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Low energy properties of the heavy vector fermions and electroweak
symmetry breaking
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We discuss the properties of the heavy vector fermions with bare Dirac mass terms and an
SU(2) x SU(2) global symmetry in the Yukawa interaction Lagrangian. Using the heat kernel expan-
sion method we calculate their contributions to the low energy observables. We argue that these
heavy fermions may be responsible for a soft dynamical symmetry breaking through their conden-
sation. We also discuss the possibility of considering ordinary fermions as one part of the vector
fermions within our model.

PACS number(s): 12.60.—i, 12.15.—y, 14.80.—j

One of the most profound and important subjects
in quantum field theory and particle physics is the
spontaneous breaking of continuous symmetries. One
weB-known example in the real world is the sponta-
neous breaking of chiral symmetry in hadron interactions,
which is, as can be proven modulo some highly plausi-
ble assumptions [1], governed by the confining force of
the vectorlike gauge interaction, @CD. Despite the fact
that too few examples have been given so far by nature
of the spontaneously broken symmetry, in the theory as-
pect, we are also lacking an alternative mechanism in
understanding the general features of the issue. In de-
scribing electroweak symmetry breaking, the most popu-
lar theory is the so-called Higgs mechanism [2] in which
the electroweak symmetry is spontaneously broken by the
nonvanishing vacuum expectation value (VEV) of an ele-
mentary scalar —the Higgs particle. It is also understood
that, even if there is no elementary Higgs field, the Higgs
mechanism may also be considered as an approximation
of some comple~ dynamical symmetry-breaking mecha-
nism, provided the Higgs Geld is now only a composite ob-
ject with a nonzero VEV. It is appealing then to study the
varieties of electroweak symmetry-breaking mechanisms.
The technicolor model [3] is such an example in which
electroweak symmetry breaking is induced by a strong,
vectorlike (@CD-type) gauge interaction. However, the
technicolor model and its simple extensions are known to
encounter some diKculties; for example, the technicolor
model leads to a large S parameter [4] compared with ex-
periments. In this situation, it is therefore worthwhile to
explore other possibilities for breaking electroweak sym-
metry spontaneously.

The precision tests at the CERN e+e collider LEP,
on the other hand, lead to strong constraints on the pos-
sible physics beyond the standard model. Among other
things, one of the most severe constraints is &om the p
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parameter. The experimental observation of the relation
p 1 puts an upper bound. on the top quark mass. Many
discussions have been conducted about this issue. As a
general conclusion, within the models studied in the past,
it is dificult to weaken the top quark upper bound and,
on the contrary, it is easy to lower this bound [5]. There is
a recent paper by Caravaglios [6] in which he considered
a simple example of a vector family of leptons, that is,
a standard fermion family plus a right-handed neutrino
and a conjugate family where the role of the left-handed.
and the right-handed fermions are inverted with respect
to the gauge interactions. He concluded that the vec-
tor family contributions to the p parameter and to the S
(or e~s in Ref. [6]) parameter are suppressed by m /M2,
where m is generated by the Yukawa interaction and M
is the bare mass of the heavy vector fermions. Further,
the contribution to the p parameter is negative, if one
includes the Yukawa interaction with the charge conju-
gated neutrino fields.

In this paper, we will also discuss the physical e8'ects
induced by the heavy vector fermions. The appearance
of the vector fermion family, or mirror fermions [7], is
a natural consequence of many grand unification models
[8], and composite models [9]. In the picture of compos-
iteness, these heavy vector fermions may be related to
the parity doubled excitations of the ordinary quarks and
leptons. In fact, if the chiral symmetry can be realized
in signer-Weyl type, which is directly related to the dis-
cussion of compositeness of quarks and leptons [10], then
the bound state spectrum consists of some chiral bound
states and parity doubled massive ferrnions (their masses
are not protected by chiral symmetry).

