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The nonequilibrium evolution of the hadronic plasma produced in a high energy heavy ion collision
is studied in the O(4) linear o model to leading order in a large N expansion. Starting from an
approximate equilibrium configuration at an initial proper time 7 in the disordered phase we study
the transition to the ordered broken symmetry phase as the system expands and cools. We give
results for the proper time evolution of the effective pion mass, the order parameter (o) as well
as for the pion two point correlation function. We study the phase space of initial conditions that
lead to instabilities (exponentially growing long wavelength modes) which can lead to disoriented
chiral condensates. We find that as a consequence of the strong self-coupling instabilities can exist
for proper times that are at most 3 fm/c and lead to condensate regions that do not contain large
numbers of particles.

PACS number(s): 11.30.@c, 05.70.ph, 12.38.Mh, 25.75.+r

I. INTRODUCTION

In recent years there have been numerous investiga-
tions concerning the possibility of forming large corre-
lated regions of misaligned vacuum during highly ener-
getic collisions [1—3]. Those regions, in which the quark
condensate (q; qs) is nonzero but points along the wrong
direction in isospin space, have been named disoriented
chiral condensates (DCC's). If large DCC's are indeed
formed, they would produce spectacular events in which
one could observe strong correlations between the emit-
ted pions. In fact, the original idea of DCC s was in-
vented [1] to explain rare events observed in cosmic ray
experiments [4]: the Centauro events, where there is a
deficit of neutral pions. In this approach the explana-
tion of the deficit would be the result of the decay of
domains in which the condensate has a vanishing com-
ponent in the 7r direction. Anti-Centauro events (whose
experimental status is still uncertain), where the emission
would be predominantly neutral, would be explained as
coming from regions in which the condensate points along
the vr direction.

If these events are a result of the creation of DCC's,
this would be direct evidence for the existence of a chiral
phase transition in the plasma formed following an ul-
trarelativistic collision and would allow us to explore the
physics of the chiral phase transition. The possibility
of producing DCC s in high energy collisions has origi-
nated several experimental proposals [2, 5] and a num-
ber of theoretical papers [6—13]. It has been recognized
that the possibility of forming large regions of DCC relies
on the existence of a substantially large regime in which
the hot plasma formed after the collision evolves out of
equilibrium [3]. In fact, if thermal equilibrium is approx-
imately preserved by the dynamics, the typical correla-
tion length would be determined by the pion mass and
therefore would be too small to matter. For this reason,
there have been a number of authors making different

attempts to analyze the nonequilibrium aspects of the
dynamics of the chiral phase transition. These attempts
vary in form and content: some authors performed nu-
merical simulations on classical models [3, 10, 11],others
used phenomenological terms, inspired in classical kinetic
theory, to model the interaction between the condensate
and the quasiparticles [12], while some attempted to in-
corporate quantum and thermal fluctuations [7, 13] into
the theoretical framework.

There are clearly two important questions that any
theoretical model should answer. The first one is to de-
termine whether during the evolution that follows the
collision there are instabilities affecting the fluctuations.
If this happens, then there is a chance for the correlations
to grow through a process such as spinodal decomposi-
tion. If it does not, then the typical length scale of the
problem, the pion Compton wavelength, will be the only
correlation length to be imprinted on the final state pions,
and no large DCC signal can be expected. If instabili-
ties do occur the second important question is whether
the size of correlated domains can grow large enough for
many correlated pions to be emitted from each domain.

Without a great deal of detailed calculation it should
be clear from the outset that the answer to both of these
questions will be dependent on the assumptions one is
willing to make about the initial state of the plasma im-
mediately after the collision, as well as its detailed evo-
lution afterwards. For example, the typical way to in-
troduce instability into the problem has been by making
a rapid "quench. " In a quench, the hot plasma created
after the collision is subject to a sudden external action
(the expansion) that is assumed to modify the effective
potential, turning it "upside down, " without changing
the instantaneous state of the system. This is clearly an
idealization which is appropriate only if the expansion
is much more rapid than the typical interaction time in
the plasma. Now, the time scale for interactions and
instabilities in the plasma is determined by the inter-
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action strength and cross sections. Using the linear o
model as the effective field theory to describe the chi-
ral phase transition, the quartic coupling must be rather
large (A —10) in order to model low energy 7r-vr scatter-
ing data, even approximately. In this moderately strong
coupling regime interaction time scales are not long com-
pared to the plasma expansion time scale, and instabili-
ties exist only for short periods of proper time as we shall
see below. This makes it difIicult to obtain large sizes for
the correlated domains. In this regard it is important to
realize that intuitions developed in cosmological phase
transitions, where the coupling is extremely weak, may
not apply at all. In a weakly coupled system the domains
can grow for long periods of time, and a totally different
picture can emerge. Instabilities and domain growth for
week coupling were studied in Refs. [3, 14, 15].

In this paper our aim is to study the evolution of DCC's
without imposing the quench approximation or any other
ad hoc way of forcing the appearance of an instability. In-
stead, we shall specify initial conditions for the evolution
in the symmetric phase (where all particle masses are
positive) by choosing a thermal distribution of particles
above the critical temperature. This initial condition is
not necessary, but is one way of ensuring that the initial
system is in the disordered phase, and parametrizing the
initial state with a single parameter, the temperature.
More complicated initial conditions may be studied as
well. Then, we model the cooling of the plasma by the
boost invariant kinematics appropriate for the central ra-
pidity region of an ultrarelativistic heavy-ion collision as
introduced originally by Landau, and discussed exten-
sively by Bjorken [16]. This picture is consistent with
various hydrodynamic approaches to hadronic as well as
heavy-ion collisions. Boost invariance is equivalent to the
assumption of Bat rapidity distributions and implies that
mean field expectation values should depend only on the
fluid proper time r = v t2 —x2, where x is the distance
along the collision axis in the center of mass frame. Then
the system expands and cools as proper time evolves,
which leads automatically to an axially symmetric (not
radially symmetric) form of the "baked alaska" scenario
described by several authors [2, 3]. Whether or not insta-
bilities develop becomes a dynamical problem which may
be studied numerically by solving the updated equations
for the quantum modes as well as for the proper time
evolving expectation values. The technical means of in-
corporating thermal and nonequilibrium quantum effects
into the evolution problem is the large N expansion. The
lowest order in the large N approximation is related to
the Hartree approximation and has been widely discussed
in the literature [18] and [19]. How to calculate system-
atic corrections to the lowest order results is discussed in
detail in a recent publication [17].

In this way, we are able to study the evolution of the
plasma in a self-consistent way without imposing any in-
stability by hand. We analyze various reasonable initial
conditions on the fields and determine whether they lead
to instabilities by examining the effective pion mass as a
function of proper time w. When the effective pion mass
becomes negative instabilities ensue. We also determine
the time evolving order parameter (cr) and the adiabatic

phase space number density and pair density which de-
termine the spatial correlation function for the pion field.
These number densities are related to physical measur-
ables (such as the rapidity distribution of final particles)
at later times. The initial conditions which lead to the
largest instabilities have initial velocities in either the 0.

or vr directions. We compare the nonequilibrium results
for the number density with those that would have re-
sulted from an expansion with local thermal equilibrium
in the comoving frame. When instabilities arise the dis-
tributions tend to narrow in momentum space, especially
in the transverse direction.

