reHection
through the origin, we may restrict the location of res-
onators to one hemisphere, without loss of generality.

Combining the above, we And the coupled equations of
motion for the sphere modes are

mrna (t) + ksa (t)

= ) aB, kRq, (t) —F (t) + F (t). (24)

It is convenient to combine Eqs. (21) and (24) into a
matrix notation. We denote matrices by a double under-
line and column vectors by a single underline:

my I 0 a(t) kSI —kRaB a(t)
mRaB mRI q(t) 0 kRI q(t)

+

I nB F —(t)
0 I= Fn (,) (»)

q(t) + ~,'D q(t) = U~K F(t). (26)

The vector a has 5 components and the vector q has
1 component for each resonator. The dimensions of the
constant matrices can be inferred from these two column
vectors.

These equations should give an excellent account of the
mechanics of the system for arbitrary numbers and loca-
tions of resonators. They are restricted only by the previ-
ously stated assumptions: degeneracy for the uncoupled
sphere modes and precise matching of the resonators.
Most of the new features of a multimode spherical an-
tenna are included, particularly the strong interactions
between the sphere modes and the resonators. We have
not included terms which represent the "dissipation" part
of &iction, which can be shown to be negligible for the
sensitivity calculations we do here. We do include the
"Huctuation" part of &iction, within the random driving
forces in E and E

It is clear that these equations represent a set of elas-
tically coupled harmonic oscillators with driving forces.
The apparent peculiarities (off-diagonal terms in the
mass matrix and asymmetry in the elastic matrix) are
simply artifacts of use of the noninertial coordinates q.
In the Appendix we show how to transform them into
the canonical normal form, with normal coordinates g:

The sphere overlap integrals and the resonator noise
forces are contained in the column vector F. U is the
transpose of a set of eigenvectors that diagonalize the
equations. The matrix D is the diagonal matrix of eigen-
values for the normal modes described by U, and K is
a constant transformation matrix. The equations of mo-
tion are now in a form that can easily be solved numeri-
cally using standard techniques.

To solve for the resonator displacements q and sphere
mode amplitudes a we take the Fourier transform of equa-
tion (26), and solve for g (w). Once the normal coordi-
nates have been found, the sphere mode amplitudes and
resonator displacements are found by a constant trans-
formation.

B. Truncated icosahedral arrangement

We can solve the equations above for arbitrary num-
bers and locations of small resonators, and determine
whatever quantities are interesting, such as the coupled
eigen&equencies and eigenvectors. One important ques-
tion is whether there exists any favored or optimum ar-
rangement.

By a simple counting argument we expect that a min-
imum of Gve resonators are required to completely mea-
sure the Ave quadrupole modes of the sphere, so our ini-
tial calculations considered the &equency structure with
five resonators tuned to the frequency of the degenerate
sphere modes.

The eigenmodes of the coupled system are naturally
split up and down in frequency. Prom earlier work on
optimizing a bar antenna coupled to a single resonator
[4], we knew that the amount of frequency splitting was
an indicator of the strength of the coupling, and normally
would need to be adjusted to a particular value to opti-
mize the overall signal to noise ratio. Therefore we were
disappointed to discover that the 10 coupled modes did
not split in an identical way. For every arrangement of
6ve transducers that we tried, we found that the resulting
coupled modes were arranged in singlets, doublets, and
triplets, each with a different splitting from the original
common &equency.

We then tried six resonators and quickly discovered
that there was an arrangement that greatly simplified
the frequency structure: it became two degenerate quin-
tuplets and a singlet. The geometric location of the res-
onators was found to be precisely the projection, onto
the sphere, of the centers of half the faces of a concentric
dodecahedron.

A truncated icosahedron (TI) has the same point group
symmetries as a dodecahedron [15], but better approx-
imates a sphere. It also has 32 flat surfaces suitable
for mounting transducers, calibrators, balancing weights,
and suspension attachments. Therefore, we proposed to
use six pentagonal faces of a TI, instead of a dodecahe-
dron, for arranging the mechanical resonators [6]. This
shape, with the proposed resonator locations, is shown
ln Flg. 7.