Although there are various models motivating the pos-
sible existence of heavy vector fermions, we wiH. , however,
not stick to any concrete model in our discussions. In-
stead, regardless of the underlying dynamics which con-
trols the behavior of these heavy fermions, we assume, on
a rather general ground, that despite the gauge interac-
tions, it is described by an efFective Lagrangian of Higgs-
Yukawa interactions which has an SU(2) isospin syrnme-
try and another SU(2) global symmetry in the parity
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doublet space. The spontaneous symmetry breaking in-
duced by the Higgs field will break the global symmetry
between the parity doubled fermion Belds. Especially, it
will lead to the mass splitting between the two isospin
fermion doublet states which are degenerate in mass be-
fore the symmetry breaking.

For each isospin Dirac fermion fields gi, from our as-
sumption, there is another fermion doublet g2 with op-
posite parity:

where the p3 is the third Pauli matrix in the parity dou-
blet space. A fermion and its parity partner appearing
in one parity doublet are assumed to be degenerate in
mass and all the other quantum numbers when the sym-
metry are not broken down at high energies. The spon-
taneous symmetry breaking is responsible for giving the
weak gauge bosons' masses as well as the mass splitting
between the parity partners.

In Sec. I, we present the construction of the effective
Lagrangian, although it is more or less in a standard way.
We will only focus on common general features of both
quarks and leptons; i.e. , we will not discuss those rele-
vant only to the specific property of the neutrino field;
this is difFerent &om the discussion made in Ref. [6j. In
Sec. I, we also investigate the interesting possibility of
describing the ordinary quarks and leptons in the parity
doublet model. In Sec. II, we calculate the low-energy
effects induced by those heavy fermions, by integrat-
ing them out using the heat-kernel method in our ef-
fective Lagrangian. In agreement with Caravaglios, we
find that their contribution to the oblique corrections is
suppressed by m /M . However, their contributions to
the decay constant of the Goldstone boson f (v) can be
large. We therefore argue that, if there exists a strong
interaction which causes the condensation of the heavy
fermion fields, they can be responsible for a soft dynam-
ical symmetry breaking. In other words, the model only
leads to a very small contribution to the low-energy ob-
servables.

I. THE PARITY DOUBLET MODEL FOR
ELECTROWEAK INTERACTIONS

We begin by introducing a SV(2) x SU(2) global trans-
formation of the 4 fields defined in Eq. (1):

(2)

where 7 are the generators of the weak isospin space. We
further introduce the notation

1 —p2 „1+p2

2
~ '

2

From Eq. (2), we can further define

i(n —P) T @l g @l

yV ~ i(CX+P) TyV g
(4)

There are two invariant fermion bilinears under the rota-
tion Eq. (4), 44' and @p24. We stress again the difFer-

ence between the conventional chiral symmetry and that
in the parity doublet model, that the mass term is al-
lowed by symmetry requirement, only the mass splitting
and the mixing between the two parity partners are the
right issue of the spontaneous symmetry breaking of the
parity doublet model.

We also introduce the collective variable of the Gold-
stone fields which are other aspects of the spontaneous
symmetry breaking

U+ Ut U —Ut
M = e'~'

2 2
P2

—im T/f~

U m G„UGt~ .

After defining the transformation properties of the
fermion and Goldstone fields, the Lagrangian, which is
invariant under the global SU(2) x SU(2) transformations,
Eqs. (4) and (6), describing the interactions between a
parity doublet and the Goldstone excitations of the spon-
taneous symmetry breaking, with terms of least dimen-
sion and bilinear in fermion fields, may be written as

8 = 4(i P —M —(m + psp2m) ps')4 .

Notice that the three mass parameters in (7) can be
different for different parity doublets. The electroweak
gauge interactions are embedded in the fermionic La-

It can easily be proven that @p3M@ is invariant under
Eq. (4) if U transforms as

Our original motivation comes out from the idea of the par-
ity doublet model in the early discussions of hadron physics
[11] which gives an interesting competitive mechanism for
spontaneous symmetry breaking. We will use the language
of the parity doublet model in the following discussion.