In the investigations done so far, simple phenomeno-
logical models have been used hoping that they describe
the fundamental physics involved in the dynamics of the
phase transition. We will employ the linear o model,
the most popular one in this context, which seems to
have the essential attributes of being simple but realistic
enough: it appropriately describes the low energy phe-
nomenology of pions and has also the correct chiral sym-
metry properties. The initial conditions we will impose
are motivated by matching it to the situation one expects
to attain in a highly energetic collision. We will assume
that the quantum state of the system is a thermal density
matrix at an initial instant of proper time 70. We will
choose the initial temperature T to be slightly above the
critical temperature for being in the disordered phase.
As shown in the Appendix the critical temperature is
given by T, = 3f We wil. l choose the parameters of
the model to give reasonable values for three experimen-
tally determined quantities: the mass of the pion m, the
pion decay constant f, and the s wave 7r-vr phase shifts
above threshold. These three measurements completely
determine the parameters of the model.

One important constraint on the linear o model is its
triviality as the cutoff is removed. The theory only makes
sense at cutoffs below the Landau pole which occurs at a
value of the cutoff A when the bare coupling constant first
becomes negative for positive renormalized coupling con-
stant. This limits the size of the renormalized coupling
constant. The maximum renormalized coupling constant
as a function of A obeys, for large A,

27r2pmax
ln(2 )

Since the mass difference between the o. and vr is directly
proportional to A„, this leads to an upper bound for the
the mass of the o resonance as a function of A. There-
fore, unlike at tree level, the mass of the o. in the fully
quantized theory is constrained in this model. A is also
constrained from the physical consideration that we want
the mass of the o to be less than the cutoff. However,
the mass of the o resonance increases as we decrease the
cutofF since then the renormalized coupling increases.

The rest of the paper is organized as follows. In Sec. II
we describe the linear 0 model in the leading order in the
1/N expansion. In Sec. III we discuss the baked alaska
scenario, and we derive renormalized update equations
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for the proper time evolution of the Beld theory. In Sec.
IV we describe the initial conditions we use to study the
development of disoriented chiral condensates. In Sec. V
we discuss the results of extensive numerical simulations.
In the Appendix we present the properties of the linear
o. model in the large N approximation, for completeness.

II. MODEL AND APPROXIMATIONS

We will use the O(4) linear 0 inodel to describe-the
evolution of the pions. We are well aware of the limita-
tions of this approach, which provides a reasonable phe-
nomenological model only for a limited range of energies
(typically smaller than 1 GeV). In spite of its shortcom-
ings, this model captures some of the essential physics in-
volved in the dynamics of the phase transition that may
produce disoriented chiral condensates. In particular the
chiral phase transition takes place at a reasonable tem-
perature (T, = ~3f ), and the low energy m-vr scattering
amplitudes are reasonable in this model. The mesons are
organized in an O(4) vector C = (0, 7r), and the action
is (in natural units 5 = c = 1)

d4 g@ g@ p @ C 2 2+ ~
2 4

where we have used the Bjorken and Drell metric:
(1,—1, —1, —1). We will describe the evolution of the
mean value 4 = (4) and the two-point correlation func-
tions including the effects of quantum and. thermal fluctu-
ations. The expectation value of the equations of motion
obtained from (2.1) in a given initial density matrix de-
Bned at 7 = 70, defines the initial value problem for the
correlation function of the quantum problem. Perturba-
tion theory is useless for our purpose [14,19] and a scheme
which is nonperturbative in A must be adopted. In this
context, one approach that allows for a real time anal-
ysis is the Hartree (or Gaussian) ansatz [18]. However
the large N expansion of the O(N) sigma model offers
several advantages [20]. On the one hand, the expansion
is systematic and allows us to study higher order correc-
tions (work is in progress in this direction, and results will
be presented elsewhere [21]). On the other hand, when
using the Hartree ansatz in the context of the study of
DCC's one is forced to take also the large N limit (see
Ref. [13]). This is due to the well-known fact that the
Gaussian approximation violates the Goldstone theorem
giving an unphysical (and not necessarily small) mass to
the pions in the H = 0 limit. Of course, the approxi-
mation we adopt here is not expected to capture all the
features of the phase transition (as is well known, mean
Beld theory fails to predict the correct critical exponents
but allows us to explore the strong coupling regime). Be-
cause of the triviality of the O(N) 0 model as one takes
away the cutofF, an aspect of the exact theory that is pre-
served in the large N approximation, we have to seriously
take into account the cutoff and its ramifications. One
of these ramifications is that the renormalized coupling
constant has a modest upper bound of the order of ten
at a cutoff of one GeV. This gives an upper bound to
the mass of the cr resonance whose value depends on our
choice of cutoff.

The large N efFective equations can be obtained in a
variety of ways, which are extensively discussed in the
literature [20]. A very convenient method is to use an
efFective action, which is a functional of the mean values
of the original fields 4 and of an auxiliary constrained
field y [22]. We start with a classical action S[4,y] con-
structed &om (2.1) by replacing y = A(C' /2N —v ). As
this action is now quadratic in C we can perform the
functional integral over those fields and are left with a
functional integration over y which, to leading order in
1/N, can be calculated by the stationary phase method.
In the Appendix we review the details of this calculation
and calculate all the propagators and the 7t-vr scattering
amplitude in the leading order in the large N expansion.
Higher order corrections can be systematically computed
in this way [22] and an expansion of the effective action
I [4, y] in powers of 1/N can be obtained [20]. We will
consider here only the leading order terms which give the
equations (for notational convenience we drop the over-
bars and denote the expectation values 4 and y)

[ + y(x)]C;(x) = Hb;i, (2.2)

y(x) = A( —v'+ 4'(x) + NG, (x, x)), (2.3)

Gp '(x, y) = i + y(x) b(x —y). (2.4)

The structure of these equations is indeed very simple.
The field y plays the role of the efFective mass for the
mean values 4; and satisfies the "gap equation" (2.3).
The function Gp(x, x) that appears in (2.3) is the coin-
cidence limit of the propagator Gp(x, y) that inverts the
operator Gp defined in (2.4). We can use an auxiliary
quantum field P(x) where (P(x)) = 0 and

Gp(* y) = (Td(x)&(y)).

8;~Gp(x, y) is the pion propagator when (vr, (x)) = 0. The
initial value problem associated with Eqs. (2.2)—(2.4)
will be solved in the next section. Here, we would like to
address the issue of how to use this model to make contact
with the phenomenology we want to describe. Thus, we
must fix the values of the parameters appearing in the
above equations so that they describe low energy pion
physics. The measurable quantities we want to reproduce
are the pion mass m =135 MeV, the pion decay constant
f = 92.5 MeV, as well as the s wave, I = 0 phase shift
in the energy range 300—420 MeV. To fit these physical
quantities we analyze our equations in the "true vacuum"
state (i.e. , in equilibrium at zero temperature). In such
a state the. derivatives of the expectation values vanish,
and we have 4 = (a„,0), y = y„, where rr and y„are
some constants whose values will be determined below.
The physical masses can be related to the parameters
of the theory by computing the inverse propagators of
the pion and sigma fields. The 8-wave phase shifts is
determined from the m-vr scattering amplitude obtained
in this approximation which is given by the exchange of
the composite field y propagator in all three channels.

