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A spherical gravitational wave antenna is a very promising detector for gravitational wave as-
tronomy because it has a large cross section, isotropic sky coverage, and can provide the capability
of determining the wave direction. In this paper we discuss several aspects of spherical detectors, in-
cluding the eigenfunctions and eigenfrequencies of the normal modes of an elastic sphere, the energy
cross section, and the response functions that are used to obtain the noise-free solution to the inverse
problem. Using the maximum likelihood estimation method the inverse problem in the presence of
noise is solved. We also determine the false-alarm probability and the detection probability for a
network of spherical detectors and estimate the detectable event rates for supernova collapses and
binary coalescences.

PACS number(s): 04.80.Nn, 95.55.Ym

I. INTRODUCTION

Gravitational wave astronomy has two broad scientific
goals: (1) to verify directly the existence of gravitational
radiation and (2) to use gravitational radiation as a tool
for astronomical observation. The first goal requires de-
tectors of high sensitivity, while the second goal imposes
the additional requirement that detectors have good di-
rection resolution and a broad bandwidth.

A spherical detector is a very promising detector for
gravitational wave astronomy because it has the following
features [1—3]: (1) a relatively large energy cross section,
(2) isotropic sky coverage, and (3) direction sensitivity.

As early as 1971 Forward [1] proposed using a spher-
ical antenna to detect gravitational waves. He claimed
that by suitably positioning a set of transducers on the
sphere, one could determine the direction, the polariza-
tion, and the amplitude of a gravitational wave. Later
Wagoner and Paik [2] calculated the cross section of a
homogeneous elastic sphere and showed that a spherical
antenna has a much larger energy cross section than a
cylindrical antenna. Recently Johnson and Merkowitz
[3] proposed a method of positioning six radial trans-
ducers on a truncated icosahedror~. to construct a nearly
spherical detector. They showed that a spherical detector
cooled to ultralow temperature can have sensitivity com-
parable to or even better than the first generation Laser
Interferometric Gravitational Wave Observatory (I IGO)
detectors in the frequency range around 1 kHz.

Like a spherical detector, a network of six cylindrical
detectors with appropriate orientations caen also cover the
whole sky isotropically and have source di&rection resolu-
tion [4,5]. Such a network with six colocated cylindri-
cal detectors has sensitivity

&
that of a siDgle spherical

detector made of the same material and wi,th the same
resonant frequency [5].

The ability of a spherical detector to determine the
wave direction is very desirable for gravitational wave as-
tronomy. Ideally, gravitational wave observatories should
be able to determine both the source direction and the
wave forms of gravitational radiation signals. Laser in-
terferometric detectors due to their inherently broad fre-
quency bandwidth will be superior in determining the
wave forms. A spherical detector is very promising for
estimating the wave direction because it has five degen-
erate modes interacting with the gravitational wave.

The direction resolution of a spherical detector also
helps discriminate against false signals in coincidence ex-
periments. In addition to the requirement that the out-
put of all detectors in a coincidence experiment exceed an
energy threshold within a narrow time window, an addi-
tional requirement can be imposed on a network of spher-
ical detectors, namely that the detectors provide consis-
tent estimated wave directions. This additional require-
ment raises the confidence level for detection or, for a
given confidence level, it allows the use of a lower-energy
threshold for detection and therefore higher sensitivity.

Determination of the direction, the polarization, and
the amplitude of a gravitational wave signal is often
called the "inverse problem. " Dhurandhar and Tinto
[6,7] have provided solutions to the inverse problem for
detector networks in the noise-free case. Gursel and
Tinto [8] have solved the inverse problem in the pres-
ence of noise for a three-interferometer detector network
by using time delays between the detectors.

In this paper, we address some issues associated with
solving the inverse problem for spherical detectors. The
paper is organized as follows. In Sec. II we discuss the
normal modes and the energy cross section of a sphere.
We show that a spherical detector with an uncoupled
transducer configuration is equivalent to five indepen-
dent single-channel detectors. In Sec. III we discuss
the response functions of the five detection channels of
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a spherical detector and obtain the noise-&ee solution to
the inverse problem by using these response functions. In
Sec. IV we solve the inverse problem in the presence of
noise. An algorithm for determining the wave direction
with cojocated detectors is developed using the maximum
likelihood estimation method. The estimation errors are
determined both by numerical simulations and analyt-
ically in the limit of a high signal-to-noise ratio. We
also show that a spherical detector has reasonable direc-
tion resolution (AA 0.3 sr) even at a relatively low
signal-to-noise ratio (average amplitude S/N per chan-
nel = 1.4). In Sec. V we discuss coincidence experiments
with spherical detectors. The false-alarm probability and
the detection probability for a network of spherical de-
tectors are discussed and the event rates for detectable
gravity wave signals &om supernovae and binary coa-
lescences are estimated for a network of four spherical
detectors.

A„+ r„A„+cu„A„= R„(t), (2.4)

where A is the mode amplitude and v is the decay time.
R (t) is the driving force per unit mass given by [10]

R-(t) = —M 'tt'o, o (t) f @*„'x'pd'z, (2.5)

I 0
+a0+0 — +yoyo ~+

2 Bt2

where M is the mass of the antenna and B;o~o are the
components of the Riemann tensor (i, j = x, y, z). The
coordinate origin is taken to be the center of mass.

According to general relativity, a gravitational radi-
ation Geld is a tensor Geld of massless spin-2 particles.
In the wave-based coordinate system, the nonvanishing
components of the Riemann tensor are [11]

II. INTERACTION OF GRAVITATIONAL
RADIATION WITH A SPHERICAL ANTENNA 19

+&Oyo —+yoxo — ~x
2 Ot

(2 6)

A. Normal modes of a sphere

Toroidal mode8 and 8pheroidal mode8

4I l = t g((~r)(r x VYj~), '
(2 1)

where C is the normalized amplitude and Yj are spheri-
cal harmonics. r, = per& /p, where p is the density of the
sphere and p is the shear modulus. @~(x) is a function
given by

(2.2)

The second class of normal modes is sometimes re-
ferred to as the spheroidal modes. These modes can be
expressed as [2]

——[a((r)e, + b), (r)RV']Yj (0, tp), (2.3)

A free-vibrating sphere has two classes of normal
modes [9]. The first class is the toroidal modes, for which
there are no volume changes and no radial displacements.
The eigenfunctions of the toroidal modes are of the form
[91

Yo =—Y2o )

1
(Y. ~

2

Yi, —= (Y2
2

1
(Y. ~

2
Z

Y2, —= (Y2
2

—Y2+i)

+ Y2+1)

+ ~2+2)

—Y2+2) .

(2.7)

Like the spherical harmonitcs Yj (8, tp), the real spherical
harmonics are orthonorxv, al:

where h+ and hx are the gravitational wave amplitudes
of the two independent polarization states.

Appendix A shows that gravitational waves have no
e8'ect on the toroidal modes with even L. For spheroidal
modes, it has been shown that only the quadrupole
modes interact with a tensor gravitational field [2,12].
Before discussing the driving forces for the spheroidal
quadrupole modes, it is convenient to introduce real
spherical harmonics. The real quadrupole spherical har-
monics are defined as

where R is the radius of the sphere, and a~(r) and b), (r)
are dimensionless radial eigenfunctions determined by
the boundary conditions. For a more detailed discussion
of a~(r) and b~(r), see Wagoner and Paik [2].

In general the spheroidal modes consist of both trans-
verse and radial components. When l = 0, there are only
radial vibrations, while for / = 2 the sphere is distorted
into an ellipsoid of revolution becoming alternately pro-
late and oblate depending on the phase of motion.

2. Inter action with gr avitational waves

The response of a normal-mode n to a gravitational
wave is governed by the equation [10]

Y~(0, tp)Y~ (0, )p)dO = b.. (2.8)

where the subscript j = (0, 1c, ls, 2c, 2s).
We can express the eigenfunctions of the fivefold de-

generate quadrupole modes in terms of the real spherical
harmonics as

= [a(r)e„+b(r)RV]Y (g, tp) . (2.9)

Here we have dropped the subscript 2 in a(r) and b(r),
and the substcript n denotes the modes (0, 1c, ls, 2c, 2s).

The quad'cupole mode driving forces for gravitational
waves in th.e wave-based. frame have been given by Wag-
oner and Paik [2] in terms of spherical harmonics. We
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recast their results in terms of real spherical harmonics.
In the wave-based coordinate system where the gravi-
tational wave propagates in the z direction, the driving
forces are

spheroidal mode-
------- toro&dal mode

&re eee re
~ ~ a ra re

a« aero ear areaa e «e a ~ e era er error e ~ ra

R( 'l(t) = h+(t)
~

—
~

— [a(r)r ~ 3b(r)R]pr dr,
('4~) '~' 1

q15) M
1/2R"(t) = —h. (t) I

—
I(15 M

5 are a«\ra a \ ear ra a ree arear roar e aa
aea

x ar r+3br Rpr dr, (2.10)
a re e a a ea e e e a area«roe« e ~ arear «a ae e ~ e oar«a«ear

R&"~ = R~"& = R~'~ = 0. 0.0 0.1 0«2 0«3 0«4 0.5

A gravitational wave can, in principle, excite all five
quadrupole modes. Information about the direction,
the amplitude, and the polarization of the wave can
be obtained &om the response amplitudes of the five
quadrupole modes. We will discuss the response func-
tions in Sec. III and solve the inverse problem in the
presence of noise in Sec. IV.

Poisson's Ratio

FIG. 1. Normal-mode frequencies of the three lowest
spheroidal and toroidal quadrupole modes of an elastic sphere
as functions of Poisson's ratio. Vs is the sound velocity of the
material and B is the radius of the sphere.

8. Normal naode f-requencies

The normal-mode &equencies are important parame-
ters in detector design. Both the toroidal mode and the
spheroidal mode &equencies of a &ee-vibrating sphere
can be determined numerically. The toroidal mode &e-
quency is determined by the equation [9]

(l —1)g)(KR) + rR@,'(KR) = 0, (2.11)

where @~ is as defined in Eq. (2.2), and r. = pm& /p. The
spheroidal mode frequency is given by [9]

lzl Ul~l —0 ) (2.12)

where

u) —— 2(K R @)(hR) + 2(l —1)vp) g(hR)),2 + 1

zi = — z)'&(LR) + —Ii)(hR) )
2(l + 2)

2l+1 h'

(2.1S)
u)) = r R @)(KR) + 2(l —1)g) g (rR),

2(l + 2)z, = r' @((«R) + 0,'(«R))1+1 ~R

with h2 = w2p/(A + 2p).
The quantity a)R/V, can be evaluated numerically. V,

is the sound velocity. The results are shown in Fig. 1
for the three lowest spheroidal and toroidal quadrupole
modes. The &equencies of the quadrupole modes de-
pend on Poisson's ratio. The toroidal mode &equencies
decrease as Poisson's ratio increases, while the spheroidal
mode &equencies vary only slightly with Poisson's ratio.

The resonant &equency of a quadrupole mod. e can
be easily obtained &om Fig. 1. For example, for an
aluminum sphere with a diameter of 3.2 m, the lowest
spheroidal quadrupole mode &equency is about 840 Hz,

the second lowest frequency is about 1«6 kHz, and the
third lowest frequency is about 2.8 kHz.

The lowest toroidal quadrupole mode &equency is
about 10% lower than the lowest spheroidal mode fre-
quency. We can distinguish the toroidal modes from the
spheroidal modes by using the fact that toroidal modes
have no radial displacements.

For a spheroidal detector, the closeness of the toroidal
mode and the spheroid. al mode frequencies can be used to
discriminate among nongravity wave signals. It; has been
suggested [13,14] that non-Gaussian disturbances such
as cosmic rays in a cylindrical detector can be vetoed by
comparing the excitation of the second harmonic longitu-
dinal mode of the cylinder with that of the fundamental
mode. The second harmonic mode cannot be excited by
a gravitational wave. The same veto technique can be
used in spheroidal detectors by simultaneously monitor-
ing the excitations of toroidal and spheroidal quadrupole
modes, since the toroidal quadrupole modes cannot be
excited by a gravitational wave (see Appendix A). The
veto should be more eKcient than that used in cylindri-
cal detectors because of the closeness of the frequencies
of the spheroidal and the toroidal modes.

B. Energy cross section

Wagoner and Paik [2] have compared the cross sections
of a cylinder, a circular disk, and a sphere, and shown
that a sphere has the largest energy cross section. This
makes a sphere a very natural shape for resonant-mass
gravity wave detectors.