For elementary fermions the de6nition of relative parity
may only be a matter of convention, but when the fermions
are composite objects the relative parities can be meaningful.
Our convention in the present paper is just borrowed from the
parity doublet model. We are not claiming that the fermions
under our consideration are necessarily composite objects.

Here we use the small / and r to denote the corresponding
decomposition of the fermion 6elds, so as not to confuse with
the conventional left and right notation which we will denote
as the capital L and B in this paper, that is @z, = (1—
ps)/24, 4a = (1+ps)/&@.

We chose the nonlinear o modellike language throughout
this paper and do not consider the renormalizability condi-
tion, although we can recover the renormalizability whenever
it is necessary.
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grangian in the following way:

(S)

where L and R are gauge fields coupled to 4~ and 4'„,
respectively. Their concrete expressions depend on the
electroweak property of the fermion Gelds. If they are
chosen to be the same as the ordinary fermions, then

2)

After the electroweak symmetry breaking, they will, in
general, touch other fields again.

We notice that there is a serious flaw in Eq. (12):
there is no mass splitting within each weak-isospin dou-
blet, i.e., the mass difference between up- and down-type
quarks. In order to Gx it we must add a —M'4„»@„
term, which is isospin violating but (R) gauge invari-
ant, into the Lagrangian Eq. (12). But since this terxn
is parity violating, we can certainly add another parity-
violating (but isospin conserving) xnass term —M4&„@„.
The additional Lagrangian then reads

(9) l.' = —M'4„»C„—mC „C„. (14)

'T gy ll
L&quark = g2 ~ + +& Rquark =

I

—+ —
I
ei& ~

2 6 I 2 6)
For the convenience of later usage, we introduce the no-
tation

Equations (7) and (8) can be rewritten as

~ = &gauge + &Yukawa

where

Qs „s.—:4,{zP —M —$)4& + 4„{iP —M —Pj4„

v& = R„/2——L„/2 and a& = R~/2 —+L~/2 . (15)

Now we discuss the symmetry breaking. To define ( =
U / and performing the following rotation of the fermion
fields,

(i6)

and

ZV„k.„.—=—4.(m+ P,m)P, U4&
—@&(m —p, m) p, Ut @. .

(12) we can rewrite the above effective Lagrangian in the ex-
plicit symmetry-breaking phase (in the following we work
in Euclidean convention):

z t', 1+p,+ p„I'„——p2p„„y—y M + M'
P P 2 P P 2

The above equation (13) requires some comments.
First, the gauge interactions are purely vectorlike since
the bare mass term is allowed by gauge symmetries. The
Lagrangian 8g „g is constructed. as left-right symmetric.
Second, the Yukawa interactions have an SU(2) xSU(2)
global symmetry and are parity conserving. But as soon
as we introduce the SU(2) zz x U(1)y [which is a subgroup
of the global SU(2) x SU(2) field] gauge interactions, par-
ity violation occurs. This is because we have endowed the
two fermions with diferent parities, the parity operation
changes the 4~ field into the 4„field, and vice versa. If
the two fermions have the same parity then the gauge
interaction is parity conserving and only the p5 term of
the Yukawa interaction violates parity explicitly. Also
please notice that right-handed neutrinos decouple &om
other fields in the Lagrangian as guaranteed by Eq. (9).

— i+ p.+M + ip5pim+ p3m
2

where

l'. = -{('[~.- '("+ .)]4 + &[~.- '(v. —a.)]&')
1 t

(„=z{( [8„—z(v„+a„)](—([0„—z(v~ —az )]( ) .