(2.5)

to determine Gp(x, y). We construct the propagator as
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A complete review of the vacuum and finite temperature
properties of this model in leading order in large N is
found in the Appendix, and we summarize the results
here. The vacuum expectation value of 0. is determined
by f-:

(2.6)

On the other hand, in the vacuum we have m = 0, and the
pion inverse propagator is G, (x, y) = Gp (x, y)b,~.
Therefore, the vacuum expectation value of y is

2 = 2
gV (2.7)

The o mass can be approximately determined in terms
of the inverse 0 propagator as the zero in the real part
of the inverse propagator (a more precise determination
which gives a slightly difFerent result is from the peak in
the I = 0, l = 0 scattering amplitude). This leads to the
equation

m = m +(7 Re[Gpxx(m )], (2.8)

where Go~~ is the composite field propagator in the ab-
sence of symmetry breaking, i.e. ,

G()~x(p ) =
A

+ —Ilb ), (2.9)

and the polarization II = iGo is given by

&(u*) = —~ f (~'vt (x —v') '(& —(&+ &)') (2.io)

and is explicitly given in the Appendix. We use the nota-
tion that [d q] = d q/(2n) . In the absence of symmetry
breaking the composite field propagator is the geometric
sum of the bubble chains. In the presence of symme-
try breakdown one is also summing the graphs where the
bubble is replaced by a single propagator and two tad-
poles (this includes the o exchange graphs). One can de-
termine the bare mass of the pion in terms of the physical
pion mass using the gap equation, since y„= m

m = —Av + Af + ANG()(x, x), (2.ii)
where

A

Gp(x, x) = [d k]
p 2 k2+m2 (2.i2)

This relationship tells us that the bare mass goes to
negative infinity quadratically with the cutoff, as is true
for the exact lattice theory. (That is the reason why in
strong coupling the theory is related to the Ising model).
This relationship also allows us to eliminate the bare
mass from the theory as well as the quadratic depen-
dence on the cutofF. The logarithmic dependence on the
cutoff is removed by coupling constant renormalization.
We obtain a value of the bare coupling A at a fixed cutoff
A (or equivalently the renormalized coupling A„) by com-
paring our large-N result with the Pade fit of Basdevant
and Lee [25] to the I = 0 s wave scattering amplitude-.
This is discussed in detail in the Appendix. Once A is
determined both v and m are fixed. Therefore all the

1 —NA II(0)
(2.i3)

We see that A has a pole when 1 = NA„II(0). At large
values of the cutoff this Landau pole occurs when

8'
ln(2A/m„) =

NA„
(2 14)

For fixed A„we notice that for values of the cutoff larger
than that given by (2.14), the bare coupling becomes neg-
ative which makes the theory undefinable as a Euclidean

bare parameters of this theory are fitted in terms of the
three experiments which determine m, f, and A. The
external field H is determined from the equilibrium time-
independent solution to the field equation for the 0. Geld:
y(r = m f = H. Our numerical simulations automat-
ically have a cutoff since we are performing numerical
simulations in a box. Thus one can use either the bare or
renormalized parameters to describe the problem. The
renormalized parameters, however, are determined from
physical measurements and are more fundamental. How-
ever since the 0 model is not an asymptotically free field
theory, it is a trivial theory when we take the cutofF away.
Thus one is not allowed to take the continuum limit and
must consider the theory as an effective Geld theory which
is not valid for energies in excess of a few GeV's. Our
model is a theory which makes physical sense (such as
having a well-deffned ground state) only with a physical
cutoff A„(see [23, 24] for discussions on C) as a cutoff
theory). On physical grounds we want 2m ( m ( A.
This relation is quite a constraint on A since when we
lower A we increase the value of the mass of the 0. We
certainly do not expect the theory to be valid for energies
above 1 GeV since in that regime the correct dynamics
is described by QCD. In fact if we raise A above 1 GeV,
the maximum value of the renormalized coupling goes
down and the o mass becomes unacceptably low. Rea-
sonable values for the mass of the 0 constrain A to be
in the range 0.7 GeV ( A & 1 GeV. In that range the
best value of the renormalized coupling A„ is between 7
and 10. For this range of values for A„ this model agrees
qualitatively with low energy scattering data. With this
choice of parameters, it is difIicult to obtain values of the
tY mass higher than 450 MeV. Based on the perturbative
calculations of Basdevant and Lee [25] which were then
subjected to a Pade improvement, and the connection be-
tween 1/N expansions and resummations we expect that
at next order in 1/N this upper bound on the (r mass
will be raised slightly.

As will be clear from our discussion below, when solv-
ing the equations we can use a difFerent value of the cut-
off provided we scale the bare couplings appropriately
(so that we keep the physical quantities unchanged). As
the theory we are using is renormalizable, this scaling is
well defined and known. However, the cutoff cannot be
taken too large since the theory only makes sense for pos-
itive values of the bare coupling. This is the Landau pole
problem and is related to the triviality of the theory [27,
28]. As is discussed in detail in the Appendix, the bare
and renormalized couplings are related by the equation
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lattice Geld theory. This relationship also means that at a
Gxed cutoff, there is a maximum A„ that we can consider.
That is the inverse relationship

1+NAII(0)
(2.15)

The maximum of A„ is reached at infinite A and one ob-
tains

pmax
%II(0)

(2.16)

III. COOLING BY EXPANSION
AND BAKED ALASKA SCENARIO

A. The basic idea

To analyze the possibility of forming DCC's we should
take into account the specific features characterizing the
situation after a highly energetic heavy-ion collision. Ex-
perimentally, a flat plateau in the distribution of pro-
duced particles per unit rapidity is observed in the cen-
tral rapidity region (these results are obtained in p-p and
other collisions). This suggests the existence of an ap-
proximate Lorentz boost invariance. Thus, the simplest
picture of a collision, due to Landau [30], is one in which
the excited nuclei are highly contracted pancakes reced-
ing away Rom the collision point at approximately the
speed of light. The boost invariance implies that the
evolution of the "hot plasma" that is left in between the
nuclei looks the same when viewed from different inertial
&ames. Of course, this is an approximate picture that
is not valid for large values of the spatial rapidity and
for transverse distances of the order of the nucleus size.
The existence of this approximate symmetry can be used
to make a very simple hydrodynamical model [16] that,
in some cases, may describe the evolution of the plasma.
It is worth reviewing very briefly these ideas. First, one
should recognize that the natural coordinates to make
a boost invariant model are the proper time w and the
spatial rapidity g defined as

(t2 2) 1/2 (t —x)
g = —ln

2 (t+x) (3 1)

The observed symmetry will be respected by the model

For a cutofF of 1 GeV the maximum A„ is 13.
As a final comment we would like to point out that the

effective action method we employed can also be used
to compute higher order corrections in I/K. In that
case it is necessary to use a formalism that enables us
to derive real and causal equations for the expectation
values (otherwise one cannot even pose the initial value
problem). This formalism is known as the "closed time
path" method developed by Schwinger, Mahanthappa,
and Keldysh [29]. The analysis of the I/N corrections
obtained using this approach (that carry the efFects of
the collisions that may produce relaxation towards equi-
librium) will be analyzed elsewhere [21] (see also Refs.
[7, 14, 20] for recent applications of this formalism in the
DCC and other related contexts).

if one imposes initial values on a w =const hypersurface
(and not at constant laboratory time t).