In general, a resonant-mass detector has an energy ab-
sorption cross section [10]

~ G 1(~~) —~~) ~«/~)e'"l('
E = — (7 (d did = (dp )

2vr 4 cs M

(2.14)
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where uo is the resonant frequency of the detector, e~" is
the component of the wave polarization tensor, and

is the moment-of-inertia factor.
I et d be the wavelength of a normal mode with a reso-

nant frequency fo such that d = V, /fo Th. e energy cross
section in terms of d can be rewritten as

C
~M

4P

CA
O
Le

10

10

sphere
-------- cylinder in optimal orientation
- - - - - - cylinder (average)

vr G (o()p d (I~I, —b~I, I((/3)e~"
4 c3 M pd4

0.0 0.1 0.2 0.3
Poisson Ratio

0.4 0.5

where

p&s
fs 'I (2.15)

FIG. 2. Comparison of the reduced cross section of a sphere
and a cylinder. The diameter-length ratio of the cylinder is
0.27. The average cross section of the cylinder is —

5 that of
an optimally oriented cylinder and is obtained by averaging
over the wave direction and polarization.

(2.16)

II is a dimensionless quantity that mainly depends on the
geometric shape of the detector. It is a useful quantity
for evaluating detectors with different geometric shapes.
II is referred to as the reduced energy cross section.

The energy cross section is proportional to the quantity
pV+/f& The cros. s section can therefore be improved by
using high-density, high-sound-velocity materials [15].

The energy cross section of a spherical detector is given
by [2]

4' a~2 rr = — a(r) —+ Bb(r) r'dr) . (2.17)5c3 R R

The reduced cross sections II of a spherical antenna and
of a cylindrical detector are easily calculated numerically.
In Fig. 2 these cross sections are compared. The reduced
cross section of a cylindrical antenna depends on the ratio
of diameter and length D/L The higher .this ratio, the
larger the energy cross section. For the cylindrical an-
tenna, we assumed the parameters of the Stanford cryo-
genic 4K antenna [16] in our calculation.

A spherical antenna is sensitive to sources over the
whole sky because of its spherical symmetry. For the

same reason, the energy cross section of a sphere is also
independent of the direction and the polarization of the
incoming wave. By contrast, a cylindrical antenna has
only partial sky coverage and the average cross section is

&&
that of the antenna in the optimal orientation. Figure

2 shows both the optimal cross section and the average
cross section of a cylindrical detector.

From Fig. 2, we see that the reduced cross section of
a sphere is a function of Poisson's ratio, decreasing as
Poisson's ratio increases, while the reduced cross section
of a cylinder only slightly depends on Poisson's ratio. For
aluminum antennas with Poisson's ratio of 0.35, the re-
duced cross section of a sphere is about 10 times larger
than the optimal cross section of a cylinder and about 40
times larger than the average cross section of a cylinder.
Johnson and Merkowitz [3] found that the energy cross
section of a sphere is about 56 times larger than the av-
erage cross section of a cylinder. The difference between
their result and ours comes from the fact that we have
used a difFerent diameter-length ratio for a cylinder in
the calculation.

Table I lists the parameters of a spherical detector and
a cylindrical detector with identical materials and reso-
nant frequencies. The mass of the spherical antenna is
about 10 times that of the cylindrical antenna. Obviously
the increased mass is the main reason for the spherical
detector having a larger cross section than a cylindrical
antenna.

TABLE I. Parameters of an aluminum cylindrical antenna and a spherical antenna.

Spherical antenna
f =840Hz
D=3.2m
M = 4.6 x 10 kg
Z = —f o ((u)d(o = 8.7 x 10 cm Hz
(independent of orientation)

Cylindrical antenna
f =840Hz
L = 3.1 m, D = 0.84 m
M =4.8 x 10 kg
Z = 1 ver2m 1 o(ug)du = 7.6 x 10 cm Hz
(for the optimal orientation)
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C. Antenna readout

Uncoupted transducer configur ation

A transducer is a device that converts the mechanical
vibrations of the antenna into electrical signals. Most of
the transducers currently used on resonant-mass detec-
tors incorporate mechanical resonators, which are used to
optimize the signal-to-noise ratio of the detector [17—21].

Since a spherical antenna has five degenerate
quadrupole modes interacting with gravitational waves
in the &equency range of interest, at least five transduc-
ers need to be mounted on the surface of the sphere to
monitor the dynamical strains of the five modes. The ar-
rangement of these transducers is an important detector
design consideration. Proper placement of the transduc-
ers optimizes the performance of the detector and makes
the signal analysis straightforward, in principle.

Johnson and Merkowitz [3] have proposed mounting
six transducers on the surface of a nearly spherical trun-
cated icosahedron to observe the five nearly degenerate
quadrupole modes. The six transducers are sensitive to
radial displacements of the antenna. Through a linear
transformation, the six transducers yield five indepen-
dent "mode channels, " which are the readouts of the five
quadrupole modes.

Here we propose a different transducer arrangement in
which only five transducers are required and each one
is coupled to one and only one of the five degenerate
quadrupole modes. Each transducer and the associated
quadrupole mode form a detection channel, and all five
channels are independent of each other.

In order to find such an uncoupled transducer config-
uration, it is necessary to find a position for each trans-
ducer that is a node of all the modes but one. The nodes
on the surface of a sphere depend not only on the location
but also on the direction in which the transducer is sen-
sitive to motion. As mentioned before, most transducers
currently used on resonant-mass detectors are themselves
mechanical resonators. Typically these devices are sen-
sitive to motion in only one direction. For the other
directions the effects of a transducer are mainly to in-
troduce small &equency shifts due to the relatively small
transducer mass attached to the much larger mass of the
antenna. These are higher-order effects which we will not
discuss here.

In order to find the nodes of the quadrupole modes,
we examine the angular dependence of the eigenfunc-
tions (shown in Table II). At the north pole there is
no radial motion of the quadrupole modes except for the

TABLE III. Uncoupled transducer con6guration.

Mode
40

Location (8, y)
(0,0)

(=. 0)
2) 2

2) 4

(=„~)

Direction

2. Effective mass

In optimizing the transducer design, particularly the
choice of masses for the transducer mechanical res-
onators, the effective mass of the antenna [18,21] is an
important parameter. The effective mass is defined as

@o mode. Accordingly, a transducer sensitive to radial
displacements ("radial transducer") can be placed at the
north pole to couple to the ego mode. On the equator,
only the @q, and the gq, modes have nonzero motions in
the 0 direction and only the @2, and the @2, modes have
nonvanishing motions in the rp direction. The gq, and
the gq, modes are 90' orthogonal to each other, and the
g2, and the g2, modes are 45' orthogonal to each other.
Therefore, we can position four "tangential" transducers
on the equator, two in the 0 direction to monitor the gq,
and the @q, modes, respectively, and the other two in the
y direction to monitor the @z, and the @2, modes, respec-
tively. This ideal uncoupled transducer configuration is
summarized in Table III.

Since each transducer is coupled to only one mode,
the back action noise from the transducer and its pream-
plifier will affect that mode only and the thermal noise
of the particular quadrupole mode will only appear at
the output of the corresponding transducer. Therefore,
a quadrupole mode and its associated transducer and
amplifier form an independent detection channel. The
five quadrupole modes along with the five uncorrelated
transducers then effectively act as five independent de-
tectors with different orientations. By using the uncou-
pled transducer configuration, the detector noise analysis
becomes very simple, and the analysis techniques devel-
oped for cylindrical antennas can be directly applied to
spherical antennas. Of course in a real detector the situ-
ation will, in practice, be more complicated in that there
will likely be some coupling between the readout chan-
nels. Taking account of such coupling only complicates
the analysis but will not change the conclusions regarding
signal-to-noise ratio, direction sensitivity, etc.

TABLE II. Angular dependence of the quadrupole modes. EA. ——2M gVi (2.18)
Mode

@0

r direction
3cos 8 —1

cos 8 sin 8 cos y
cos 8 sin 8 sin p

sin 8 cos 2y
sin 8 sin 2p

8 direction

sin 28
cos28 cosy
cos28 sing

sin 28 cos 2y
sin 28 sin 2p

p direction

0
cos8 sing
cos8 cosy
sin8 sin 2p
sin8 cos 2y

where EI, is the kinetic energy of the mode of interest,
and Vj is the amplitude of the velocity component in
the direction of interest e~. The effective mass depends
on both location and direction. The larger the effective
mass, the smaller the velocity amplitude. At a node, the
effective mass becomes infinitely large.
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radial motion
---------- tangenbal mobon
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0.1
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Poisson Ratio

The effective mass of a node is calculated using the
corresponding eigenfunction. If a normal-mode n is ex-
cited with amplitude A, the kinetic energy of the mode
1s

FIG. 3. Reduced effective masses of a spherical antenna.
The solid line is the reduced effective mass of the antenna
appropriate for a transducer mounted on the north pole of
the sphere and sensitive to radial motion. The dashed line is
the reduced antenna effective mass for a transducer mounted
on the equator of the sphere that senses tangential motion.

ergy cross section, the frequency response functions of
the transducer and the amplifier, and the detector orien-
tation relative to the incoming wave. The energy cross
section and the normal-mode driving forces of a spheri-
cal antenna have been reviewed in the preceding section.
The frequency response characteristics of the transducers
and the amplifiers typically used in cylindrical resonant-
mass detectors have been derived elsewhere [20,22], and
the results can be used here. Thus, we only need to
consider the effects of orientation on the response of a
spherical detector in this section.

As mentioned in Sec. II, the energy cross section of a
spherical detector is independent of the direction and the
polarization of the incoming wave. However, each of the
five independent detection channels responds differently
to a gravitational wave depending on the direction and
the polarization of the wave. It is the orientation depen-
dence of the channel response that allows a solution to
the inverse problem with a single spherical antenna.

In this section we begin with a review of the response
function of a single channel detector and then use these
results to study the response of a spherical detector. Fi-
nally we give the noise-free solution to the inverse prob-
lem in terms of the channel response functions. The ef-
fects of noise are introduced in Sec. IV.

Ek ——— pC'A' d'x = -'MA' . (2.19)
B. The response function of a single-channel

detector

The velocity in direction e~ at any point on the surface
is Vj = (4' e~)A„. Hence the effective mass is

(2.20)

We deffne M,s/M as the reduced effective mass
and calculate the effective masses versus Poisson's ra-
tio (shown in Fig. 3) for the uncoupled transducer con-
figuration discussed above. The antenna effective mass
for the radial transducer, which is coupled to the vtro

mode, is about one-third the physical mass of the sphere.
The effective masses for the four tangential transducers
are identical, about four times the physical mass of the
sphere for Poisson's ratio of 0.3.

Because the antenna effective masses for all the tan-
gential transducers are identical, four identical detection
channels can be formed by attaching four identical trans-
ducers appropriately to the sphere. By properly scaling
the masses of the transducer resonators, the radial and
the tangential transducer channels can be made identi-
cal, i.e. , have the same &equency response function. The
five detection channels in the uncoupled transducer ar-
rangement can therefore be considered identical except
for orientation.

h,, (t) = h+(t) W+;, + h„(t)W„, , (3.l)

where TV+,-j and W)&zj are STF tensors, which depend
only on the wave direction angles (8, y). The explicit
forms of W+;~(8, p) and W&&,~(8, p) are given in Ap-
pendix B.

A detector can also be represented by a symmetric de-
tector tensor D;j, which depends on the orientation and
the geometry of the detector. The orientation-dependent
part of the detector response function, B(t), is deter-
mined by the scalar product of the wave tensor and the
detector tensor as

B(t) = D,,h" (t)
= h+(t)F+(8, p) + h„(t)E„(8,p), (3.2)

where

The orientation dependence of the response function of
a single-channel detector is usually characterized by the
wave tensor and the detector tensor [7,8,23—26]. A plane
gravitational wave with amplitudes h+ (t) and h&& (t) asso-
ciated with the two independent polarization states can
be described by a symmetric and trace-free (STF) tensor
as

III. THE DETECTION RESPONSE FUNCTION F+(8, p) = D;~W+~(8, p),
(3.3)

A. Introduction

The response of a detector to a gravitational wave de-
pends on the signal frequency spectrum, the antenna en-

F„(8,p) = D,~W„' (8, p) .