(19)

The mass. matrix in the above Lagrangian is not diagonal;
physical mass eigenstates are obtained by the following
rotation of the fermion field:

~ 91 + 02 t&1 92 ~ . ~ ~1 + ~2 ~1 ~2x~ exp zpi
I 2 2 J ( 2 2

+ 7s
I

exp —zp5pi
I

+ ~s
I x, (2o)

where and

sin 20' 2
,'(M +M')—

M+M'
(2i) sin 2bg 2 ——

M+ M+M~
(22)



254 HANQING ZHENG 51

The diagonalized fermion mass matrix is then

Mg + M2 Mg —M2
2

+
2

I,] + m2 m] —m2
+p + (23)

where

M» 2 —— m'+ M+
2

(M+M l'
m] 2 — m +

(24)

It is noticed that after the rotation Eq. (20) the mass
eigenstates are no longer parity eigenstates. The gauge
invariant mass terms, denoted by the capital M, may
(or may not) be generated dynamically above the elec-
troweak scale but look purely kinematic at the elec-
troweak scale. Another kind of mass term is generated
by Yukawa couplings (m, m) and is a consequence of elec-
troweak symmetry breaking.

After the rotation, the gauge interaction form in the
Lagrangian Eq. (17) will change its form except for the
electromagnetic interaction. For example, if defining the
Z@iII term by the (gv —gyps) form and the Will ill cou-
pling the g& gf p—s term (our notation, in the standard
model, is gv ——1 —3s~, g&

——1 —&8~, g& ——g&
——1,

and g&~ = gz~ = 1), then we have the following results
(terms with the nondiagonal coupling in the parity dou-
blet space can be found in Appendix A):

gv = cos(8i —82) cos($I —$2)
—ps sin(8i + 82) cos(bi + bg),

g~ = SlI1(8i —82) sin(8'I —82)
—ps cos(8i + 82) sin(hi + h2)

We observe from the above relations that these param-
eters g~ and g~ for the heavy fermions are very differ-
ent from the standard model results because of the large
bare mass terms M, M', and M in Eq. (21). It is in-
teresting to notice that in the above framework we can
also consider that the ordinary fermions appear in parity
doublets. This is possible when the bare mass parame-
ters are much smaller than the masses generated by the

A subsequent unitary rotation on fermion fields (after the
parity operation) transforms the Lagrangian back to the mass
eigenstates. Physics such as strong or electromagnetic inter-
action will not be inBuenced.

bg& ———p3 sin 202 cos 2b2, bg& ———p3 sin 20' cos 2bq,

(25)

gz ———ps cos 282 sin 2b2, gz ———ps cos 28i sin 2bi, (26)

Yukawa interaction. After the symmetry breaking, while
the known quarks and leptons are "left" handed, their
cousins with odd parity are "right" handed and massive

( 2m or 2m) (notice that the neutrino partners are also
massive). The "deviation" of an ordinary fermion field in
our model to how it behaves in the standard model may,
roughly speaking, be characterized by the axial-vector
coupling g~ (proportional to the Z coupling to fermions)
ranging from 0 to 1. In the g~ ——1 (M + 0) limit, the
standard model result is recovered, i.e., light fermions
are of purely V —A type. But fermion masses and the
gauge couplings in our model are correlated with each
other; the value of g~ cannot be exactly unity. Within
the experimental constraints on the deviation (typically
less than 10 —10 ) of the gauge couplings to their stan-
dard model values, we find no difBculty in reproducing
the light fermion spectrum (even when assuming univer-
sal Yukawa coupling for diKerent families) by varying the
bare mass parameters. The most severe difference in our
model compared with the standard one occurs on the top
quark. In order to explain its large mass (with the con-
straints on hg&~ and g&s Rom experiinents) we find signif-
icant difference for the top couplings, within reasonable
range of the scale parameter, m of m. As can be seen
from Figs. 1 and 2, m and m are necessarily large in order
to explain the large top quark mass. In fact a lower bound