If we had local thermodynamic equilibrium during the
expansion so that the relaxation rate is faster than the
expansion rate and assumed that we could approximate
the field theory dynamics with a hydrodynamic flow, one
would find by solving the hydrodynamical equations with
this type of initial conditions (homogeneity along the con-
stant r surface) that the energy density drops as w

Here o. = 1+ co where co is the speed of sound, which
depends on the equation of state of the fluid p = co@. In
the ultrarelativistic case co = 1/3 and the temperature
falls as r / . Of course, with an effective field theory
of the O(4) 0 model one replaces these hydrodynamical
ansatze with the evolution Eqs. (2.2)—(2.4) instead.

According to this simple model of a collision, the
plasma evolves in a highly inhomogeneous way when
viewed &om the laboratory frame. In fact, analyzing a
constant t surface we realize that the Geld configurations
strongly depend on the spatial coordinate x. Near the
light cone ~x~ = t the system is "hot" (corresponding to
small values of the proper time w). On the contrary, for
small values of x (that correspond to larger values of 7 )
the system is "colder. " This type of configuration, hot
on the outside and cold on the inside, is schematically
known as baked alaska.

In this paper we want to study the formation of DCC's
using some of the ideas presented above. We mill not as-
sume a quasiequilibrium situation or use a phenomeno-
logical hydrodynamical (or kinetic) model to describe the
evolution of our system. On the contrary, we will study
the nonequilibrium evolution in its full glory and solve
Eqs. (2.2)—(2.4), which include thermal and quantum ef-
fects. Using the coordinates (3.1) and fixing boost invari-
ant initial conditions at an initial proper time wo (whose
numerical value we discuss below) we introduce the ex-
pansion and "cooling" of the plasma in a natural way.
Therefore, we do not need to introduce any ad hoc cool-
ing mechanism by hand. The cooling, if any, will appear
as a result of the evolution, which is fully out of equilib-
rium. In this way, we can really test the validity of the
"quenching" approximation that has been almost univer-
sally used when analyzing the evolution of DCC's.

B. The equations

Our treatment is very similar to the one required to
study quantum field theory in a curved spacetime [31].
Thus, in the coordinates (3.1) Minkowski's arc element
is

d8 = dw —w dg —dx~, (3.2)

which has the same form of a Kasner universe (an
anisotropically expanding universe, which in this case is
nevertheless flat, see [31]). To study the evolution of the
mean fields and correlations in this coordinates our first
task is to rewrite Eqs. (2.2)—(2.4) using the new variables.
Assuming that the mean values 4 and y are functions of
w only (homogeneity in the constant r hypersurface) we
have
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'r B~ 're. 4'q (T) + g(r) 4 ~ (T) = II8qi )

X(~) = &( —~'+ C", (r) + &(&'(z ~))) (3.4)

(r 8 r0 —r 0„—B~ + y(z))P(z, ~) = 0. (3.5)

where the quantum field P(z, r) satisfies the Klein-
Gordon equation

1
k p ~0 )0 L 1

(3.i2)

where Pp —— 1/Tp, E& ——gk2(wp) + y(rp), and k2
k2/r2 + k~2.

We can also use a time-dependent set of creation and
annihilation operators to describe the quantum field P.
If we use the first order adiabatic mode function,

The quantum field P(z, r) defined here is an auxiliary
field which allows us to calculate the Wightman function
Gp(z, y) by taking the expectation value:

0
—iyk (7-)

dye/dr = 4/A, ,
2cdy

(3.13)

Gp(z y''r) = (~(z ~) ~(»~)). (3.6)

(3.7)

where k x—:kprI+ k~x~, [d k]—:dkzd k~/(27r) and
the mode functions fI, (w) evolve according to (an overdot
here denotes the derivative with respect to the proper
time r)

(3.8)

When the expectation value of the pion field is zero, then
this field corresponds to one component of the pion field.

As usual, we expand this field in an orthonormal basis:

1
P(q, z~, ~) —= , [d k](exp(ik x)fg(r) aA, +H.c.)7-' ' (3.14)

We can now define the first order adiabatic interpolating
number and pair distribution functions via

nI (~) —= ( k( )ai( ))»(r) = (ai( )ai( )). (3.i5)

The time-dependent creation and annihilation opera-
tors satisfy

(3.i6)

k +1/4 - 1/2
where wi, (w) = ", + k& + y(w) . Then if we ex-

pand the field in terms of these mode functions we have

1
p(rl, z~, r) =, , [d k] exp(ikx) f„(7.) ag (7.) + H.c. .7' '

For the creation and annihilation operators to obey the

usual canonical commutation relations [ag, a&] = 1, then
the mode functions must satisfy the Wronskian condition

in order that the usual canonical commutation relations
hold. Then we can rewrite the Green's function G in
the two bases

ff* —f*f = i.

The expectation value (P (z, r)) can be expressed in
terms of the mode functions fI, and of the distribution
functions or

1 1

7 2~A,. (~)
(1+2 ni, (7-)

+2Re[gi, (7-)e *'""l l]) (3.i7)

nI,
—= (a„ai.), gg

—= (aA, ai, ),

x(1+2 n„) l.i (3.1o)

We assume the initial density matrix is one of lo-
cal thermal equilibrium in the comoving frame. In the
comoving frame, the expectation value of the energy-
momentum tensor is diagonal and of the form

diag(e, p, p, p). (3.1i)

We then have at r = 7p (the surface of constant energy
density and temperature Tp) that

which entirely characterize the initial state of the quan-
tum field. For simplicity, we will assume that the initial
state is described by a density matrix. which is diagonal
in the number basis (like a thermal state). In such case,
the only nonvanishing distribution is nk. Thus, replacing
the above expressions in (3.4) we have

G'(* y r) = — [d'kl""' "' ii+2 n~(0)] lf~(r)l'
1

7

(3.18)

The w-dependent variables n and g now have the phys-
ical interpretation as the interpolating phase space num-
ber and pair density for the case when (7r, ) = 0. These
operators agree with the time-independent number and
pair densities defined by (3.9) at rp, and in the out regime
become the physically measurable number and pair den-
sities. For (n, ) g 0 the actual pion two-point function is
more complicated than G, and this is only one piece of
that Green's function. Of course in the vacuum isospin
conservation requires (7r, ) = 0, so that once we are ap-
proaching the final true vacuum state during the cooling
process, one can use these interpolating number and pair
operators to describe the physics of the problem. Also
note that during the instability phase, wk can become
negative, and for those modes the adiabatic basis does
not exist because the Wronskian condition for the mode
functions is no longer satisfied.

The two sets of creation and annihilation operators are
connected by a Bogoliubov transformation:
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(3.19)

n and P can be determined from the exact time evolving
mode functions via

bare mass Av and the logarithmic ones in the coupling
constant A. After a few simple manipulations [that in-
volve adding and subtracting the appropriate terms in
(3.10)] we can write the equation for y as

(3.20)

(3.21)
0

In terms of the initial distribution of particles nA, (rp)
nI, and the Bogoliubov coefficients n and P we have

x I, w 1+2nA.,

NA„3 1
[d'k] — n)„

ro Z ~A,, (rp)
(3.27)

~(r) = ~(«) + —"(4",(r) —C", (»)) + " [d'k]
Z 7.Z

1

2Idk (7') )

nA, (r) = ng+ lp(k, r)l (1+2nq),

gA, (r) = n(k, r)p(k, r)(1 + 2ny).