We refer to F+(8, rp) and F&& (8, p) as the orientation fac-
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tors.
The detector tensor D;z is determined &om Eq. (3.2)

by using the wave tensor and the response function. Since
the wave tensor is symmetric and trace free, D;~ can be
represented in either a symmetric or a symmetric and
trace-&ee form. Both forms yield the same results. For
example, the detector tensor of a cylindrical antenna
whose longitudinal axis is in the direction l can be ei-
ther

Paik [2]. Only the 2c and the 2s modes can be excited by
the impinging gravity wave with the driving forces given
by Eq. (2.10) as

d2h
(2 )

d h+(t)
dt

(3.9)

R~"i() = —R
dt2

or, in the trace-&ee form,

(3.4) where the superscripts (2c) and (2s) represent the 2c and
the 28 modes in the wave-based frame and

(3.5)-
(4~)"M

[a(r)r+3Rb(r)]pr'dr . (3.10)

Both forms generate the same response function.
We assume that the detector has a linear &equency re-

sponse function. The detector can then be considered as
a linear filter with a frequency-dependent transfer func-
tion L(ur). The response of a detector to a gravitational
wave signal is then

The driving force in the laboratory coordinate sys-
tem can be obtained through a coordinate transforma-
tion from the wave-based frame. The driving force at
any point x. within a sphere can be expressed in terms of
the normal-mode driving forces R~ l(t) as

f(x, t) = ) R'"'(t)4''"'(x, t) . (3.11)

with

s(t) = — L(at)R(~)e' 'd~
2'

zmtd
2' u

= A(t)F+(8, y) + B(t)F„(8,p),

A(t) = — L((u)h+((u)e' 'd~,
27r

(3 6)

Since a spherical detector is a relatively narrow band-
width detector, we consider only the five degenerate
quadrupole modes to be within the detector bandwidth.
The radial eigenfunctions are coordinate invariant be-
cause they are the same for the five degenerate modes.
The coordinate transformation only affects the angular
eigenfunctions. The transformation of angular eigenfunc-
tions is given by

(3.7) (01. 'p~) = T, (~ 'p)Y (0~ 'p~) (3.12)

B(t) = — L(u))hx ((u)e' 'der,2'

where R(u), h,z(ur), h+(u), and h&& (w) are the Fourier
transforms of R(t), h;~(t), h+(t), and hx (t), respectively

The output of the detector is the sum of the signal and
an efFective noise n(t):

&(t) = s(t)+n(') . (3.8)

n(t) includes contributions from noise sources in the an-
tenna, the transducer, and the amplifier.

C. The response functions of a spherical detector

In order to study the response functions of a spheri-
cal detector or a detector network, we define a d.etection
channel as a device that generates an output as described
by Eq. (3.8) for a gravity wave input signal. A cylindri-
cal detector has a single detection channel. A spherical
detector, with either the uncoupled transducer configura-
tion discussed in Sec. III B or the scheme of Johnson and
Merkowitz [3), has five independent detection channels
associated with the five degenerate quadrupole modes.

The mode driving forces of a gravitational wave in the
wave-based kame have been derived by Wagoner and

R'"'(t) = ) T„,„R'" '(t)
nl

= R, fT, „h+(t) —T, „h (t)), (3.13)

and the channel output signal in the frequency domain

where T ~ (0, y) is the transformation matrix,
Y ~ l(01„&pL,) is the angular eigenfunction of the mode n
in the laboratory frame, and Y~ l(Hid, rp~) is the angu-
lar eigenfunction of the mode n' in the wave-based frame.
(0, p) are the usual Euler angles, which transform the lab-
oratory frame into the wave-based frame and represent
the two wave direction angles. The third Euler angle @
has been set to zero, since it merely rotates the axes to
which the two polarization states are referred and there-
fore has no efFect on the final results.

The transformation matrix for spherical harmonics is
a standard result [27]. We derive the transformation ma-
trix T for real spherical harmonics and show the ex-
plicit form of T„„ in Appendix C.

The transformation matrix has the following impor-
tant properties: (1) The inverse matrix of T is its
transpose T, (2) g T = P T = 1, and (3)L T-,-T-,~ = L T-,-Tn; = ~-~.

From Eqs. (3.9), (3.11), (3.12) and the properties of
the transformation matrix, the mode driving forces in the
laboratory kame can be expressed as
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is

s" ((u) = T2, „(0,p)L(~)h+(~)
—T2. „(0,p)L(~)hx(~), (3.14)

where L(u) is the channel frequency response function
that includes the scaling factor Bo. We have assumed
L(ur) is the same for all channels, i.e. , all the channels
are identical.

Comparing Eq. (3.14) with Eq. (3.3), we obtain the
orientation factors of the five quadrupole modes in the
laboratory frame:

F+„(0,p) = T2, ,„(8,p),

D. A solution to the inverse problem
in the noise-free case

The inverse problem can be solved by using the re-
sponse amplitudes of five suitably arranged detection
channels. In the following we erst present the general
solution to the noise-&ee inverse problem and then apply
it to a spherical detector.

Since the wave tensor is symmetric and trace Bee, we
can accordingly describe the wave by a five-element ma-
trix H:

F„„(0,p) = T2. „(—0, y) .
(3.15)

These orientation factors for a spherical antenna have the
properties

( hgg(~) )
h22 ((u)

hg2 (ur)

hgs(ur)

( h~s((u) )

(3.19)

and

) F+„(0,rp) = ) F„'„(8,p) = 1, (3.16) We can also form a five-element matrix S &om the output
signals of the five detection channels:

) F+„(8,y)F„„(0,p) = 0 . (3.17)

D(o)
33

D(1c)
23

D(1 )
13

D(2c)
11

D(2s)
12

2
(1c) 1

D32
(1s)

D31
(2c)—D22'

(2s)

(3.18)

where the superscripts denote the channels.

The elements of the detector tensors of the five chan-
nels are found &om Eq. (3.2) by using the orientation
factors obtained &om Eq. (3.16). The nonzero elements
of the detector tensors are

g(2) (~)
g(s) (~)
g(4) (~)

(s(')( ) )

(3.2O)

S = L(~)DH, (3.21)

where D is a matrix formed &om the elements of the
detector tensors D,(n)

where S( ) (ur) is the Fourier transform of the nth channel
output signal.

If all the five channels have an identical frequency re-
sponse function L(ug), then S is determined from H as

D=

( L)(1) D(l)
D4) Dl2)
DH) DÃ)
D4) D(4)

11 33

D(') —D(')
D4) Dl2)

L))s) Dl s)

D14) Dl4)

L)(s) D(s)
22 33

D(') + D(')
Db) ~Db)
DH) + Dws)

D(4) + D(4)
D4) ~ Dws)

12 21

D(') +. D(') )
Db)+Dl2) D~2)+Dl2)
Db)+Db) Dw's)+D&)
D)4) + Dl4) D(4) + D(4)

(3.22)

where the superscripts denote the channel numbers. If
the inverse of D exists, H is uniquely determined by the
five channel response amplitudes as

Once H is determined, the inverse problem is solved.
The wave direction angles are obtained kom the wave
tensor as I6]

H=L (~)D 'S. (3.23)

The requirement that D have an inverse matrix can. be
satisfied by suitable arrangement of the orientations of
the five channels. Obviously no two channels should be
in the same orientation.

h 22h13 h 12h 23tang =
~12~13 ~11~23

tan0 = —h13

611 sing —h12 cosy

(3.24)
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Equation (3.24) is a solution of the inverse problem with
five detection channels in the noise-&ee case. Clearly
there is an ambiguity between diametrically opposite
points in the sky because both (8, rp) and (vr —8, vr + rp)
satisfy the same equation.

For a spherical antenna, the inverse D matrix exists,
and the wave tensor can be determined &om the response
amplitudes of the five independent detection channels as

first discuss the signal-to-noise ratio of a multichannel
system before discussing the estimation process because
it is the figure-of-merit used for evaluating and optimiz-
ing a detector system. We will show that the maximum
signal-to-noise ratio of a multichannel system is the sum
of the maximum signal-to-noise ratio of each individual
channel.

Consider a set of data yi, which is the sum of a known
signal si and noise n,".

hii((u) = L '((u) s~ l(ur) + s~'l(ur)
3

h22(~) = L '((u) s (~) —s '
(ur)

3

h ()= —2L'() "()
his((u) = 2L '(—(u)s "l(~),
h2s(~) = 2L '(—(u)s~"l((u) .

The wave direction angles are thus

(3.25)

y, = si+~;) x= &, 2, . . . , N. (4.1)

1V

S/N =)
i=1

(4.2)

Assume n; is uncorrelated, has zero mean, and vari-
ance 0;. The maximum signal-to-noise ratio that can be
achieved by constructing an optimal filter is (Appendix
D)

s( ) —s( ') s( ') + 2s( ')s(
~stany =—

S(0) + S(2c) S(1c) + 2S(2s)S(1s)~s

s(")
tan& = —s( ) + s( ) siny+ 2s( ') cosy~s

(3.26)

IV. SOLVING THE INVERSE PROBLEM
IN THE PRESENCE OF NOISE

A. The signal-to-noise ratio
of a multichannel detection system

Equation (3.26) shows that the inverse problem can be
solved with the five independent detection channels of a
spherical detector.

The number of channels needed to uniquely solve the
inverse problem is of interest. The detector response is
a function of four variables: two wave direction angles
(e, y), and the two amplitudes h+(t) and hx(t) associ-
ated with the two independent polarization states. At
first glance it would appear that with a suitable chan-
nel configuration, using the response amplitudes of four
detection channels should be sufBcient for solving the in-
verse problem for the four unknowns. However, because
the two direction angles appearing in the wave tensor el-
ements are in the forms of trigonometric functions, we
cannot construct a set of linear equations with the four
channel outputs. Thus the solution of the inverse prob-
lem is usually not unique in this case.

Since we have shown that in the noise-&ee case a suit-
ably arranged five-channel system can uniquely solve the
inverse problem, except for the direction ambiguity asso-
ciated with diametrically opposite points on the sky, we
conclude that five channels is the minimum number of
channels needed to solve the inverse problem when only
the response amplitudes are used.

Now consider an ¹ hannel detection system in which
each channel has been noise whitened and appropriately
sampled so that the noise is uncorrelated. For simplic-
ity, we also assume the noise is uncorrelated between the
channels. In fact, even if the data are correlated, we can
always linearly transform them into a set of uncorrelated
random variables with zero means if the covariance ma-
trix is positive definite [28]. We assume this is the case
for all the detector systems of interest.

Under the assumption of uncorrelated random vari-
ables, the N channels generate an N x M uncorrelated
data set if each channel takes M data. Applying Eq.
(4.2) to this data set, the maximum signal-to-noise ratio
of the multichannel system is

M

S/N =) ) " =) (S/N)~'i
i=1 A:=1 i=1

(4.3)

where the superscript i indicates the channel number and
(S/N)~ l is the maximum signal-to-noise ratio of the ith
channel. Thus, the maximum signal-to-noise ratio of a
multichannel system is the sum of the maximum signal-
to-noise ratio of each channel. For the purpose of eval-
uating a multichannel detection system, we define the
signal-to-noise ratio as the sum of the S/N of each chan-
nel.

B. Comparison of S/K
between a spherical detector

and a cylindrical detector
In order to compare a five-channel spherical detector

with a single-channel cylindrical detector, we evaluate
their maximum signal-to-noise ratios for the same grav-
ity wave signal. It is appropriate to use the concept of
noise temperature to describe the signal-to-noise ratio
of a resonant-mass detector when the incoming gravity
wave is a short pulse [20,22]. The signal-to-noise ratio of
a single-channel detector is then given by

In the presence of noise, the inverse problem can only
be solved approximately with an estimator. We shall

S/N =
BT~

(4 4)



2526 CARL Z. ZHOU AND PETER F. MICHELSON

where E is the energy the gravitational wave would de-
posit in an antenna initially at rest, k~ is Boltzmann s
constant, and T is the detector noise temperature for
pulse detection.

A spherical detector with five independent channels is
equivalent to five independent single-channel detectors.
For purposes of comparison, we assume that each chan-
nel of a spherical detector has the same frequency re-
sponse and the same noise temperature as those of the
corresponding cylindrical detector.