on m can be obtained: m & Mi/ 2(1 —g&s) (the equal-

ity holds when M' )) m). Taking for example g& ) 0.99
and Mq ) 140 GeV one obtains m ) 1 TeV. This means
that in the model the Yukawa couplings are unavoidably
nonperturbative in the top quark sector, which unfortu-
nately causes our model to be less predictive beyond the
tree level. The Yukawa couplings, on the other hand, are
known to suffer from the triviality problem which leads
to an upper bound on the magnitude. It is expected
that m and m should be no greater than a few TeV.
The constraints on m, for fixed Mq, can be translated
to the constraints on gA as can be seen from Fig. 1. If
we neglect the unpleasant fact of the large Yukawa cou-
plings, we may estimate the one loop contribution to the
8 and T parameter (the Yukawa couplings only enter in
the two loop contribution). Numerical results show that
the S parameter is acceptable but show a large positive
T parameter. This may be considered the main short-
coming of the model when trying to explain the ordinary
fermions as part of the parity doublets. The nondecou-
pling effects of the heavy chiral fermion to low-energy
physics is a diKcult task. Efforts have been made in the
literature using various nonperturbative methods, and it

It is exactly this symmetry that guarantees the anomaly
cancellation within each parity doublet, without the necessity
to rescue the standard model anomaly cancellation condition

p, q =o.
We expect that we are fortunate to have room to put this

m parameter. The upper bound on the conventional Higgs-
Yukawa coupling obtained in [12j by using the large N~ anal-
ysis is M& & 10vrv.
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is agreed that there may exist nondecoupling efFects, but
the T parameter will not blow up when the fermion mass
gets large [13], in contrast to the results indicated by the
one loop perturbative calculation.
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II. ELECTROWEAK SYMMETRY BREAKING
AND PROPERTIES OF THE
"VECTORLIKE" FERMIONS

The TV and Z bosons acquire their masses by absorbing
the corresponding Goldstone excitations. This is achiev-
able because of the existence of the kinematic term of the
Goldstone 6elds in the Lagrangian:

0.8

0.7

0.6
0.5
p 4

where

CG. ———trD„UD"U~,
4

(27)

P 2

0.1

r
r

r

0 0.2
I I

0.4 , 0.6
x = M'/m

0.8

1.04

&.os — (a)
1.02

1.01

FIG. l. (a) The g~, hg~, and the top quark mass
(scaled as m/10) as a function of M'/m, at e = M/m
= 0.1 (gz 1 —e /2). (b) The same as (a) but e = 0.14.

D„U= B„U—i(v„+a„)U+ iU(v„—a„) (28)

and f = (I/~2Gy) i/2 = 246 GeV. The Goldstone
field Lagrangian (27) can be either fundamental like that
in the standard model or an induced one from dynamical
symmetry breaking. In the latter case, these Goldstone
excitations are composite objects, and f is induced by
the nonvanishing vacuum expectation values of certain
kind of composite Geld operators. In our case, this should
be (4'ps@) or so. The dynamically broken symmetry is
our main concern, although we may build a renormaliz-
able Lagrangian from Eqs. (7) and (8) by invoking the
Higgs mechanism. Now the standard procedure can be
performed to give the desired weak gauge boson masses
and the Weinberg angle. In the unitary gauge where
U=1,

0.99

0.98

0.97 where

1
Mw W+R' + Mz Z

2
(29)

0.96
0 0.2 0.4 , 0.6

x = M'/m
0.8 Mw2 2

g2
Mw = g2, Mz = cos6w

4 cos Ow gg'+ g'

1.06

i.o4—
W'

&A

9v

g2g1

+g
(3o)

1.02—

0.98

0.96

0,94 I

0.2
I I

0.4 , 0.6
x = M'/m

0.8

We will calculate the eKects of the vectorlike heavy
fermions on low energy physics in the limit M && m.
These fermions are decoupling at low energies and hence
can be integrated out safely, because the mass param-
eter M comes out from a bare mass term and the de-
coupling theorem [14] applies. These vectorlike fermions
in8uence low-energy physics by modifying these coupling

FIG. 2. (a) The coupling g& and g~ as a function of M'/m
with e = 0.1. These couplings only depend weakly on the
"top" quark mass; especially when e = 0 they are degenerate
to the constant unity, i.e. , the standard model value. (b)
Same as (a), but e = 0.14.