C. Initial conditions and renormalization

(3.22)

(3.23)
%=A„/Z, Z=1 —A„bA, bA—:—N

4w

where u~ (r) = [k„/r +k&+ y(ro)] ~~2 and the renormal-
ized coupling A„and Z are defined as

(3.24)

where A)I, (r) = [k„/r + k& + y(r)] ) . We will fix
these initial conditions for the normal modes, which
are normalized according to the Wronskian condition
f*f —f*f = i. The distribution n), will be taken as
thermal, characterized by a temperature T:

exp (~A, (rp)/k~T) —I] (3.25)

and gk = 0.
The existence of ultraviolet divergences is not a very

delicate issue here since we are dealing with a theory that
has a natural cutoff. However, it is worth mentioning
how the removal of divergences can be implemented. For
the initial conditions (3.24), the divergences in (P (2:,r))
can be shown to be the same ones obtained in the lowest
order adiabatic approximation: i.e. ,

(0*(* ~))a- = —f )~'~l, (3.26)

Introducing a cutofF at the physical momenta k~/r and
k~, we can easily see that the above integral has both
quadratic and logarithmic divergences. To renormalize
the theory we absorb the quadratic divergences in the

We desire to solve Eqs. (3.3), (3.8), and (3.10) as an
initial value problem. To do this we need to give Cauchy
data (the function and its derivatives) for the mean values
C), (r), C), (r), and for the mode functions f), (r). This,
together with the distribution function ng and gI, at 70,
fully defines the problem. Notice that the initial value
of y(r) is determined self-consistently by solving the gap
equation (3.10) at the initial time rp.

The quantum state is fully determined by the distribu-
tion nI„gA, and by the initial data fk(rp) fy( )r.oThese
data fix the vacuum state upon which the Fock space is
built. If we choose the initial data fg(rp) and fk(rp)
so that the vacuum state coincides with the ordinary
Minkowski vacuum for high momentum, then we have
the "zero order adiabatic" vacuum described by

1
fa( o) =

2~), (rp)
'

(. ~„(ro) )

2&A, (7p) )

(3.28)

The initial value y(rp) comes from solving the gap
equation (3.10) at the initial time. As we discussed ear-
lier it is useful to rewrite Eq. (3.28) in order to discuss
triviality. Namely we have the inverse equation

A„= A

1+bA A
(3.29)

The result is that at a fixed value of A there is a max-
imum renormalized coupling which decreases with the
logarithm of the cutoff. As we take the cutofF away, the
renormalized coupling constant goes to zero, signifying
the triviality of the theory as we remove the cutoff as
first discussed by Baker and Kincaid [27] and Bender et
al. [28].

To make our presentation more clear it may be useful
to put together the set of equations we will solve. They
are

C'q(r) + r C'q(r) + g(r) 4'q(r) = II8q) q (3.30)

g(r) = g(rp) + —(4z (r) —4z (rp) ) + [a k]
Z ~Z

1

22„(v) )x I v. 1+2nI,

[d'k] n)„
rp Z cup («)

(3.31)

f&+ —"+k~+ y(r) + f~ = 0.
7-2 4r j

(3.32)

It is worth noticing that in these equations the "bare
parameters" A and v do not appear. Thus, the equations
are entirely written in terms of renormalized quantities
A„and yo. The value of yo is obtained from the gap
equation (with the same cutofF in all the integrals). Once
this is done, the value of the cutoff can be changed at will
in (3.31) (provided we do not cross the Landau pole).

For future use, it is convenient to compute the initial
value of y, which is determined by Eq. (3.31). It simply
reads
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= 2A„4;(rp)4;(rp)

]dk] ] ] (1—
7p ~I 7p

(3.33)

From here we can see that y(rp) has two contributions.
The first term in the rhs of (3.33) carries the contribution
of the mean values: as expected, y(rp) is sensitive to the
existence of initial velocities. The second term, which is
always negative, arises from the finite temperature part
of the initial state. It clearly shows how the expansion
tends to reduce the initial value of y.

It is instructive at this point to look at the simpler
equations that arise in flat space for a spatially homoge-
neous expansion. In that case we have

@'(t) + (t) C"(t) = H~' (3.34)

y(t) = —Av'+A@,'(t)+1VA [d'k]
~
fq(t) ~'(1+2 nq),

(3.35)

We also have the vacuum relations

m' = —Av* d- A f + NA f ]d k] 2/k'+ m' '

(3.36)

(3.37)

which yields

y(t) =m +AC, (t) —Af

[d'k] ~y„(t)~'(1+ 2 n„)—
2+k2+ m2

(3.38)

These equations govern the growth of instabilities. We
see that there are unstable modes fl, whenever k + y is
negative so that only the long wavelength modes can go
unstable. If we ignore the quantum fluctuation contribu-
tion, y can go negative only when

m' + Al,'(t) —Af' & 0, (3.39)

so that the most unstable case has 4 = 0. One also has
that the bare coupling must satisfy

2
7C (3.4o)

for there to be any instabilities. (Growth of instabilities
has also been discussed in Refs. [3, 10, 13—15].) An im-
portant point, usually neglected is that once instabilities
grow, then they cause exponential growth of the modes
in the mode sum which contributes a positive quantity to
the equation for y. Thus the stronger the coupling, the
quicker y returns to a positive value, and the instability
tends to shut itself ofF rather quickly. The stronger the
self-coupling, the more quickly this occurs. In determin-

ing the parameters of our efFective Geld theory we found
that we are in the strong coupling regime (A, )) 1 Thus
we have the situation where any instabilities are quickly
suppressed. This is not true at weak coupling such as
found in the early Universe problems. In our approxima-
tion, we found that because of the triviality constraint
the renormalized coupling constant is constrained to be
less than or equal to about 10 is we use A = 1 GeV. We
merely comment here that if we were able to consider
higher values of A„ then the relaxation of instabilities
would be even faster and this would only dampen the
possibility of producing disoriented chiral condensates.

IV. INITIAL CONDITIONS) CORRELATIONS)
AND DOMAINS

A. Reasonable initial conditions

How can we study the possibility of forming large do-
mains in which the pion field is disoriented? As we de-
scribed above, the picture we have in mind is the follow-
ing: After the collision, a "baked-alaska"-type conGgura-
tion is formed. When viewed in the natural "boost invari-
ant" coordinate system this conGguration is described as
a state characterized by homogeneous mean values 4, (r)
and by quantum and thermal fluctuations. The quantum
state after the collision is clearly unknown, and we will be
forced to assume reasonable initial values for the parame-
ters consistent with being near local thermal equilibrium
in a disordered phase at a time wp following the collision.
Ideally we would like to be able to study the growth of
inhomogeneous instabilities in real space and time. How-
ever to simplify our calculation we are assuming that the
system evolves such that all expectation values just de-
pend on the proper time. This rules out a detailed study
of domain growth, and we have to obtain information
about the growth of domains indirectly from the quan-
tum correlation functions. These are parametrized by
the proper time evolving interpolating phase space num-
ber and pair densities. We will study the evolution of
difFerent reasonable initial states constrained to have ex-
pectation values which depend only on the proper time
~, focusing on the possibility of the development of in-
stabilities and on the potential growth of long range cor-
relations. The question is how to choose the initial con-
ditions defining a "peculiar, " but not entirely unrealistic
initial state? Without any rigorous justiGcation, we will
assume an initial state that is a disoriented (or displaced)
thermal state. Let us describe it in more detail.