The maximum signal-to-noise ratio of a spherical de-
tector is

E(~)
S/N=) (S/N)" =)

where the summation is over the five channels. E~ ~ is the
signal energy received by the nth channel, Ep is the total
energy deposited in the sphere, and T is the channel
noise temperature. Similarly, the maximum signal-to-
noise ratio of a cylindrical antenna is

(4.5)

S/N =
BT~

where Ec is the total energy deposited in the cylinder.
The difference in the signal-to-noise ratio depends only

on the difference in the energy cross section, since we have
assumed that both the spherical and cylindrical detectors
have the same noise temperature. The spherical detector
improves the signal-to-noise ratio by a factor of about 40
(see also Sec. II 8).

(4.6)

C. Estimation of the wave direction

Giirsel and Tinto have developed an algorithm for es-
timating the wave direction by using both the detector
response amplitudes and the delay times between the de-
tectors [8]. Since there are no delay times between the
five channels of a single spherical detector, the Gursel-
Tinto algorithm is not applicable, and we need to develop
an estimation method for a colocated detector network.
In the following we first develop the general algorithm for
solving the inverse problem with a colocated multichan-
nel system and then apply it to a spherical detector.

To develop such an algorithm we need to select an es-
timator. There are two considerations when selecting an
estimator [29]. First, consider the bias, which is the dif-
ference between the estimated value and the true value of
the parameter. An ideal estimator is unbiased. Second,
an ideal estimator should minimize the variance of the
estimator 0&, given by

~~ = &((& —@(&k)')

where F( . ) denotes an ensemble average, and A and A

are the true value and the estimated value of the param-
eter, respectively.

There is a minimum variance bound for an unbiased es-
timator [29]. Although such an ideal estimator does not
always exist, if one does exist it will be the maximum
likelihood (ML) estimator, and it will be unique [29]. In
practice, it is often found that if the signal-to-noise ratio
is high, the ML estimator approaches the minimum vari-
ance bound. Therefore, we will use the ML estimator to

solve the inverse problem in the presence of noise. The
least-squares method and the ML method are identical
when the noise is Gaussian.

The likelihood function f is the probability density
function for having a set of output data for a given set
of parameter values [28,29]:

f = p(yl, , y~l&i, . , &M) (4.8)

where y1, . . . , yN are the output data and A1, . . . , AM are
the set of parameters. The ML estimate is the set of
parameter values, which maximizes the likelihood func-
tion. Sometimes it is more convenient to work with the
log likelihood function:

L = inp(yi, . . . , ym~Ai, . . . , AM) . (4.9)

Maximizing the likelihood function is equivalent to max-
imizing the log likelihood function.

Consider N colocated detection channels in coinci-
dence. Assume that each channel has an optimal filter
or a nearly optimal filter to maximize the signal-to-noise
ratio. The optimal filter is the matched filter if the form
of the input signal is known [28]. In practice, this type
of filters cannot be constructed because the wave form of
gravitational radiation signals cannot be known before-
hand. However, a nearly optimal filter for detection of
impulsive signals can be found for a resonant-mass detec-
tor [22] by assuming that the signal bandwidth is much
broader than the detector bandwidth so that the input
signal can be approximated by a b-function-like signal.
The nearly optimal filters are identical for identical de-
tectors.

In response to a short impulsive signal input, the nearly
optimum filter for each channel will generate one datum
whose signal-to-noise ratio has been maximized. The es-
timation process is relatively simple because only N data
need to be processed when there are N detection chan-
nels in coincident operation to detect gravitational waves.
The data are usually represented as complex numbers
that contain information about both the amplitude and
the phase of the signal.

For simplicity we assume that all the channels are iden-
tical and the noise in each channel is Gaussian and un-
correlated. After being nearly optimally filtered, the N
channels generate a set of N data, y~ ~, . . . , y~ ~, for an
impulsive input signal. The likelihood function for hav-
ing this set of data generated by the wave propagating
at direction (0, rp) with the two polarization state ampli-
tudes h+(t) and h„(t) is

N

p(y~'1~A, B,e, &)
i=1

I ( [y~'1 —AF+~'1(0, (p) —BF„' (9, p)]—exp
20i=1

(4.10)
where A and B, as described in Eq. (3.7), are the channel
response amplitudes to the two independent polarization
states of the wave, and o is the noise variance of a chan-
nel that has been assumed to be the same for all channels.

To estimate the wave direction, first maximize the log
likelihood function with respect to A and H. This gives
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~+(')y(') +(*)' ('(~) i ~ '
gP ')y(i) y(')y(')

+ x

E(&)' E(')' E(+)E(&)

g y'(')y( ) ) (p ~(') ('() (p ~(')~(*)
+ X

E(')' E(')' E(')E(')

(4.11)

x=)

y-+( )„( )

(4.i2)

Substituting Eq. (4.11) into Eq. ( o) g max-
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Substituting the simulated channel outputs into Eqs.
(4.12) and (4.10), a likelihood map can be made for a
set of output data y~ ~, . . . , y& '~. The estimated wave
direction is obtained fi.om the location on the map where
the likelihood function is maximum.

Figure 4 shows typical likelihood maps for a spherical
detector with difFerent signal-to-noise ratios. There is a
single peak on each map even for a relatively low signal-
to-noise ratio (S/N = 10, which corresponds to 1.4 of an
average single-channel amplitude S/N), indicating that
the solution to the inverse problem is unique. It can also
be seen from Fig. 4 that the higher the signal-to-noise
ratio, the sharper the peak and the smaller the deviation
between the peak location and the true wave direction.

D. Estimation errors

Direction estimation errors for a spherical detector can
be evaluated either numerically or analytically. The nu-
merical results are obtained &om Monte Carlo simula-
tions and an analytic expression of the estimation errors
is obtained in the limit of high signal-to-noise ratio.

polariied gravitational wave propagating in the direction
Oo ——1 rad and y0 ——2 rad. The choice of wave direction
and polarization was varied and virtually no change in
the estimation errors was found.

From Fig. 5 we can see the estimated wave direction
varies from trial to trial as expected. When S/N = 1, the
distribution of points is almost uniform over the sky, in-
dicating that the direction estimation is completely ran-
dom. As the signal-to-noise ratio increases to about 10,
the distribution of trials starts to converge on the vicin-
ity of the true wave direction. From these simulations
the minimum energy S/N required for direction estima-
tion is approximately 10 for a spherical detector. As the
S/N continues to increase, the distribution of estimated
directions becomes narrower.

Two quantities can be used to characterize the direc-
tion estimation errors. One is the deviation angle o.,
which is defined as the angle between the estimated wave
direction (8, rp) and the true wave direction (8p, yp). o. is
given by

a = arccos[sin8 sin8p cos(rp —pp) + cos8 cos8p] .

(4.16)

Monte Ca~lo simulations

In the Monte Carlo simulations two hundred trials were
run for each input signal. For each run the simulated
signal and the efFective noise were generated according
to the method discussed earlier.

Figure 5 is scatter plots showing the estimated wave di-
rection for 200 trials each for various values of the signal-
to-noise ratio. The simulated wave signal was a linearly

The other is the estimation error used by Gursel and
Tinto [8],

AA = E(vr[(8 —8p) + sin 8p(&p —yp) ]}, (4.17)

where E( ) denotes the ensemble average.
From the numerical simulations the probability P that

an estimated wave direction has a deviation angle larger
than o. has been computed. Figure 6 shows the probabil-
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FIG. 7. Direction estimation error AO as a function of the
signal-to-noise ratio. The points are derived from numerical
simulations and the solid line is an analytic result obtained in
the limit of high signal-to-noise ratio.

ity P vs the angle o. for different signal-to-noise ratios.
For S/N = 10, 90'%%uo of the trials result in deviation angles
less than 0.5 rad. As S/N increases to 1000, this angle
decreases to less than 4.7 x 10 2 rad.

In Fig. 7 we show the estimation error LO versus
the signal-to-noise ratio. The dots are obtained from the
numerical simulations and the solid line is an analytic
approximation discussed below.

Die ection eatimation er v ov

in the limit of high signal to nois-e s-atio

The estimation error can also be derived analytically
in the limit of high signal-to-noise ratio. Recall that

the likelihood map corresponds to the likelihood function
maximized with respect to A and B. The maximized log
likelihood function for a spherical detector is

) (n) ) y (ss)(0 )
(n)(

) y(")(g ~)y( )
~ (4.18)

The estimated direction is found by maximizing the
log likelihood function I with respect to (8, p). This
generates two equations:

-y() () y() () + /() () y() ()

~() () y() () + ~()y() ~() ()
=0,

~ ~(n) (~) ~ +(~) (~) + ~ Z(~) (n) Z(~) y(~)

(n) ( ) ~(~) ( )' ~(~) (n) y (~) (~)

(4.19)

=0.
An expansion of Eq. (4.19) to first order in (8 —Op) and (p —pp), where (Op, yp) is the true wave direction, gives

the estimated wave direction as

0=Op+Do,
(4.20)

with
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Q(Ap(BE+" /80) + Bp(BE„"/00))n~"l + Q(Ap(OE+" /80) + Bp(BE„"/BO))n~"i
2(A2 + B2)

(4.21)

g(Ap(BE+ /Op) + Bp(BEx /80) + 2 cosOpApE„—2 cosOpBpE+~ l) n~ n&

2 sin Op(Ap2 + Bp2)

P(Ap(BE&& /0&p) + Bp(OE„ /00) + 2 cosOpApE„—2 cosOpBpE+ )n~ l

2 sin Op(Ap + Bp)

Two important conclusions follow &om Eq. (4.21).
(1) The direction estimator is unbiased:

E. Comparison of a spherical detector
with a network of laser interferometric detectors

E(AO) = 0,

E(E(p) = 0 .

(2) EO and Ay are Gaussian with variances,

2

2(A' + B') 2(S/N)
'

(4.22)

(4.23)

Long-base-line laser interferometric detectors are pro-
jected to have a high sensitivity to gravitational waves
[30]. A network of three such detectors can provide in-
formation about the wave direction [8]. Here we compare
the direction resolution of a spherical detector with that
of a network of interferometric detectors.

A. netmor lr, of three inter ferornet ic detectora

o. =E((Ay) f=
2 sin Op(Ap+ Bp) 2 sin Op(S/N)

where S/N = (A2p + Bp)/cr2 is the energy signal-to-noise
ratio.

The direction estimation error is obtained &om Eq.
(4.23) as

AO = E(rr[(AO) sin Op(Arp) ])
= rr [os + sin Opo. ]

S/N
(4.24)

In Fig. 7, this analytic result for the direction esti-
mation error (solid line) is compared with the numeri-
cal results. The numerical and analytic results are in
good agreement at high signal-to-noise ratio (S/N ) 30).
At lower signal-to-noise ratio the estimation errors from
the numerical simulation are higher than those obtained
with the analytic result. When the signal-to-noise ratio is
close to 1, the estimation error saturates. This is because
at very low signal-to-noise ratio the estimation error ap-
proaches the upper limit obtained when the estimated
directions are uniformly scattered over the sky. As noted
above, the signal-to-noise ratio needs to be higher than

10 in order to obtain a reasonable estimate of the wave
direction.

Note that the energy signal-to-noise ratio of a multi-
channel system is different &om the amplitude signal-to-
noise ratio of a single-channel detector. A five-channel
system with an energy S/N = 10 corresponds to an am-
plitude signal-to-noise ratio of ls4 per channel on aver-
age. Thus, with a spherical detector and a relatively low
amplitude signal-to-noise ratio per channel, a reasonable
estimate of the wave direction can be obtained.

Gursel and Tinto have developed an algorithm to solve
the inverse problem for a network of interferometers us-
ing the delay times between the detectors [8]. They also
did numerical simulations of a three-interferometer net-
work. Because Gursel and Tinto used a slightly different
definition of signal-to-noise ratio than we have used and
because their simulations were done for a specific gravity
wave signal, we first review their definition of signal-to-
noise ratio and then apply their simulated signal to a
spherical detector in order to compare the two types of
detectors.

The Gursel-Tinto expression for the signal-to-noise ra-
tio is [6]

(N) QSh, fmax
(4.25)

where Sh is the noise spectral density of the detector,
f „=40 kHz is the detector bandwidth, and A' is the
amplitude of the signal received by the detector. When
the detector is in the optimal orientation, the amplitude
of the received signal is equal to that of the incoming
wave, A = A. In their simulation Gursel and Tinto
also include bandpass linear filters so that the amplitude
signal-to-noise ratio for each detector becomes

S &s)= ~o
QSh+fbandpass I N )

(4.26)

where 6,fba„dpa„= 2 kHz is the frequency bandwidth
of the bandpass filter used in the simulations. Now con-
sider a simple numerical example to compare the differ-
ent signal-to-noise ratio expressions. When (S/N)' = 10
for a detector with the bandpass filter, the actual am-
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plitude signal-to-noise ratio is [S/N] it = 45 and S/N =
3[S/N]zi~ ——6000 for a network of three detectors, where
S/N is the multichannel signal-to-noise ratio defined in
Sec. IVA.