It is contrary to the situation in the above section, when

discussing the possibility to consider the ordinary fermions as
appearing in parity doublets, where another limit m, rn && M
should be taken.
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b(f ) = 8 =
~

ln
2' 2 E M2) (31)

where Np is the number of parity doublets. This
is to be compared with the pion decay constant ob-
tained in the QCD effective action approach [18], f2 =
(N, /47r2)M&2 ln(A2&cD/M&), where Mg is the constitute
quark mass which is similar to m in our present dis-
cussion. We notice that if in the above equation (31)
m = O(v) then several of these heavy fermions would
be enough to take charge of the electroweak symmetry
breaking. Therefore if there are strong attractive forces
in the appropriate channel to cause the heavy fermion
condensation, then they may play the role similar to tech-
niquarks in the technicolor model. Each parity doublet
contributes to the coupling of the O(p4) term as the fol-
lowing:

1 A2
Hg ——— ln

48Vr2

Lg ——I2 ——0, (33)

1 m2

48~2 M2 (34)

1 m
24m'2 M2 (35)

1 m2
10

constants of the low-energy effective Lagrangian. These
modifications are calculable using the heat kernel expan-
sion method [15].

To proceed we assume the Lagrangian equation (17)
is an effective Lagrangian below a cutofF A. This means
that once we run down &om the energy scale much higher
than A, more and more high &equency modes including
those very massive vectorlike fermions are integrated out
until the scale A is reached where the symmetry breaking
is assumed to occur. The effective Lagrangian describ-
ing the interaction between the parity doublet fermions
and the Goldstone bosons therefore only contains parti-
cles below the scale A. We further assume that A is much
larger than the decay constant of the Goldstone bosons,
f = v = 246 GeV. This assumption is quite nontriv-
ial; please compare with the so-called walking technicolor
model in which the similar requirement is tried to be ad-
justed dynamically [16].

We proceed further by integrating out those heavy
fermions (where the bare mass parameter M lies in the
region A ) M && m; this is only possible because of the
assumption we made above) in the effective Lagrangian.
The resulting effective Lagrangian is of Gasser-Leutwyler
type [up to O(p ) terms in the derivative expansions] [17]
with external gauge field coupling to the Goldstone ex-
citations. To illustrate the main idea we consider the
simplified case m = M' = M = 0. We conclude from our
calculation that the heavy parity doublets contribute to
the vacuum expectation value of electroweak symmetry
breaking as

The remarkable property of the heavy parity doublet
fermions is that their contribution to the oblique correc-
tions of the standard processes is suppressed by m2/M2
which can be understood in the point of view of the de-
coupling theorem. Especially, its contribution to the S
parameter is (1/3~)(m /M ), which is still positive def-
inite but much smaller in magnitude than the QCD-like
technicolor model result. We have not calculated the
isospin breaking efFects in the effective Lagrangian ap-
proach. However, we estimate the heavy vector fermion
contribution to the p parameter in one loop perturbative
calculation. We find that the correction is vanishing in
the large M limit (keeping M' fixed). In this sense, the
dynamics responsible for the symmetry breaking at the
electroweak scale is rather weak, but still strong enough
to give the masses of the weak gauge bosons. This way
of dynamical electroweak symmetry breaking, if possi-
ble, may also be distinguishable &om SM at low energies
because of the difFerence between the Li terms [17].