I et us forget for the moment about the expansion and
consider a much simpler situation: thermal equilibrium
at temperature T. This is characterized by a value of
y = y~ and by mean Gelds vr = m~ = 0, 0 = 0~ ——

H/yr. The value of y~, which is obtained by solving
the gap equation given in the Appendix, is positive and
fixes the "effective mass" of the quasiparticles (at very
high temperatures we have yz oc A, T and oz oc H/T,
i.e. , the explicitly broken symmetry is restored at high
temperatures) .

In choosing an initial state to model the situation af-
ter the collision, it is reasonable to assume the conditions
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of local thermal equilibrium above the critical tempera-
ture so that we start in the disordered phase where the
chiral symmetry is unbroken. In particular, we can sim-
ply take the initial values cr(ro) = O'7, m(wo) = vrT, and
y(ro) = yT and turn on the expansion at vo (the results
of this simulation will be explained in detail later). One
should also consider the possibility of exciting the initial
state with some extra kinetic energy. For this we should
consider an initial distribution of velocities o(ro) that
kick the initial mean values making it change in time (it
is worth noticing that the expansion destroys the initial
equilibrium and the fields start to change even without
any kick). Other initial conditions we will consider are
those in which the initial state is a "disoriented" equilib-
rium where 7r (ro) + 0 (wo) = cr& + mT2 but the state is
pointing in the wrong direction (say, along m ). In fact,
the formation of such disoriented state is not at all un-
likely: simple estimates show that the energy required
to "tilt" the initial state orienting it along the vr direc-
tion (instead of the 0 direction) is only 10 MeV/fm [5].
Another possibility is to change the initial value of the
magnitude of the O(4) vector making it difFerent from
its high temperature equilibrium one. For all the above
cases, the initial value of y will always be determined by
the solution of the initial gap equation (the same for its
initial derivative) evaluated for an equilibrium configura-
tion at a temperature To.

However, we should point out that the initial value of
y will always be restricted to be positive. As we said,
y(w) is the efFective mass of the quasiparticles. There-
fore, taking a negative initial value for y implies that we
are "turning the effective potential upside down. " In our
view, this cannot be the consequence of forming a "pecu-
liar" initial state but must rather be the consequence of
the cooling mechanism, which is entirely produced by the
expansion. In fact, starting with a negative yo is what
is done when studying this problem by using the quench
approximation: one starts with a hot initial state and
lets it evolve in the low temperature effective potential.
The quench approximation was studied in detail in [13].
It should be clear by now that this is drastically differ-
ent from our approach. We will study the self-consistent
evolution of y starting from a "hot" initial value and fol-
low its evolution. What we find is that for some of our
initial conditions which lead to quenching we get similar
results to the above-mentioned authors who imposed this
behavior by hand.

B. Instabilities and eerrelatians

During the nonequilibrium evolution it is possible that,
for certain time intervals, the value of y(r) becomes neg-
ative (we will discuss some examples below). When this
happens there is an instability in the system. As is clear
from (3.32), if y ( 0 there are long wavelength modes
that become unstable: their amplitudes start growing
exponentially (the factor I/4w very soon becomes negli-
gible). The existence of such unstable modes is the cru-
cial ingredient needed for the development of structure
through the mechanism of spinodal decomposition. Let
us briefly describe now how we will study this issue here.

The intuitive picture is clear: the system cools as it ex-
pands evolving (in a fully nonequilibrium way) towards a
stable low temperature state. In our case, such state (the
vacuum) is characterized by the values m = 0, o = f,
and y = m . The existence of an instability means that
the homogeneous configuration is not energetically pre-
ferred and that any small inhomogeneity seed will tend
to grow. As the O(4) symmetry is explicitly broken, the
growth of structure is only transient since in the long
run the stable state is again the homogeneous vacuum.
The question one should try to answer is if during the
nonequilibrium stage the instability is strong enough to
form large domains in which the field is correlated and
disoriented. If such domains do form, the correlations
in the emitted pions can be detected. We should then
examine the evolution of the correlation length (in the
rapidity space).

A natural question that arises is how can one study the
existence of long range correlations within our scheme,
which is basically a mean field theory analysis. The text-
book answer to this is that mean field theory can still be
used to provide useful information about the typical scale
of the correlations despite of the fact that the mean values
are taken as homogeneous [32]. In fact, this analysis en-

ables us to compute the two-point correlation functions
which determine the behavior of the system when per-
turbed away from its homogeneous configuration. Thus,
the correlation length obtained from the two-point func-
tions will characterize the growth of structure, at least
in the linear regime. This point of view was used in [14,
19]). Our feeling, however, is that it is not so easy to
interpret directly the two-point correlation function. In
the Grst order adiabatic basis we have

1
G (~, y;~) = — [d k]e'"~ " (1+ 2 ng(v)

2ld g (7')

+ 2Re[gI, (7-)e ' "" ]). (4.1)

(4.2)

where /3(w) = 1/T(r) and EI, (7') = gk2 + y(w).
The effective temperature could be calculated by Grst

determining the hydrodynamical quantities e(7 ) and p(r)
from the diagonal entries of the expectation value of the
energy momentum tensor in the comoving frame as dis-
cussed in [33]. Then one determines the temperature
(and entropy) from the relations e + p = Ts; de = Tds.

We notice that this parametrization fails exactly when

We see that there are phases in the fourier transform
G(k, 7) between the number density nI„.(7) and the pair
density gA, (r) which can make the interpretation di%cult.
These interpolating operators only make physical sense
when (m) = 0 and for the stable modes. So at best we

can look at the two quantities nI, and. gA. and study their
momentum dependence. If we have a particular model
for these quantities which have proper time-dependent
masses as well as temperatures then can one extract cor-
relation lengths (or mass scales) in a model-dependent
fashion. For example if the system expanded in local
thermal equilibrium in a comoving frame we would have
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the pion mass goes negative which is the case we want to
study. Also from our previous study of the production
of pairs from strong electric fields in a related 1./N ex-
pansion [33], we know that the effective temperature in
lowest order is not monotonically decreasing but is oscil-
lating about a decreasing function with the plasma os-
cillation frequency. Thus until we add scattering (which
occurs at next order in the 1/N expansion), the tempera-
ture parameter does not have this monotonicity property.
At late times one expects after a period of entropy pro-
duction that s7 = const and Z(v) = To( ') / —as in the
thermal equilibrium case. This is obviously one possible
parametrization of the data in terms of two w-dependent
inverse length scales, the temperature and the mass of
the pion. As we shall discover, this parametrization of
the number density does not agree with our nonequilib-
rium evolution so that there are at least three proper
time evolving length scales in this problem the inverse
mass of the pion, the inverse of the efFective temperature,
and possible length scales describing domain growth. In
what follows we will present our results for these two
interpolating densities to see their general proper time
development without making specific models in terms of
various length scales except for the quasithermal model
which does not reproduce the results.