The signal in Gursel and Tinto s simulations was a one-
cycle, circularly polarized sinusoid: h+(t) = Av 2 cos(ut)
and hx (t) = 4~2 sin(wt), 0 & cut & 2rr. The ampli-
tude A was varied, depending on the signal-to-noise ratio,
while the frequency w/2rr was allowed to vary randomly
in the range 770—2000 Hz.

The three laser interferometers were assumed identical,
one located in southern Germany and one each on the
east and west coast of the U.S.A. Gursel and Tinto per-
formed simulations for various source locations because
the three-interferometer network does not have isotropic
sensitivity. The source locations were chosen to lie on
a grid defined by the angles (0, &p) with 0 & 0 & rr and
0 & rp & 2rr. The grid steps were rr/10 in the angle 8
and rr/20 in the angle p, resulting in 400 points on the
celestial sphere.

Giirsel and Tinto used the least-squares method to
estimate source direction. The least-squares method is
equivalent to the ML estimation method in the case of
Gaussian noise [29]. Unlike the maximum likelihood esti-
mate for a spherical detector, which typically has a single
peak on the likelihood map even at low signal-to-noise
ratio, the least-squares estimate in the Giirsel-Tinto sim-
ulation was found to have a large number of local min-
ima in the presence of noise, implying that the estimate
cannot always converge to the correct source location
when the signal-to-noise ratio is low. Thus, in order to
have source direction resolution, Gursel and Tinto con-
cluded that a minimum (S/N)' ) 2.1 is required for each
detector. This value is large compared to that for a spher-
ical detector. If each detector has a (S/N)' of 2.1 then
the multichannel S/N is 265 for this three-interferometer
network, while the minimum S/N required for a spherical
detector to have direction resolution is about 10.

Giirsel and Tinto [8] have performed simulations for
two cases: (1) detectors with nearly optimal filters and
(2) detectors without nearly optimal filters. The nearly
optimal Alters are constructed by setting a threshold
value in the &equency domain. The amplitude of the
signal Fourier transform is set to zero if it is smaller than
the threshold value, and is left unchanged if it is larger.
Gursel and Tinto have estimated the direction estimation
errors both analytically and numerically. The analytic

results are obtained by assuming that the least-squares
function can be well approximated by a quadratic form
in the neighborhood of the minimum. The numerical
results are obtained by numerical simulations in which
the simulated signal is applied to each grid point on the
celestial sphere. The Gaussian white noise in each detec-
tor is then simulated by a normally distributed deviate
with zero mean and unit variance and the least-squares
method is used to estimate the source locations. For each
source location the simulation is performed only once and
the estimation error is obtained from the difference be-
tween the estimated and the true source locations.

The direction resolution depends on the source loca-
tion, since the sensitivities of the interferometer network
are source direction dependent. Gursel and Tinto have
estimated the direction estimation errors both analyti-
cally and numerically for each source grid point on the
celestial sphere. Table IV summarizes their results for the
case of S/N = 10 (see Figs. 20 and 23 of Ref. [8]). The
analytical and numerical results are not in good agree-
ment, especially in the case without the nearly optimal
6lters. This is probably because the numerical simulation
has been performed only once for each source location,
and thus the numerical results reflect the statistical fluc-
tuations.

2. The sensitivity of a 50-rnK spherical detector

For comparison, we apply the signal used in the Gursel-
Tinto simulation to a spherical detector. The total en-
ergy deposited on the detector is [10]

(4.27)

where fo is the resonant frequency of the spherical an-
tenna, h+(fo) and hx(fo) are the Fourier transforms of
h+(t) and hx (t) evaluated at the resonant frequency of
the detector, and Z is the integrated energy cross sec-
tion. For a 3.2-m-diam aluminum sphere, Z = 8.7x10
cm2 Hz.

The Fourier transforms of the one-cycle, circularly po-
larized sinusoid are

(4.28)

TABLE IV. Distribution of estimation errors in the Giirsel-Tinto simulations.

AO (sr)
No resolution) 10
10-'-10-4
10 -10
(10 '

Analytic method
183 (45.8'%%uo)

0 (o%%uo)

76 (19.0%)
12 1 (30.2'%%uo )

20 (5.0%)

Number
With nearly optimal filter

Numerical
method

183 (45.8%%uo)

32 (8.O%)
49 (12.2'%%uo)

46 (11.5%)
9o (22.s%)

Analytic method
58 (14.5'%%uo)

45 (11.3'%%uo)

260 (65.0'%%uo)

37 (9.2%%uo)

o (o%)

of points
Without nearly optimal Alter

Numerical
method

s8 (14.5%)
6i (is.3%)
7o (i7.s%)
86 (21.5'%%uo)

125 (31.2%)
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Thus, the total energy deposited in the detector is

4G
= 2.77 x 10 A ergs . (4.29)

In the lossless limit [21], the noise of a resonant-mass
detector is dominated by the noise from the mechanical
ampli6er which consists of a transducer and a preampli-
Ber. For an inductive transducer with a superconducting
quantum interference device (SQUID) preamplifier, the
noise temperature of the detector in this limit is [16]

(2T S,(sod

Q, )
(4.30)

where T is the physical temperature of the antenna, Q,
is the electrical Q of the mechanical amplifier, and S, is
the SQUID input energy sensitivity. The Stanford 4-K
detector [13] operated near the lossless limit with Q, =
3 x 104, T = 4.2 K, and S, = 105k, resulting in T„=3
mK. The Stanford 50-mK cylindrical detector [16],which
is now under construction, is expected to have T = 1
pK, or a noise energy of 20h, with Q, = 10s and S, =
20'.

Since most of the techniques developed for the read-
out of a cylindrical detector can be directly applied to a
spherical detector, the noise energy of a large spherical
antenna operating at 50-mK temperature is expected to
be about 20k using current technology.

3. Comparison of a spherical detector
with an inter ferometer detector network

We now compare a 50-mK spherical detector operat-
ing with T 1 pK with a network of interferometers
operating at the sensitivity level estimated for the initial
LIGO because both detector designs are based on present
state-of-the-art technology. We assume the same type of
signal as used in the Giirsel-Tinto simulations. The sig-
nal frequency is centered around 1 kHz. We compare two
quantities: (1) the minimum signal energy required for a
detector system to have direction resolution and (2) the
direction estimation error.

The expected sensitivity of the initial LIGO interfer-
ometers is about 1 x 10 Hz / at 1 kHz, and the
expected sensitivity of the advanced LIGO detectors is
about 1 x 10 ~ Hz / in the same &equency region
[30]. As discussed before, the minimum (S/N)' for a
three-interferometer network to have a useful direction
resolution is 2.1 for each detector. This requirement is
equivalent to an average (S/N)' = 2.1, or (S/N)' = 3.56
for a detector in the optimal orientation. Substituting
the projected sensitivity of the initial LIGO detector into
Eq. (4.25) and letting (S/N)' = 3.56, we obtain the min-
imum signal amplitude required for direction resolution
as A=76x10

On the other hand, the minimum multichannel S/N for
a spherical detector to have useful direction resolution is
10. Assuming T = 1 pK for a spherical detector, from
Eqs. (4.29) and (4.5) the minimum wave amplitude is

2c
vrzSO cosQ foz(S/N)~i,

' (4.31)

where So is the area of the triangle defined by the loca-
tions of the three detectors, and @ is the angle between
the source direction and the normal to the plane of the
three detectors.

A spherical detector complements the capabilities of an
interferometer network. At low frequencies ( 200 Hz)
interferometers will likely have higher sensitivity, while
at higher frequencies ( 1 kHz) a spherical detector can
have better performance [3]. Interferometers, because
of their intrinsic broad-band sensitivity, are superior in
extracting information about the time-dependent wave-
form, whereas a spherical detector can provide all-sky
coverage and, und. er certain circumstances, provide a su-
perior estimate of the source direction.

F. Signal parameter estimation
for the known direction case

The ML estimato~

Signal parameter estimation when the source direction
is known is potentially of importance because in some cir-
cumstances a suspected gravitational wave source may be
identified by optical or other astronomical observations,
or the source location may be determined. approximately
with a spherical detector, and the detailed wave form
needs to be estimated with two or more interferometric
detectors. In these situations estimates of the amplitude

A = 6.3 x 10 . Thus, a spherical detector is superior
to the interferometer network in estimating the source
direction for signals with relatively small amplitudes.

Now compare the direction estimation error for the two
detector systems with the same input signal. Consider
the signal used in the Giirsel-Tinto simulation. When
(S/N)' = 10 for an interferometric detector, the signal
amplitude A = 2.1 x 10 ' for an initial LIGO detec-
tor in the optimal orientation. With the same signal
impinging on a 50-mK spherical detector, the direction
estimation error is LO = 2.9 x 10 sr, independent of
the source location, while the direction estimation er-
ror of the interferometric detector network depends on
the source direction (see Table IV). The analytic results
(Table IV) show that, for the network of interferometric
detectors with the nearly optimal filters, 35%%uo of points
on the sky have direction resolution better than that of
the spherical detector, and for the network of interfero-
metric detectors without the nearly optimal Alters, only
9%%up of points have direction resolution better than that
of a spherical detector.

The above comparison is done with the signal fre-
quency centered at about 1 kHz. The sensitivity of inter-
ferometric detectors is expected to improve as the signal
frequency decreases [30], but such improvements do not
improve the direction resolution very much because the
direction estimation error is inversely proportional to the
square of the frequency as estimated with a geometric ap-
proximation [8]:
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and polarization of the wave are required.
The inverse problem becomes much simpler in the

known direction case. Analytic solutions can be obtained
in the case of identical detection channels with indepen-
dent Gaussian noise sources. These solutions can provide
conditions for optimizing the relative orientations of the
detectors in a network.

The maximum likelihood estimation method developed
previously can now be used without the restriction that
all the detectors are colocated because the time delays

I

between the detectors can be computed using the known
direction angles. Also, only two single-channel detectors
are needed to solve the inverse problem in the known
direction case, since there are only two unknowns, i.e.,
the two amplitudes associated with the two polarization
states.

Assume the detection channels are identical with sta-
tistically independent Gaussian noise sources. The two
complex response amplitudes A and B [see Eq. (3.7)]
obtained from the ML estimator are

()()F()F()y()F()F()
F(')' F(')' F(')F(')

F( )y( ) F( ) F( )y( ) F( )F(')

F(~) F(~) F(~)F(~)

(4.32)

where the summations are over the channel number i.
A and B are Gaussian variables when the channel output y(') is Gaussian because a linear combination of Gaussian

variables produces another Gaussian variable [28]. From Eq. (4.32) it is apparent that the estimators of A and B are
unbiased. The estimator variances are

F(~)

V(A) =
F( )' F(')' F( )F(')

F(')'

V(B) =
F( ) F( ) F(~)F( )

(4.33)

where o. is the noise variance of each channel. The estimator variances depend on the orientation factors and are
independent of the signal amplitude.

2. The minimum e8timation er roe condition

A condition for minimizing the estimation errors is found from Eq. (4.33) as

) F+~*i(8, p)F~'l(0, p) = 0 . (4.34)

We refer to this condition as the "orthogonal channel configuration" because it requires that the two vectors
(F+, . . . , F+ ) and (F„,. . . , F„)are orthogonal. Recall that (F+, . . . , F+ ) and (F„,. . . , F„)are the pro-
jections of the two polarization states of the wave on the detection channels.

The orthogonal channel condition cannot necessarily be satisfied for all direction angles (0, p). Only certain detector
configurations and channel orientations will satisfy Eq. (4.34) for all direction angles. Recalling Eq. (3.3), Eq. (4.34)
can be written in terms of the wave tensors and the detector tensors as

) .F+*'(~ &)F"(~ ~) = ) .[D,~ W+" (~ V)1[Di'W' (0 &)] = o . (4.35)

Substituting W+ (8, p) and W„'~(8, p) (Appendix B) into Eq. (4.35), the conditions for a detector network to satisfy
Eq. (4.34), independent of the wave direction, are obtained:
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) [(Di, —D33) —(Dii —D33)(D33 —D33) —2Di2 ] = 0,

) [(D32 —D33 ) —(D„—D33 ) (D33 —D33 ) ——2Di3 ] = 0,

) (Dis —D33 ) = ) Di3 Dis ——) Di3 D23 = ) D33 Dis ——0, (4.36)

) [(D„—D33)Di3] = ) [(Dii —D33)Di3] = ) [(D,i —D33)D33] 0

) [(D32 —D33 )Di3 ] = ) [(D22 —D33 )Dis ] = ) [(D23 —D33 )D23 ] 0 .