We have not been able to discuss what kind of under-
lying dynamics can be responsible for the above scenario.
One diKculty we may encounter when discussing the pos-
sibility of dynamical symmetry breaking is from the Vafa-
Witten theorem [19]which states that a parity conserving
vectorlike gage interaction cannot be responsible for the
spontaneous breaking of vectorlike symmetry. If this the-
orem applies to our case, then we may lack the underlying
dynamics of the effective Yukawa interaction although it
is possible to break vector symmetries through the four-
fermion interactions [20]. However, when there are parity
violation interactions such as in our case it is in general
possible to violate vector symmetry spontaneously, and
massless bound states can be composed of massive con-
stituents [21].

III. CONCLUSIONS

In this paper we have discussed the physical con-
sequences of assuming interactions between vector
fermions. When the assumption is applied to the or-
dinary fermion sector, the model predicts a sizable de-
viation of the axial vector coupling g~ of the top quark
to its SM value. This phenomenological consideration is
not successful, partly due to the difBculty in understand-
ing the behavior of large Yukawa couplings. However, it
may still be interesting. For example we point out that
it is very difficult (if not impossible) to understand the
large fermion mass hierarchy problem within the context
of SM, i.e., how to understand the very different fermion
masses generated at the electroweak scale. In our model,
this is translated to mean that different fermions have
difFerent kinematic mass terms. The Yukawa interac-
tion itself is isospin invariant and may even be universal
for different families. The role of those heavy fermions
with their masses mainly coming &om bare mass terms is
discussed. We calculated the low-energy effects induced
by these heavy fermions using the heat-kernel expansion
method and argue that they may be responsible for a soft
breaking of the electroweak symmetry which leads to a
safely small S parameter.
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APPENDIX A

by these couplings:

).((g~)'+ (g~)') = 4

):((gz)'+ {gz)') = 4

t t

):((g )' + (g")') = 4 .
b, b

(A21)

(A23)

gris = cos(HI —02) cos(hi —h2)

+ sin(HI + 02) cos(hi + b2), (Al)

We list in the following all the vector and axial-vector
couplings of the W gauge boson to fermions,

).gwgw = 0 (A24)

Especially, we have relations which guarantee the cancel-
lation of the triangle anomaly within each parity doublet,
which are

gg„l,= cos(HI + 02) sin(hi + h2)
—sin(HI —02) sin(hi —b2),

g = cos(0i —02) cos(hi —hp)

—sin(HI + 02) cos(bi + bq),

(A2)

(A3)

for the pW+W triangle diagram,

A A A A
~ztt + ~Ztt ~zbb + ~Zbb

for the Zpp diagram, and

gzgz = 0

(A2s)

(A26)

g~@
———cos(HI + 02) sin(hi + b2)

—sin(HI —02) sin(bi —h2), (A4)

for the pZZ diagram. Relations required for anomaly
cancellations in other diagrams are not independent.

g~~s = —cos(0l + 02) cos(bi + h2)

+ sin(HI —02) cos(h'I —b2),

g~~s = cos(HI —02) sill(hi —b2)

+ sin(HI + 02) sin(hi + b2),

g~ &

——cos(HI + 02) cos(hi + b2)

+ sin(0i —02) cos(hi —b2),

g~ &

——cos(HI —02) sin(hi —h2)
—sin(HI + 02) sin(hi + b2),

and Z to fermions,

(As)

(A6)

(A7)

(A8)

APPENDIX B

In this section we present our calculations on the low-
energy efFects of heavy vectorlike fermions, using the
heat-kernel expansion in the proper-time regularization
scheme. For simplicity, we only consider the M' = M =
m = 0 and the M && m limit to illustrate our idea. The
eff'ective Lagrangian Eq. (17) is now simplified:

& = X + Vp~~ —-p2&~ g X —X M+ p3m XP P

—= xPEx .

The expressions for I'~ and (~ are already given in Eqs.
(18) and (19). Now defining

v
&ztt

A
&ztt

V
~zbb

A
~Zbb

V
&ztt

A
~ztt
v

~zbb
A

~Zbb
V

&ztt
A

&ztt
v

~zbb
A.