The high symmetry of the TI arrangement becomes
apparent when you examine its pattern matrix. Each
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pattern vector is orthogonal to the others, and each has

the same magnitude, 2, or, in other words,

BB = —I.
27r

=' (27)

Bl =O. (28)

(The 6 x 1 column vector 1 is defined to have all elements
equal to unity, while the 5 x 1 column vector 0 has all
elements equal to zero. ) This property will allow us to
easily remove &om our analysis the lone mode, which
does not interact with a gravitational wave.

Since discovering this arrangement, we have not con-
sidered others in comparable detail. We have not at-
tempted to make a proof that it is the optimum arrange-
ment, but its symmetry leads us to conjecture that such
a proof will be discovered.

This property causes the cross terms between sphere
modes in the eigenfunctions to vanish, having the effect
of isolating each sphere mode from the others. Without
this, the energy Rom an excitation of a single sphere
mode would end up "leaking" into the other sphere
modes through the mechanical resonators. This allows
us to use the sphere modes as a direct measurement of
the gravitational spherical amplitudes.

In addition to the orthogonality, the sum of the com-
ponents of each pattern vector vanishes, or

the Appendix.
It is convenient to divide the resulting set of eigen-

vectors U into three groups. The first two groups each
contain five column eigenvectors and we denote them by
U and U+

I
cpB (29)

The physical interpretation of these is simple: each cou-
pled eigenmode "mimics" the motion of one of the un-
coupled sphere eigenmodes. In other words, each coupled
resonator's radial motion is proportional to the uncou-
pled sphere wave function at that resonator's location.
This amplified version of a mode's pattern vector is either
in phase (downshifted in &equency) or antiphase (up-
shifted in &equency). The frequency shifts are all iden-
tical, so that the quintuplet of degenerate bare sphere-
modes has bifurcated into upshifted and downshifted de-
generate quintuplets of modes. The amount of frequency
shifting is given by the eigenvalues, A~, which are the di-
agonal elements of the matrix D. The identity matrix in
the sphere components of the eigenvectors is an indica-
tion that energy will not be transferred &om one sphere
mode to another. The 6 notation has been used on the
constants n~ and c~ as well to refer to the up (+) or
down (—) shifting of the frequencies.

The remaining single eigenvector is

C. Analytic solution 0
Ap 1 (30)

The symmetry of the pattern matrix also suggested
that there might be an analytic solution for the collec-
tion of eigenvectors U and the eigenvalue matrix D of
Eq. (26). Examination of the numerical results suggested
a likely form for U, and substitution in the equations ver-
ified that it was a solution and determined the values of
the constants. The details of this solution are found in

This mode is at the original sphere frequency and does
not interact with a gravitational wave. All the resonators
move in unison and the sphere modes do not move at all.

The five dimensionless constants n~, c~, and n can
be determined using the Hermitian property of the trans-
formation, U U = I. The symmetry properties of the
pattern matrix, Eqs. (27) and (28), play an important
role here to simplify the work involved in determining
these constants and in calculating the eigenvalues. We
summarize the results:

1 2 1
Ap1+ 2 c+ 6

(32)

3 ( s~l
A~ = 1+—b b+ b2+ —,Ap ——1,4 3

FIG. 7. The truncated icosahedral gravitational wave an-
tenna (TIGA) with secondary resonator locations indicated.
The resonators lie at two polar angles, 8 = 37.3773 and
79.1876 . Their azimuthal angles are multiples of 60', as
shown. The numbering on the resonators corresponds to the
order used in the numerical simulation of Sec. V E.

where 6 —= num~/ms. The relative splitting of the
coupled modes is given by Bur/uo ——gA+ —gA
1.98/m~/ms for a Poisson's ratio of 0.36.

D. Mode channels

In an experiment, the measured quantities are the res-
onator amplitudes q~(t). Since they mimic the motion
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Fig. 10 to Fig. 8, it is obvious that (except for a phase
shift of the envelope) the mode channels give a direct,
one-to-one, readout of the sphere mode amplitudes, and
thus of the gravitational wave.

For the second case, Figs. 11, 12, and 13 show' the re-
sults of the above calculation repeated for a gravitational
wave burst propagating along the z axis with amplitude
h+.

VI. SPECTRAL SENSITIVITY

We have found above a set of equations for the system
and a method of solution. We can now apply them to
predict the sensitivity of a model detector. First, we
write down the response of each mode channel g (~) to
the gravitational wave input h (cu). From Eqs. (19) and
(35),

g ((u) = —
(2u mso(ur)yRh ((u) .