A spherical detector with the uncoupled transducer con-
figuration discussed earlier satisfies Eq. (4.36) and thus
achieves the minimum estimation error for any source
direction.

The estimators and their variations are very simple in
the case of the orthogonal channel configuration, namely,

(4.37)

and the variances are

where h+G and hxG are the amplitudes, and P+ and Px
are the phases of the two independent polarization states
of the wave, respectively. The polarization factor is coor-
dinate invariant, and it depends only on the phase differ-
ence and amplitude ratio of the two polarization states.
P = 0 for a linearly polarized wave, and P = 1 for a
circularly polarized wave.

Equivalently, P can be represented in terms of the re-
sponse amplitudes A and B, since it depends only on the
phase difference and amplitude ratio of the two polariza-
tion states. Thus,

V(A) =
2

(.), and V(B) =
P F(~)' P F(~) (4.38)

For a spherical detector these expressions can be sim-
plified further using Eqs. (3.16) and (3.17):

2+GBG
~
»n(4A Qgg) ~

A2+ B02
(4.42)

X=) F"y(') and B=) F")y('), (4.39)
where AG and BG are the amplitude and PA and P~ are
the phases of A and B, respectively.

and the variances are

V(A) = o and V(B) = o. (4.40)
ihx

8. The polarization factof' hxo

Analogous to electromagnetic waves, the polarization
state of a gravitational wave can be described with a
polarization ellipse shown in Fig. 8. We introduce the
polarization factor P, defined as the ratio of the area of
the polarization ellipse to the energy flux of the wave, to
describe the polarization ellipse. I et S be the area of the
ellipse and E the wave energy flux, then

+0

SP=2~ —= 2h+GhxGI sin(P+ P&&) I

6~+0 + 62xo
(4.41)

FIG. 8. Polarization ellipse of a gravitational wave.
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A(t) and B(t) reflect the time dependence of h+(t) and
h„(t) when the frequency bandwidth of the detectors is
larger than the bandwidth of the signal. We can study
the time dependence of the wave polarization in that case.
However, when the detector bandwidth is smaller than
the signal bandwidth, Eq. (4.42) only applies when the
polarization of the wave is time invariant.

In order to study the behavior of the polarization factor
estimator in the presence of noise, Monte Carlo simula-
tions of a spherical detector were done with 200 trials for
each simulated input signal. Signals with different polar-
ization states and signal-to-noise ratios were simulated.
Five random complex numbers representing the effective
noise of the 6ve channels were drawn from an appropriate
Gaussian distribution for each trial.

Figure 9 shows the mean and variance of the polariza-
tion factor estimator as functions of the signal-to-noise
ratio. The polarization estimator is biased and tends to
0.5 at low signal-to-noise ratio. This bias is due to the
nonlinear nature of the estimator. Only at relatively high
signal-to-noise ratios is the polarization estimator a good
estimator of the true polarization ellipse.

V. COINCIDENCE EXPERIMENTS
WITH SPHERICAL DETECTORS

A coincidence experiment with two or more detectors
is an efficient way to remove excess noise due either to
the tail of a Gaussian distribution or to non-Gaussian
disturbances [31]. Spherical detectors have additional ad-
vantages over other types of gravitational wave detectors
in such coincidence experiments: (1) the direction reso-
lution provides an additional criterion for discriminating
against noise; (2) identical spherical detectors will regis-
ter nearly the same amount of signal energy.

With regard to the second point, consider coincidence
experiments with either cylindrical resonant-mass detec-
tors or laser interferometric detectors. If these detectors
are not all oriented in the same direction, they will, de-
pending on the wave direction and polarization, regis-
ter difFerent signal energies for the same wave amplitude.
DifFerences between the response amplitudes of the detec-
tors in a coincidence experiment could be due either to
local noise disturbances or to a real signal and therefore,
there could be a large uncertainty in the signal ampli-
tudes. Aligning all the detectors in the same direction
can eliminate this ambiguity but it reduces the sky cov-
erage. In contrast, identical spherical detectors will have
nearly identical response amplitudes all within a range
determined by the detector noise. This property can be
used as an additional discriminator to eliminate false sig-
nals.

In the following we discuss the false-alarm probability
and the detection probability. Along with the expected
signal event rate, the false-alarm probability determines
the detection threshold. The detection probability, which
depends on the detection threshold, determines the de-
tection sensitivity of a network of detectors. The rate of
detectable signals can be estimated from the detection
probability and the expected signal event rate. These
estimates are made below for supernovae and binary co-
alescence events.

10
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A. Energy distribution of a spherical detector
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Consider a 6ve-channel spherical detector in which the
noise of each channel is independent and Gaussian with
variance cr . The total output energy of such a detector
is distributed as a y2 distribution [28] when no signal is
present. The probability density function in this case is

1 4 E
P(E) = (E) exp (5.1)

(5.2)

where E is the total energy output and E/o2 is the en-

ergy signal-to-noise ratio de6ned in Sec. IV A. The mean
and the variance of E, determined &om Eq. (5.1), are

FIG. 9. Mean and variance of the polarization factor esti-
mator obtained from numerical simulations. The estimator is
clearly biased due to its nonlinear nature.

V(E) = 5o.

In the presence of a signal the detector energy is dis-
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criteria without any signal present. It is simple to evalu-
ate this probability when the detector noise is Gaussian.

The probability that the total output energy of a spher-
ical detector exceeds the threshold energy Eo in the ab-
sence of a signal is

p, = 1 — P(E)dE, (5 5)

I
0O I-

0 20 60 80

Output Energy (a }

FIG. 10. Output energy distribution of a spherical detec-
tor @faith Gaussian noise. The noise variance is o. for each
channel.

tributed as a noncentral y2 distribution [28]:

(El'
Ps(E, Eg) = —

~

EEs )
x exp

~

—
I I4(2+E~E/o ), (5.3)

~ E, +E~
)

where Eg is the total signal energy and I4 is the modified
Bessel function of the erst kind and order 4. The mean
and the variance of E in this case are

E(Ej = Eg+5o.

V(E) = 4Esrr'+ 5rT' .
(5.4)

Figure 10 shows the energy distribution for several values
of the signal energy Ep. Both the mean and the variance
of E increase with the total signal energy Es.

B. False-alarm probability and detection threshold
energy

J'als e-alar m pt obability

The false-alarm probability is defined as the probabil-
ity of an event satisfying the above energy and direction

Successful detection of a gravitational wave requires
that all spherical detectors in a network have outputs
above a given threshold and have the same output en-
ergy, arrival time, and estimated source direction within
ranges determined by errors due to the presence of noise.
In practice, the output of each detector must exceed a
predetermined energy threshold within a time window
determined by the maximum signal propagation time be-
tween the detectors. The distribution of the source di-
rection estimates must also converge within a range de-
termined by detector noise and signal strength.

So ——2vr [1 —cos(P/2)] . (5.6)

When no signal is present, the estimated source di-
rections will be randomly distributed over the sky. The
accidental probability that all the estimated locations are
inside a circle with area So is

p =
i

—
i

= [1 —cos(P/2)]"
(So&" '
(2m j (5.7)

The denominator in Eq. (5.7) is 2m instead of 4' because
a spherical detector cannot distinguish diametrically op-
posite points in the sky.

For P = 1.0 rad, the accidental probability is

where P(E) is the energy distribution function given by
Eq. (5.1). The threshold energy E&& is usually set so that
p, (( 1. The probability that a network of n detectors
satisfies the energy criterion depends on the coincidence
time window. If there are m data sampled during the
allowed coincidence time window, the probability of a de-
tector having one output data higher than the threshold
energy within the coincidence window is approximately
mp, and therefore the probability that an n-detector net-
work accidentally satisfies the energy criterion is (mp, )".

The coincidence window m depends on the uncertain-
ties in the signal propagation times between the detec-
tors. m is usually a small number because the maximum
propagation delay is about 42 ms and the typical sam-
pling time for a resonant-mass detector is about 100 ms.
For a colocated detector network, m = 1.

Now consider the probability of the direction criterion
being accidentally satisfied. For S/N = 10, in 90'Fo of all
trials the direction estimate deviates &om the true wave
direction by less than 0.5 rad and so the angles between
different direction estimates are less than 1 rad. The
higher the signal-to-noise ratio, the smaller the average
angular deviation. In the following we require that the
direction estimates obtained &om the detectors in the
network differ by less than P = 1 rad. When S/N ) 10,
more than 90'Pp of the direction estimates should satisfy
this criterion.

A network of n detectors generates n estimated source
directions for each event. For a real signal, nearly all the
estimated directions should be inside a circle of radius
P/2 on a unit celestial sphere. The true source location
will be at the center of the circular area when n is large.
The angle between the true wave direction and any of
the estimated direction is less than P/2, and the angle
between any two estimated directions is less than P for
more than 90% of the points. The area of the circular
error box is



51 SPHERICAL RESONANT-MASS GRAVITATIONAL WAVE DETECTORS 2537

10

10'
cc 10-8

C4 10

CO

10-14

10-16

10-18

10 12 14 16 18 20

alarm event in 3 year is less than 0.1. Then when there is
an event satisfying the detection criteria discussed above
in s year, we can have more than 90% confidence that
the event is not due to the detector noise but a real grav-
itational wave signal.

Assume the sampling rate is once per 0.15 s. There are
then 5.76 x 10 samples per detector per day, resulting in
M = 7.0 x 10 events per 3 year. The probability that
none of the M events is a false-alarm event is

(5.10)

Threshold energy (a )

FIG. 11. False-alarm probability vs the detection threshold
energy. n is the number of detectors in the network.

90% confidence of detection requires pi equal 0.9, which
leads to pf ——6.5 x 10 for M = 7.0 x 10" events.
In Fig. 5 this threshold of the false-alarm probability is
shown as the dashed line.

We can then set the threshold energy according to the
pf required. For pf 10, the energy threshold is
18.1o for two detectors operating in coincidence, 13.00.
for three detectors, and 10.30-2 for four detectors.

p = (1 —cos0.5)"
= (0.1224) (5 8) 8. Non- Gaussian distur bances

py = (mp, )"(0.1224)"

( Zo
=m" 1 — P(E)dE

0
(0.1224) (5.9)

Combining the accidental probability of all detectors
passing the energy threshold test and the accidental prob-
ability that all the estimated source directions are inside
an error box with area So, we obtain the false-alarm prob-
ability for a network of n spherical detectors as

p~
—(p', )"(0.1224)" (5.11)

Based on experience with cylindrical resonant-mass
detectors, we can reasonably expect about 1—3 non-
Gaussian events per day which will cause the output of
a single detector to exceed the. energy threshold. For a
detector network, the false-alarm probability due to non-
Gaussian noise is

Figure 11 shows the false-alarm probability versus the
threshold energy for different numbers of detectors oper-
ated in coincidence. We have used m = 1 in the calcula-
tion. The false-alarm probability exponentially decreases
with increasing threshold energy. It also dramatically de-
creases as the number of detectors increases. For exam-
ple, when the threshold energy is set to 10o. , pf = 10
for a two-detector network, 3 x 10 for a three-detector
network, and 10 for a four-detector network.

2. Detection threshold energy

The threshold energy Eo should be set so that the
false-alarm rate is much less than the detectable signal
occurrence rate. The occurrence rate of detectable grav-
itational waves depends not only on the occurrence rate
of impulsive gravitational wave signals but also on the
strength of the signals produced. The detectable sig-
nal event rate is uncertain at present but is likely to be
very low even for advanced spherical detectors as we will
see later. Optimistic estimates for the rate of detectable
gravitational radiation signals are about several events
per year.

For the optimistic rates, the detection threshold energy
Eo can be set so that the probability of having a false-

TABLE V. False-alarm probability due to non-Gaussian
disturbances.