~zbb

1+ sin(20i) cos(2bi),
cos(28i) sin(2hi),
1 + sin(202) cos(2b2),
cos(202) sin(2b2),
cos(2hi) cos(20i)
—sin(20i) sin(2hi),
cos(202) cos(262),
—Sill(202) Sill(262)

1 —sin(20i) cos(2hi),
A

&ztt ~

1 —sin(202) cos(2h2),
A

&Zbb .

(A9)
(A10)
(A11)
(A12)
(A13)

(A14)

(A1s)

(A16)

(A17)

(A18)

(A19)

(A20)

From these formulas we read oK useful relations obeyed

(a2)

we obtain

PE PE —— D„D„—o„vR—„v—mp—„pi(„2

+2Mmps + M + m
D'+ Y+ (M—'+ m'), (a3)

where

Z

~~- —= --l~~ ~-]2
(a4)

1 Z

gv = [ y, l v] gv [(ps (v] + p2(pv
2

(as)

ZD„=0„+X„=0„+I'„—p2(„)—
2
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d„(„=0„(„+[I'„,( ] (87)

and

The effective action obtained by integrating out the
fermion fields is

1 4 ~
—~(M +en )

I',6 = —— d 2:tr —p(e, ~) ) a„~",
2 o ~ '

(4vr~)2

where a are the Seely-deWitt coeKcients in terms of D~
and Y. The function p(e, r) is the cutoff regulator:

p(e) 7r) M 1, e M 0; p(E') 7') M 0) T M 0

We choose the proper time regularization:

(
p(e, r) = 0(~ —e) = 0

~

7. —
A2y

(810)

In this regularization scheme Eq. (89) is rewritten as

in which

r„.= a„r.—a„r„+[r„,r.](r t„=—r„.= r„„),
(86)

as ————Y + —[YD Y+ (D Y)Y+'D&YD&Y]

——DDY+1 2 2

60
1 4a4 ———Y

24

(815)

(816)

Terms which are neglected above are irrelevant to our
calculation.

The expansion in the effective Lagrangian is in inverse
power of M. In the M )) m limit, the expansion series
converges. Up to fourth order terms, the results are

which can also be summarized using the parameters as
defined in Ref. [17] (the I'(4) contribution can already be
neglected):

16' I'(s) = ( 2m t—r(D„UtD„U)—str(F„„F„„)
—-tr(F„„F„„))I'

m2
16m I'(s) —— i 2 tr(F—„„D„UD„Ut+ F„„D„UtD„U}I'i

m2
+3M2 tr((4&-)'+ 2 (44&-&- + GAP(-)

+4M („(„jli,
M2m2

16~'r(, )
= —...(F~„F„'„+F„"„F„"„)I,M2+ m»

4 M'm4
2 2tr(D„U D„U)I'2, (817)3 M'+m»

I 6= — dz) I' n —1,
MP tr(a„+,)

327r2 A2 M2 77,—1

dzI'(n —1, x) = —e 'z
z

(812)

We also list the expressions of a few leading Seely-de&itt
coefBcients:

(813)

(811)

where M&2 ——M2 + m2 and I'(n —1, x) is the incomplete
I function:

Lgp

4 ( 3(M2 + m2) ) 16~2 '

t' 1 m'
Hg —— ——I'p +

3 6(M +m ) ) 16'li
Lg ——L2 ——0,

m' I'~

3(M'+ m') 16~' '

2m I'g

3(M2+ m2) 16vr2 '

m' r,
3(M2 + m2) 16m2

'

(818)

(819)

(820)

(821)

(822)

(823)

=12 12 1
a2 ———Y ——D Y+ —B B

2 6 P P
Taking the leading term in m /M2 expansions we easily
obtain the result given in Sec. II.
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