Second, we model the noise sources and calculate the
system response to them. We have chosen to use a sim-
ple noise model which includes only two categories of
noise certain to be important: (1) displacement noise, or
random voltages in the electronic readout of the mechan-
ical displacement q and (2) force noise, or random forces
that actually excite the mechanical system. We assume
both are generated in what Price [16] calls the "mechani-
cal amplifiers, " or the transducer-amplifier combinations,
which convert the resonator motions q into an electronic
readout. The displacement noise has a spectral density
denoted by S~(tu)

The force noise caused by the transducer-amplifier
combination will appear as a random term in E~ (u). We
denote its spectral density as S+(ur). We leave out of this
model all of the Langevin noise forces that can be impor-
tant with nonzero temperatures and nonzero mechanical
losses, thus we are calculating the generalization of Gif-
fard's limit [17] for a multimode multitransducer antenna
without mechanical losses.

These two noise sources can also be represented in a
different way, by defining a "noise number" and a "noise
resistance" for each transducer amplifier. The noise num-
ber N is the amplifier noise temperature T referred to
the quantum of energy at the antenna &equency:

SFS~
h2

The noise resistance is defined by

S+
(d S&

It is a measure of the strength of the electromechanical
coupling in the transducer-amplifier combination.

Combining the above and transforming using Eq. (34)
and the noise part of Eq. (35) we find that the calculated
noise spectrum at the mode channel g is

S' (~) = S (~)):IB-&(~)I'+ S'(~) ).IB-.I' (»)

We assume the noise generators are all statistically inde-
pendent.

Finally, we must compare the signal and noise re-
sponses, using some criterion for detectability. This final
step can be done in a number of ways. For these calcu-
lations we have chosen to use a method not used before
with resonant detectors, but now commonly used with
laser interferometer gravitational wave detectors.

We calculate h = QSh, the gravitational "strain spec-
trum" or "spectral sensitivity. " It is the square root of
the total noise spectral density measured at the output,
in this case g, referred back to the gravitational inputs
6 . It quantifies the fictitious gravitational background
noise that would be required to mimic the stationary ran-
dom output of the antenna. Assuming only stationary
noise is present, it has the advantage of allowing compar-
ison of different types of antennas. It also can be used
to determine the signal-to-noise ratio for any specified
signal waveform.

The noise spectral density of each mode channel g
referred back to the corresponding spherical component
h is therefore

4kbT„
SX

x) IB

2
p+ P- msm~

n 2 w+ ~ g +
+ n

ca+ Ck

~2-~~ + ~2-~~+

(40)

where n~ and P~ are dimensionless constants found in
the Appendix.

From Eq. (40) we see that the calculated strain spec-
trum is proportional to the square root of the noise num-
ber. The shape of the strain noise is prescribed by the
noise resistance r and the mode splitting. Figure 14
shows the strain noise for noise number, N = 1, for a 1
kHz aluminum TIGA. The three solid lines are for differ-
ent values of the noise resistance.

VII. COMPARISON OF THE TIGA TO OTHER
DETECTORS

It is possible to construct a number of TIGA's at differ-
ent frequencies to create a "xylophone. " Doing so would
enable one to partially determine the waveform of an
incoming gravitational wave. The spectral density of a
range of TIGA sizes is shown in Fig. 15. The resonator
to sphere mass ratio and noise resistance were adjusted
to give consistent fractional bandwidth and a maximally
flat curve. Parameters of this xylophone are shown in
Table I.

For comparison, the corresponding results for the
equivalent bars, optimally oriented (bar axis orthogonal
to an incoming wave), for the same strain component are
shown as dashed lines in Fig. 15. The strain noise h
with N = 1, for the equivalent bar is larger by a factor
of 3.9.