Number of detectors p~ = 1 event/day

2 3.7 x 10
3 7.9 x 10
4 1.7 x 10

pf ——100 events/day

37x10
7.9 x 10
1.7 x 10

where n is the number of detectors, and p', is the occur-
rence probability of a non-Gaussian event. p', is equal
to the number of non-Gaussian events per day divided
by the total number of events per day. For a sampling
time of 0.15 s, p', = 1.74 x 10 for the case of one non-
Gaussian event per day. Table V shows the false-alarm
probability due to non-Gaussian disturbances for various
detector networks.

Clearly, a coincidence experiment is an eKcient way to
eliminate non-Gaussian disturbances. For the case of one
non-Gaussian event per day per detector, the false-alarm
probability is much less than 6.5 x 10, which is the
false-detection probabi1ity required for 90% confidence in
detecting a signal in z year in the presence of Gaussian
noise alone.
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C. Detection probability 2. Detectable 8ignal event fate

Detection probability

The detection probability is de6ned as the probability
that all the detector outputs exceed a given threshold
when a signal is present. It depends on both the signal
energy and the detection threshold energy.

Recall that the distribution function for the energy
output of a spherical detector is a noncentral y distribu-
tion Ps(E, Es) when a signal is present. The probability
that a detector exceeds threshold energy E0 when a sig-
nal is present is

pD (Es) = Ps(E, Es)dE . (5.12)

Eo
1 — Ps(E, Es)dE

0

(5.13)

Figure 12 shows the detection probabilities versus the
signal energy for a detector network with diferent num-
bers of detectors. The energy threshold has been set so
that the probability of false alarm is less than 10% in

3 year. Note that a signal with a total amount of en-

ergy larger than the detection threshold energy could be
missed by a network of detectors, and a signal with a to-
tal amount of energy smaller than the threshold energy
still has a chance of being detected. Consider a three-
detector network whose threshold energy is 13.00 as an
example. 70% of signals with total energy of 15o.2 can
be detected and 22% of signals with total energy of 10o.
can also be detected.

The detection probability for an n-detector network is
then

OO n

pr"'(Es) = Itz'(Es)l" = P~(E E~)dE

We can now estimate the event rate of detectable gravi-
tational wave signals for a network of spherical detectors.
Assume that the gravitational wave sources are standard
candles that emit ri(R) pulses of gravitational radiation
per unit volume per year and that each pulse has energy
EG~. The average signal energy deposited in a spherical
antenna by each pulse depends on the source distance R
as

dEGw(fo)
df 47rR2 ' (5.14)

~ = 4~ p~'(E, )~(R)R'dR .
0

(5.15)

Equation (5.15) can be simplified if the signal sources
are assumed to uniformly fill the space such that q(R) =
g, independent of the source distance R. Changing vari-
ables of integration by using Eq. (5.14), we rewrite Eq.
(5.15) as

1
r =71

g4~

- 3/2 ~ (n)' Z D dE, . (516)
df o Es~2

where Z = f a (f )df, is the frequency integral of
the energy cross section of the spherical antenna and
dEGw(fs)/df is the radiation energy per unit frequency
at the resonant &equency of the antenna averaged over
direction. Equation (5.14) of course assumes that the sig-
nal pulse bandwidth is broad compared to the resonant
width of the antenna.

The probability of an n-detector network detecting
such a signal is pD (Es). There are 4mR g(R)4R sig-
nal pulses emitted each year in a shell of radius R and
thickness LR. The rate of detectable signals due to the
sources in that shell is then p~ (Es)rI(R)47rR AR, and
the total detectable signal event rate is therefore given
by

1.0

0.8

0,6

0.4

0.2

0.0
10

2 detectors
—3 detectors
-- 4 detectors

20 30 40

Signal Energy (a )

50

We referred to p~ (Es)/E& as the detectable-signal
density function. Figure 13 shows this function for three-
and four-detector networks. The detectable-signal den-
sity peaks just above the detection threshold energy. This
is easily understood as follows. In the case of low Ep
the signal sources are relatively far away. There are a
relatively large number of sources, but pD (Es) is very(A) ~

small so that the detectable-signal density is low. In
the other extreme case, a nearby source will deposit a
large amount of energy in the detector but there are rel-
atively few sources nearby. The detectable-signal density
is therefore also very low in this case because of the low
occurrence rate of signals.

Evaluating the integral in Eq. (5.16) gives the detect-
able-signal event rates,

FIG. 12. Detection probability vs signal energy. The en-
ergy threshold has been set so that the probability of false
alarm is less than 10/0 in —year.

= 4.8 10
0

for a three-detector network and

(5.17)
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FIG. 13. Detectable-signal density function de6ned in
the text. The detection threshold energy is 13.0o for a
three-detector network and 10.3o for a four-detector net-
work.

FIG. 14. Supernova core collapse rate as functions of dis-
tance. The data are obtained assuming that the supernova
collapse rate is proportional to star population and within
our galaxy the rate is once per 40 years. The rate is three per
year out to the distance of Virgo and increases proportional
to (distance) beyond that distance.

(5.i8)

for a four-detector network where cr is the noise variance
of an individual detector. The detectable-signal event
rate depends on the occurrence rate of the signal as well
as the amount of energy emitted by the source at the res-
onant &equency of the detector. It also depends on the
energy cross section and the noise variance of the detec-
tor. If the energy cross section is increased by 100 times,
as in the case of high sound velocity material antenna
[15], the detectable-signal event rate is increased by 1000
times.

D. Event rate of detectable supernovae

Estimation of the event rate of detectable supernovae
requires estimates of the occurrence rate and the grav-
itational wave signal strength of supernovae. However,
both estimates have large uncertainties at present. The
strength of the gravitational waves &om a supernova de-
pends crucially on the degree of nonsphericity in the
stellar collapse that triggers it [32]. A perfectly spher-
ical collapse will produce no waves, while a highly non-
spherical collapse can produce strong waves. Little is
actually known about the degree of nonsphericity in
supernova collapses, and theoretical predictions of the
total gravitational radiation energy emitted vary &om
LEc~ 10 Moc to LEc~ 10 Moc or lower
[32]. Predictions of the wave forms are also poor, but the
characteristic frequency of the waves f, is widely believed
to be around 1000 Hz [32].

If the &equency bandwidth of the signal is taken to
be about the same as the characteristic frequency f„
the gravitational wave energy per unit &equency can be

roughly estimated as

dEGW (fO) @GW

d f, (5.ig)

TABLE VI. The estimated event rate of detectable super-
novae for a network of four aluminum spherical detectors op-
erating at the quantum limit.

Eow(Moc )
Event rate (yr ')

10
5.8

10-4
0.14

10
0.069

10
0.015

The occurrence rate of supernovae in our galaxy is ob-
servationally estimated [32,33] as roughly one type-I and
one type-II supernova per 40 years. Assuming this oc-
currence rate is proportional to the star population, then
out to the distance of the center of the Virgo cluster of
galaxies several type-I and several type-II supernovae oc-
cur each year. The rate increases as (distance) near and
beyond Virgo. Figure 14 shows the supernovae collapse
rate as a function of source distance [34].

From Fig. 14 and Eq. (5.15) we can estimate the
detectable event rate for supernovae. Table VI shows
the estimates for a network of four aluminum spheri-
cal detectors operating at the quantum limit. If the
gravitational radiation energy emitted by a supernova
is EG~ 10 Mo e, the detector sensitivity is only
sufFicient to detect the sources within our galaxy and
the detectable event rate is about once per 60 years.
The detectable event rate slightly increases as EG~ in-
creases until the detector sensitivity allows detection of
sources near Virgo. Once EG~ is this large, the de-
tectable event increases proportional to (EGw) i . For
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EG~ 10 Moc, a quantum-limited four-detector net-
work could detect sources as far as 16 Mpc at a rate of
about six per year.

The detectable event rate also crucially depends on
the detector energy cross section. If the antennas are
made of high sound velocity material and have 100 times
larger energy cross section compared to aluminum anten-
nas [15], the detectable event rate could reach several per
ye» «r Ecw 10 Mo~ .

Rp (Mpc)
Event rate (yr )
(NS-NS)
Event rate (yr )
(BH-NS)
Event rate (yr )
(BH-BH)

23

3.8

35.5

519

200 1000
5.7x 10 4.6 x 10

0.054 4.32 x10

6.32 x 10

TABLE VII. Detectable event rate estimates for binary co-
alescence s.

E. Event rate of detectable binary coalescences

h+(t) = 2(1+cos ()(p/R)(vrMf) ~

t
x cos

~

2vr f(t')dt'+ 4
~

h
&& (t) = 4 cos g(p/R) (7rMf) r

( t
x sin

~

2vr f(t')dt'+ 4
~

ra.

(5.20)

where t is an arbitrary defined initial time, 4 is the
signal s phase at time t, ( is the angle of inclination
of the circular orbit to the line of sight, M and p are
the total and reduced masses, respectively, and f, the
frequency of the waves, is given by

vr 256 pM2&s (t —tp)
(5.21)

where t —to is the retarded time. The Fourier transform
is [32]

(5.22)

A compact binary system formed by neutron stars or
black holes will eventually be driven into coalescence by
gravitational radiation reaction [32]. As the two bod-
ies in a compact binary spiral together, they emit a
quasiperiodic chip of gravitational radiation with a fre-
quency sweeping upward toward a maximum frequency.
During the final stage of coalescence the system will likely
produce an intense burst of gravitat'ional waves.

The inspiral stage of coalescence has been studied and
the Newtonian-order wave forms, which are of sufficient
accuracy for our purpose [35], are given by [36]

The radiation signal strength depends on the masses of
objects in the binary system.

As in the case of supernovae, the occurrence rate es-
timates for binary coalescences also have large uncer-
tainties. Narayan, Piran, and Shemi [37] and Phinney
[38] have estimated the binary coalescence rate based
on observations of binary pulsars [39—42]. For neutron
star binaries (NS-NS), a very conservative lower limit
to the merger rate is three per year within 1 Gpc; the
best, but still conservative, estimate is three per year
within 200 Mpc; and a somewhat optimistic upper limit
is three per year within 23 Mpc (assuming a Hubble
constant of 100 kms Mpc ~). The merger rates for
black-hole —neutron-star (BH-NS) and black-hole —black-
hole (BH-BH) binaries are believed to be comparable to
that for NS-NS binaries [38].

Assuming that the binary sources are uniformly dis-
tributed in space (at least on scales of 100 Mpc), Table
VII shows the estimated detectable event rates for several
binary systems. In Table VII Bo is the distance within
which three mergers occur per year. The detector system
is assumed to be a network of four aluminum spherical
detectors operating at the quantum limit. The masses of
neutron stars and black holes are assumed to be 1.4MO
and 10Mo, respectively.

Clearly, the estimates of detectable event rates depend
strongly on the binary merger rate, varying by several
orders of magnitude between the most conservative and
the optimistic estimates. Note that the burst &om the
final stage of coalescence has not been taken into account
in these estimates because so little is known about it.
The final coalescence burst might deposit a considerable
amount of energy in a resonant-mass detector so that the
actual detectable-signal event rate might be higher than
what we have estimated above.

= (4 R )- G
f'(~h+

~
+ ~h

~2/3
~2/3M2/3 g —1/3

6 Pz (5.23)

In Eq. (5.23) we have restored the conventional units.

where the average is over the source orientation angle g.
In Eqs. (5.20), (5.21), and (5.22) units with c = G = 1
have been used.

The total radiation energy per unit &equency &om a
coalescing binary system is, from Eq. (5.22),

VI. SUMMARY

A spherical antenna, with five degenerate quadrupole
modes that can interact with gravitational radiation, has
an energy cross section that is independent of the di-
rection and the polarization of the incoming wave and
is much larger than that of a cylindrical antenna made
of the same material and with the same resonant &e-
quency. The antenna readout requires at least five trans-
ducers to monitor the five quadrupole modes. In prin-
ciple, five transducers can be mounted on the surface of
the sphere, with each coupled to one and only one of
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the five modes. With this arrangement a single spherical
detector is equivalent to five independent single-channel
detectors.

A single spherical detector can provide source direc-
tion estimates. By using the maximum likelihood es-
timation method, an algorithm for solving the inverse
problem with a spherical detector in the presence of noise
has been developed. The direction estimation errors have
also been evaluated both numerically and analytically. A
spherical detector has a reasonable direction resolution
even at relatively low signal-to-noise ratio (S/1V = 10,
or an average single channel amplitude S/K = 1.4),
while an interferometer network requires a much higher
S/N for direction estimation. A spherical detector has
isotropic direction resolution independent of the source
direction and polarization, in contrast to the interferom-
eter network, which can only partially cover the sky. A
comparison of a spherical detector operating at 50-mK
temperature and a network of three interferometers with
the projected sensitivity of the initial LIGO detectors
shows that over about 65% of the sky the spherical de-
tector has better direction resolution.