The computation of the pion two-point function in gen-
eral is straightforward. The two-point function is ob-
tained by inverting the inverse propagator matrix as dis-
cussed in the Appendix. In general we get for the inverse
of the pion two-point function:

—7r;(x)Go„(x —y)7r. (y).

We see that only when m;(x) = 0 can one obtain the
Careen's function directly in terms of the modes used to
calculate the quantum field P. Also only in that case
do we get a direct interpretation of the Fourier trans-
form of the Green's function in terms of the (proper)
time-dependent interpolating phase space number and
pair densities described above. As discussed earlier it is
simple to extract n and g from the solution f of the mode
equation.

Although the equal proper time correlation function
depends only on the time-dependent number and pair
densities, the full nonequal time correlation function has
more phase information and is given by (when (n) = 0)
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FIG. 1. Proper time evolution of the y field for four different initial conditions with f = 92.5 MeV.
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X {(I+ 2 nA, )Re[f& (7.) f~ (~')]

+2R [g f ( )f ( ')]) (44)

where here n, g refer to their value at 7p.
The only thing left to discuss is the choice of initial

proper time w. One can estimate this quantity in a hy-
drodynamical model with Landau s choice of initial con-
ditions (namely energy density of a Lorentz contracted
pancake being given at an time zero). If one assumes
that the collision produces a quark-gluon plasma in equi-
librium, one can run the hydrodynamical code for initial
energy densities appropriate to the collision of Lorentz
contracted disks and determine the proper time when
the critical temperature is around 200 MeV or slightly
above the chiral phase transition. We want to start in the
quark-gluon plasma phase above the chiral phase transi-
tion which places constraints on the initial energy density
present at 7p. We then assume that slightly above this
transition it is reasonable to model the chiral transition
with the effective Lagrangian of the o model. Not know-

ing exactly what this proper time is, we will here consider
reasonable initial proper times (1 fm/c ( wo ( 4 fm/c)
and study the efFect of the initial proper time v. on the
production of instabilities. Taking larger proper times as
the starting point for our calculation reduces even further
the possibility of instability growth so that our results
present an upper limit on the growth of domain sizes in
this model.

V. RESULTS

We have performed numerical simulations on the con-
nection machine CM-5 using a grid that has 10 0007
modes. (We start at To = 1.) The grid is 100 modes
wide in the transverse direction and 100—modes in the

TQ

g direction. That is we choose

A
dkg ——

100
dk„A
Ifm 100

The first issue we will examine here is the existence of
instabilities. In previous works the presence of unstable
modes was assumed by imposing the quench approxima-
tion. In our numerical studies we find that, because of
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the strong coupling, that a wide class of initial condi-
tions consistent with reasonable fIuctuations found in a
thermal distribution no instabilities develop. In our sim-
ulations the one thing we did not change was the value of
the composite Geld y which was fixed to be the solution
of the gap equation in the initial thermal state. We also
maintained the constraint that the initial values of the
expectation values of the field, namely vr(rp) and cr(7p)
satisfied the relationship

7r (7-p) + o (rp) = crT,

where o.T is the equilibrium value of 4 at the initial tem-
perature T. This last constraint is reasonable since it
does not cause much energy to make a rotation in the
direction of vr, Thus we chose difI'erent initial o and vr;

consistent with the above constraints and then probed
the efI'ect of diferent initial values for o and v'r, . Since
the results for jr, g 0 were similar to those when o. g 0
we mainly present here the results for the latter case.
We have also surveyed other possibilities that violate the
above constraints such as choosing initial o = 0. In that
case we found no instabilities even with IT g 0.

First, let us consider the case when the initial value
o'(7p) is the thermal equilibrium one corresponding to
a temperature of 200 MeV. We varied the value of the
initial proper time derivative of the o field expectation
value and found that there is a narrow range of initial
values that lead to the growth of instabilities. Namely

0.25 & icri (1.3.

Surprisingly when ~cr~ )'1.3 instabilities no longer occur.
Figures 1 and 2 summarize the results of the numerical

simulation for the evolution of the system (3.30)—(3.32).
We display the auxiliary Geld y in units of fm, the
classical Gelds 4 in units of fm, and the proper time in
units of fm (1 fm = 197 MeV). In Figs. 1 and 2 the
proper time evolutions of the auxiliary field y field are
presented for two different values of f, where the initial
conditions were fixed at 7 = 1. The initial conditions
in all the cases are with the equilibrium value of the y
field at the corresponding initial temperature, where as
the various initial conditions of the classical fields 4 are
chosen to satisfy 7r~(rp) + cr~(rp) = oT~ where crz~ is the
equilibrium value of 4 at the initial temperature T. In
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the case of f = 92.5 MeV we see that the instability lasts
for less than 3 fm. As discussed earlier, the regime of ex-
ponential growth of the unstable modes occurs whenever
y & 0. We notice that when we rotate the expectation
value from the o to the vr direction initially then the
instability regime has the same typical "survival" time.
We also notice that if we choose the time derivative to
be zero and start Rom an equilibrium configuration, then
the expansion alone is insuKcient to generate instabili-
ties. We find that in order to generate instabilities we
require fluctuations in the classical kinetic terms such as
o. or m;, and as discussed earlier these initial conditions
must be in a very narrow range to produce instabilities.
Thus the rapid quench conditions assumed by other au-
thors comprises only a small region of the phase space of
initial fluctuations expected in an initial thermal distri-
bution. As expected, at late proper times, the auxiliary
field approaches its equilibrium value of m,„.For the case
when f = 125 MeV, a value favored by Fitting the low
energy scattering, we see a very similar behavior, show-
ing that our main results concerning the small range of
initial conditions that lead to instabilities are not affected
by a 30/o change in the value of one of our parameters.

A crude estimate for the size of a disoriented chiral
condensate is to multiply a typical survival time length
for the instabilities by the speed of light. If this esti-
mate is valid then the size of these regions are of the
order of a few fm. Of course, one needs to study the
growth of inhomogeneous instabilities to make any defi-
nite statements about this size. We were hoping that the
correlation functions we have calculated could be inter-

preted easily in terms of a length parameter associated
with the size of these regions. However as we will see
below such a naive hope is not to be satisfied. In Fig. 3
we plot the proper time evolution of the classical fields
o and n for the same two choices for f as in Figs. 1
and 2. We see that the o field asymptotes to its vacuum
value f and the m field gradually converges to its equi-
librium value of zero. In Fig. 4 we show the effect of
starting the initial value problem at later times, namely
7 o = 2.5 4 fm and compare them to the case previously
studied with 7O ——1 fm which had a modest region of
instability growth. We see that as we increase 7p we de-
crease the possibility of instability growth, and by these
late times it is not possible to produce instabilities even
with kinetic energy fluctuations. In Fig. 5 we study
the effect of the initial temperature on our time evolu-
tion problem. For f = 92.5 the critical temperature is
160 MeV in the absence of explicit symmetry breaking.
We see that in the vicinity of the critical temperature
the effects of varying the initial temperature is minor.
In Fig. 6 we study the proper time evolution of the ef-
fective number density for various initial conditions. In
thermal equilibrium one expects for an isentropic expan-
sion in boost invariant coordinates that sw =const. Since
the number density is proportional to the entropy den-
sity one expects that once particle production stops that
n(r)r ~const. We see this trend in this figure, show-
ing that we are reaching the out regime as the system
expands. The breaks in some of these curves at early
values of w are a result of the fact that the interpolating
number density cannot be defined when y is negative.
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f„=92.5 MeV