The second important result of this paper is that for
equivalent conditions (equal noise numbers), a single
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3100

Transducer mass
(kS)
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8 = 4kgT (41)
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APPENDIX

The equations of motion for a sphere with resonators
are given by Eq. (25). We simplify this equation by mak-
ing a number of transformations. First, we transform the
resonator displacements and sphere amplitudes into the
11 mass weighted coordinates m:

1

q = 0
gms = u). (Al)

0
1

gmR—

Next, we remove the matrix multiplying the second time
derivatives by multiplying both sides of the equation by
its inverse. We end up with the equation

where Q is the mechanical quality factor of the sphere,
T is the physical temperature, and kp is the Boltzmann
constant. Using Eq. (19) we refer this force to the gravi-
tational input in Fig. 14. The dashed line shows the noise
for a TIGA with a Q = 10 at 50 mK. Clearly if one can
obtain a high enough Q, the noise in the system due to
antenna damping can be ignored.

A natural extension of this work would be to calculate
the effect of small departures &om the perfect symmetry
and perfect matching assumed here. We want to know
if orthogonal mode channels be constructed, and also
how much will the sensitivity degrade? Our experience
with somewhat similar departures &om perfect matching
(such as the frequency mistuning of a resonator on a bar
antenna) suggest that the sensitivity is affected only in
second order by small departures of a parameter &om
its optimum value [19], but a quantitative calculation of
these effects will be of practical interest for construction
of such an antenna.

Another extension would be a calculation of the effect
of adding a resonant transducer for the erst monopole
Inode of the sphere, because it potentially provides a de-
tector for scalar gravitational waves, which may be of
theoretical interest.

Other possible extensions include: multimode res-
onators, and additional resonators to monitor a higher
&equency harmonic of the quadrupole modes.
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which is of the form ui + uoMm = KE. The matrix
M is symmetric; therefore, it can be diagonalized by the
transformation U M U = D where U is a set of eigen-
vectors, and D is the diagonal matrix of the eigenvalues
of M. Substituting this in Eq. (A2) and multiplying by

U we get

g+ ~oDg —U KE, (A3)

( ~ I+ ~eD(~)) rI(cu) = U KF(~). (A4)

G ~(~)

Because D(ur) is diagonal, G (~) is diagonal, so its in-
verse is just the diagonal elements inverted. The normal
coordinates are

q(~) = G((u) U K F((u) . (A5)

To return to the original coordinates we reverse the trans-
formations:

( )
——7 U rj(ur) = p U G((u) U K F(~) (A6)

For the TI arrangement, the eigenvectors U have the form
given in Eqs. (29) and (30), with the result that the
matrices become

1
gms =

0

1K=
gms

0
1

gmR—

—o!B
' LI+ b'B~B)

(A7)

(A8)

n I
n+c+BT

n-I
n c B

0
nol (A9)

1
4)+ —4P

0

0

0

4J —4P

0

0

0
1

(~o — ')

(A10)

where b = num~/ms and n~, cy, and n are given in
Eqs. (31)—(33). To simplify further we define

where g are now our normal coordinates. The problem
has now been reduced to 11 decoupled harmonic oscil-
lator equations that can easily be solved in a number of
different ways. We begin by taking the Fourier transform
of Eq. (A3):

G) + Ct)O

1
—v'-" aa~

~S

"nB
ms

2BT

mR mS I+ ~2B
mS mR=

W

(A2)

3, & 3
n~ = —n~c~

~

1 — c~b ~—
2vr q 2'
3 2 SAN

P~ = —n~c~2'

(A11)

3b+c+
i
1+—b' —~, (A»)

27lmg
2=i 2

(dy = Ag4JO.

After some algebra we Gnd the resonator displacements
and sphere mode amplitudes to be given by
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27K cr+/c+ cx /c g 27l' P+/c+ P /c
3ms

~
(~+2 —~2) (~z —w2) ) 3m~

~ (a+2 —cuz) (~2 —ugz) )
(A14)

r
3+mgmR ( (Cd+ —Cd ) (ld —(d ) j

B F (u))

27l + 1+ +
~

B B+ 2 1 F (~)3/msm~
~ (a+2 —~2) (~2 —wz)

~
= = 6m~ (ao2 —uz) = (AI5)

To convert the resonator displacements to mode channels we need only multiply by the pattern matrix B. In the
frequency domain, the mode channels, in terms of the noise forces, are given by the remarkably simple expression

g(~) = n,
gmsmR I (~z —~z) (~z —~~)

~

r

+ F ((u)

+ 2 + z BF (~)
gmgmtt ( (~2 —~z) (~z ~&) )

=—

= o(cu).F ((u) + ) H, (~)F (u)). .

(A16)

(A17)
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