The direction resolution and isotropic detection sen-
sitivity give a network of spherical detectors additional
advantages in performing coincidence experiments. By
studying the false-alarm and detection probabilities, we
have estimated the event rates of detectable gravitational
wave signals &om supernovae and binary coalescences for
a network of four aluminum spherical detectors operat-
ing at the quantum limit. For supernovae, an optimistic
estimate that assumes the gravitational radiation signal
energy is large enough (EGvv 10 Mo) to allow detec-
tion of sources near or beyond Virgo gives an event rate
of several per year, while a more pessimistic estimate that
assumes EG~ is so small that only the sources within our
galaxy can be detected gives an event rate of about one
per 60 years. For the case of binary coalescence signals,
the detectable event rates exceed several per year for the
optimistic estimates; for the best, but still conservative,
estimates the detectable BH-BH binary coalescence rate
is about one per year, while detectable NS-NS and BH-
NS coalescence rates are only one per 175 and 18 years,
respectively.

The above estimates are based on the assumption that
the detectors operate at the quantum limit. In fact, de-
tectors are more likely to operate at a noise level 10
times higher than the quantum limit in the near future
[16]. For these detectors the optimistic estimate of the
detectable event rate for supernovae is about one per year
(the detectors can detect sources at distances as far as
9 Mpc for EGvv 10 M~) and a pessimistic estimate
is that the detectors can detect sources only within our
galaxy. For detection of binary coalescences the opti-
mistic estimates are that the event rates are once per 10
yr for NS-NS binaries, once per year for BH-NS binaries,
and 16 per year for BH-BH binaries.

Although the quantum limit represents a likely prac-
tical lowest noise level for resonant-mass detectors, the
above estimates for detectors operating at the quan-
tum limit do not represent the ultimate detection limit
for spherical detectors because the detectable event rate

depends strongly on the detector energy cross section
which, in turn, can be greatly improved by optimizing
the antenna material.

Using high sound velocity material for the antenna can
greatly increase the energy cross section [15]. The en-
ergy cross section is proportional to the fifth power of
the sound velocity for a Bxed resonant frequency. For
example, the energy cross section of an antenna made of
silicon carbide can be about 100 times larger than that
of an aluminum antenna [15]. The detectable event rate
is proportional to E / if the sources are uniformly dis-
tributed. Thus a 100-fold increase in the energy cross
section will result in a 1000-fold increase in the detectable
event rates.

Low resonant frequency detectors can also have larger
energy cross sections, since the energy cross section is
inversely proportional to the cubic of the resonant fre-
quency. Besides this, they also have additional advan-
tages in detecting gravitational waves, namely, (1) the
higher frequency quadrupole modes of a spherical an-
tenna can be used to detect gravitational waves and (2)
the low frequency antenna has higher sensitivity to the bi-
nary coalescence signals because the radiation energy per
unit frequency is proportional to f i [see Eq. (5.23)].
Consider two detectors, one with a resonant frequency
near 1 kHz and the other with a resonant frequency half
of that. The lower resonant frequency detector has about
10 times larger signal energy than the higher frequency
one in detecting binary coalescence signals.

The ultimate detector network might consist of four
spherica detectors operating at the quantum limit with
high sound velocity materials used for the antennas
and resonant frequency 400 Hz. This detector net-
work could detect supernova signals more than once per
year if the gravitational radiation energy is larger than
4 x 10 Mo. This network could also detect binary coa-
lescence signals at a rate of more than one per year even
for the most conservative estimate of a binary coalescence
rate of three per year within 1 Gpc.
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APPENDIX A: RESPONSES OF TOROIDAL
QUADRUPOLE MODES TO A GRAVITATIONAL

WAVE

According to general relativity, a gravitational radi-
ation field is a tensor field of massless spin-2 particles.
In the wave-based coordinate system, the nonvanishing
components of the Riemann tensor are [11]

1 0R p p
———Bypyp ———— h+,

2 Ot2
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1 0R pyp
——Rp p

———— hx,
2 Bt2

antenna.
For toroidal modes, 4'„ is given by [9]

B (t) = M—'R;O, o(t) f O'„. Ttttttx, (A2)

where p and M are the density and mass of the antenna,
and 4 is the eigenfunction of the nth normal mode. The
coordinate origin is taken to be the center of mass of the

where h+ and h&& are the gravitational wave amplitudes
of the two independent polarization states. The mode
driving force is given by [10]

e, =Cq, (~r)(r x VYi ), (A3)

(A4)

where C is the normalized amplitude, Yi (8, y) are
spherical harmonics. e = ~i /)M, where uri is the res-
onant &equency of the normal mode and p is the shear
modulus. @i(x) is a function given by

Substituting Eqs. (Al) and (A3) into Eq. (A2), the mode driving force is obtained as

R 2'
r dr sin8d8 dy@i(Kr)[h+(ze —ye„) . (r x VYi' ) + h&&(ye + ze„) . (r x VYi* )]8' B3 o o 0

3C s . - ( . . BY)* BY
gi (vr)r dr sin 8 d8 dy h+

~

sing sin 2y + cos 8 cos 2y8' R3 0 0 0 B8 By )
BYi* . BY(' )

+h&&
~

—sin8 cos2y + cos sin2y ™
l B8 By ) (A5)

Using Legendre functions, BYi' /B8 and BYi* /By can be expressed as

BYi' 2l + 1 (l —m)! BPi (cos 8)
B8 4vr (l ~ m)! B8

(A6)

BY)' . 2l+ 1 (l —m)!
By 4z. (l ~ m)!

Pi (cos 8)e

where Pi (cos8) is the Legendre function. From Eqs. (A5) and (A6) we see that each term of the integral in Eq.
(A5) contains either f sin2ye ' ~dy or Jp cos2ye ' (t'dy. These integrals are zero except for m =+2 as

2'
cos pe p =

2' —i7r, m=2,
sin2ye ' ~= ( i~, m= —2,

0 0, others .

(A7)

Thus, the normal-mode driving force due to gravitational waves are zero except for m = +2 modes. For m = +2, the
Inode driving force can be written as

R +1
Ri~ = Ai(i,h+ + h&&) gi(Kr)r dr du 2u+ (u —1)—Pi (u), m = +2

0 —1 d'll
(A8)

where u = cos 0 and A~ is a constant as

Ai ——
3C 2l + 1 (l + 2)!
8Rs 4' (l —2)! (A9)

Using the recurrence relation of Legendre functions that

(1 u ) Pi = luPi + (l + m—)Pi—it (A10)
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Eq. (A8) is rewritten as

R +1
Rq = A~(l + 2)(ih+ + h&&) @~(~r)r dr du[uPP(u) —PP~(u)], m = +2 .

G —1
(A11)

It is easy to verify that for quadrupole modes I = 2,
R~ = 0. In fact, for even l, the integral f du[up&-
P&~ ~] = 0. This can be seen as follows.

P22 = 3(l—u2) is an even function and Ps2 = 15u(1—u2)
is an odd function of u. Assuming that P& z is an odd
function and P& 2 is an even function, we observe that P&

is an even function &om the following recurrence relation:

= h+(t)W+, ~ + hx(t)WX, ~, (B2)

where the null vector rn is

1
(e + ie„) .

2
(B3)

h;~(t) can also be represented with a null vector nx,

h;~ = 2h+(t)Re(m;m~) + 2h„(t)lrn(m;m~)

(l —m)PP = (2l —1)uP& ~
—(l —1+m)P& 2 . (A12) W+,~ and TV&&,

.
~ are also symmetric and trace-&ee tensors

given by

Similarly, if P& &
is an even function and P& 2 is an odd

function, then P& is an odd function. Therefore, for even
l, P& is an even function and for odd number l, P& is

an odd function. For even l, the integral I du[up&2—

PP ~] = 0 because the integrand is an odd function of u
and therefore, gravitational wave driving forces are zero.

W+;~ = 2Re(m, m~),

W&&,.i ——21m(m;m~) .
(B4)

In the laboratory coordinate system, the null vector rn
becomes

APPENDIX B: SYMMETRIC- TRACE-FREE
(STF) WAVE TENSORS [7,8]

1
rn = [(cos p —i cos 8 sin &p) e

2

h..= —h„„=h+(t),

h.„=h„. = h„(t) .
(Bl)

The wave tensor is symmetric and trace free.

Consider a plane gravitational wave with amplitudes
h+(t) and h&&(t) associated with the two independent
polarizations. In the wave coordinate system, where the
wave travels in the z direction, the wave tensor h;~ (t) has
the nonvanishing components

+(sin p + i cos 8 cos &p)e„+(i sin 8)e,i], (B5)

where e ~, e„,and e I are unit vectors in the laboratory
ft.arne. 8 and y are the usual Euler angles. The third
Euler angle g has been set equal to zero. This choice
is a convention for identifying h+(t) and h&& (t), since vP

merely determines the orientation of the wave kame's
(x, y) axes in the x-y plane and has no effect on any
results.

W+;~ and W&&,~ are found from Eqs. (B4) and (B5) in
the laboratory coordinate system. They are

cos y —cos 0 sin

2 sin 2 y(1 + cos2 8)
2 sin 2 0 sin y

2 sin2p(1+ cos28) 2 sin 28 sing
sin y —cos 6I cos2 y —

2 sin20 cosy
——sin28 cos y2

—sin 0

(B6)

—cos 8 sin 2y cos 8 cos 2y sin 8 cos y
cos8 cos2y cos8 sin2y sin8 siny
sin8 cosy sin8 siny 0
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APPENDIX C: THE TRANSFORMATION MATRIX T„, (8, (p)

sTp p =
2 COS 0 —2, Tp 1 = — S1I120 COSy, Tp 1 = SlI120 SlIly

v3 . , ~3. ,Tp 2c = sin 0 cos 2y, Tp 2, ——— sin 0 sin 2y

~3 .
Tlc, p sin 20, Tlc lc ——cos 20 cos y, Tlc 1, ———cos 20 sin y

Tlc,2c 2 slIl 20 cos 2y, T1, 2, ——
2 sin20 sin2y,

Tls, P 0) Tls, lc COS 0 Sln y) Tls, ls —COS 0 COS y

Tl, 2c ———sin0 sin2y, Tl, 2, ———sin0 cos2y,

~3 . , 1T2 p = sin 0, T2c 1, ——
2 sin20 cosy, T2c 1, ———

2 sin20 siny

T2, 2, ——2(1+ cos 8) cos2@, T2, 2, ———2(1+ cos 0) sin2y,

T2.,p
= o, T2, 1 ——sin0 siny, T2, 1, ——sin0 cosy,

T2, 2c
——cos0 sin2y, T2, 2, ——cos0 cos2y .

APPENDIX D: MAXIMUM SIGNAL- TO-NOISE
RATIO Es ——Z,' =

N

) L;s;

Consider a set of N data

y; =8i+n;, i =1)2).. . )N )

where 8; is a known signal, and n, is a random variable
with zero mean and variance 0;. The random variables
are assumed to be uncorrelated.

We manipulate the data yi with a linear filter, i.e.,
form a linear combination of yi with weight coefBcients
Llg )

and the noise power is

E~ ——E(Z„)

N N

=E&) ) LLnn, ~

i=1 j=l

N

Z=) Ly; . (D2)
= ) ) L,L E(n, n, )

i =1 j=l

N

Z, =) Ls;, (D3)

Z consists of two parts, one associated with the signal si, N
= ) L,'o,', (D6)

and the other corresponding to the noise n;,
N

Z„=) I.;n;.

At the filter's output, the signal energy is

(D4)
E(n, n~ ) = o 2b;~ .

The signal-to-noise ratio is therefore

(D7)

where E(.. ) denotes the ensemble average. The last
equality in Eq. (D6) is obtained because the noise is
uncorrelated,
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82
2

~2
2

) L2 2

i=1

(Ds)

The equality occurs when

~iL- =c—
~i

where c is a nonzero arbitrary constant. L, in Eq. (D9)
is the optimal linear filter that maximizes the signal-to-
noise ratio. The maximum signal-to-noise ratio is then

(DIO)
The last inequality follows Rom the Schwartz inequality.
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