0.2

0.1

FIG. 6. Proper time evolution of the pro-
duced particle density nr—:dN/drjdzz for
the same evolution shown in Fig. 1. The
particle density is not plotted for those w for
which x(r) ( O.
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Next we are interested in knowing how our results dif-
fer &om the case where the system evolves in local ther-
mal equilibrium which is described by two correlation
lengths, the inverse of the efFective pion mass associated
with y, and the inverse of the proper time evolving ef-
fective temperature T(7 ) = To( ') ~—discussed earlier.
We see &om Fig. 7 that in the case that o(1) = oz,
x'(I) = 0, and o(1) = —1, where maximum instabil-
ity exists, complex structures are formed as contrasted
to the local thermal equilibrium evolution. The interpo-
lating phase space distribution n(k„, k~, r) obtained nu-
merically, clearly exhibits a larger correlation length in
the transverse direction than the equilibrium one and has
correlation in rapidity of the order of 1—2 units of rapid-
ity. We notice that in both directions there is structure
which does not lend itself to a simple interpretation. On
the other hand the local thermal equilibrium evolution
is quite regular apart from the normalization of the dis-
tributions that are changing with time due to oscillation
in the quantity y(r) which is damped to its equilibrium
value once the system expands sufBciently. Other authors
have suggested that it is possible to extract the sized of
the domains of DCC's from the coordinate space corre-

lation function G(x, y, r) by considering the width of the
distribution as a measure of the size of the domain. How-
ever, it is clear from our detailed numerical results that
there are several length scales afFecting the momentum
space distribution apart from the efFective pion mass and
temperature. The spatial Green's function depends on
not only nj, and gk, but also the phases yk, and would
be even harder to interpret than n and g separately. In
Fig. 8 we look at the time evolution of the interpolat-
ing number operator for the case when we did not have
any fluctuations in the kinetic energy. Here we are still
far from equilibrium, and we see that unlike the equilib-
rium case the correlation length in rapidity space is not
decreasing with proper time. In this case where there
are no instabilities we do not see complicated structures.
The transverse distribution is similar to the equilibrium
case. The pair density function g(k„, k~, 7) is even more
elusive to parametrize than the single particle distribu-
tion function. In the case where there are no instabilities
[a (1) = 0] we see in Fig. 9 that although the transverse
distribution is relatively simple, the distribution in the
g direction (whose fourier transform gives the rapidity
distribution) has many length scales. When we have in-

~ sl ~ s ( ~ ~ s ~ ) ~ ~ ~ ~ 40 ~ ~ ~ ~ ) 'p ~ ~ s
/

~ I ~ I ) s ~ ~ ~

30

20

II

10

f„=92.5 Mev

w=).0
x=1.66
x=2.83
5=4.80
x=7.92
&=12.96
x=19.29

30

C)
II

20

10

~ 5

I

/

/

/

0.5 1.5

s J i i s i -4=-s~~~

2 3 4

~ ~ ~ I I ~ ~ ~ s I ~ s ~ ~ I s s I I ~ ~ ~ ~ I ~ ~ ~ ~ I ~ I ~ ~ I ~ ~ ~ ~

2

CL
C)

II

I—

C)
II
CL

I—

0 s I s s I ~ ~ ~

0.5 1.5

FIC. 7. Slices of k„= 0 and p = ~k~~ = 0 of the proper time evolution of the interpolating phase space particle number
density n(k~, kz, w) for o(1) = oT, vr'(1) = 0, and &(1) = —1 compared with the corresponding local thermal equilibrium
densities nr(k„, k~, r)



2392 F. COOPER, Y. KLUGER, E. MOTTOLA, AND J. P. PAZ

stabilities rcr(l) = —lj then both distributions are com-
plicated and possess several length scales as seen in the
lower part of Fig. 9.

VI. CONCLUSIONS

In this paper we have performed numerical simulations
in the regime of the chiral phase transition in the linear
0 model for a wide variety of initial conditions starting
above the critical temperature for an expanding plasma
of pions and sigmas. Assuming that this model gives
a reasonable description in this temperature range, we
found initial conditions where instabilities grew in the
scenario required for the formation of disoriented chiral
condensates. However, low energy phenomenology also
requires a moderately large renormalized coupling con-
stant. This has the eKect of rapidly damping the insta-
bilities, and we found no evidence in this model for large
domains of disoriented chiral condensates. We did, how-
ever, see rather large departures in the phase space num-
ber density &om one which would result &om an evolu-
tion in local thermal equilibrium. These departures show
a narrowing of the momentum space distribution which
could be interpreted as a larger spatial correlation length.
However, we found no simple method of extracting cor-

relation lengths &om our results. In our simulations we
assumed a reasonable mechanism for cooling, namely the
expansion of the plasma following its production in a col-
lision. However we did ignore scattering, which occurs at
next order in the 1/X expansion. We also did not allow for
general inhomogeneous fI.uctuations which would allow us

actually to study the growth of disoriented domains. This
would require a study of the growth of inhomogeneous
perturbations about our homogeneous background and
would involve a much more difBcult numerical computa-
tion. We hope to carry out such a computation in the
future. In the future we also hope to include scattering
efFects which will introduce another time scale, namely
the equilibration time scale into the problem, as well as
study the nonlinear 0 model to see if the results difFer

significantly from those found here.
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above Lagrangian the constraint equation

(A2)

which exactly cancels the quadratic term. We thus obtain
the alternate Lagrangian

APPENDIX: o. MODEL IN THE LARGE N
AP PROXIM ATION

The O(4) o model is described by the Lagrangian

(A3)

The generating functional of the Green's functions is
given by the path integral

L, = —(94 84 ——A(4 C —v ) + Ho.
2 4

(AI) z]ds] = f og ocexp '(i f d x]Lg+ d I+ st])
where the mesons are organized in an O(4) vector 4 =
(m, (r) . The counting of the large N expansion is made
explicit [20] by introducing a composite field y defined
by y = A(4 . 4 —v ). It is easy to show by appropri-
ate rescalings that the large N expansion is obtained by
integrating out the Cl field and then performing a steep-
est descent calculation on the remaining y path integral.
That is the large N expansion is a loop expansion in the
composite field y propagator [22]. Thus we add to the

= exp[iW(J, y)].

We can now perform the Gaussian path integration over
the 4 field. Evaluating the remaining y integral at the
stationary phase point of the resulting effective action,
and then Legendre transforming,

(A5)
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Go'(* ~) = ~[ + &(x)] ~'(x —&). (A7)

For the O(4) sigma model N = 4. From this effective
action we immediately get the equations of motion for
the fields 4 and the equation of constraint (gap equation)
for the composite field y:

we obtain the lowest order (in large N) result

4'(Oy) = f d r Lr(d'y, H)+ —44rtr trrGr ', (A6)
2

where G..'(p') v = ~v(»
' —X) —~*Goxx(p') ~~.

For the cr inverse propagator we obtain

G '(p') = p' —m' —o'Goxx(p ).

(A17)

(A18)

Thus the 0. mass m2 is determined by the relationship

m' = m'+ o'Re[G()xx(m')]. (A19)

(or when there are external isospin sources present), the
pion inverse propagator becomes, for constant external
sources,

+&(x)]~' = o [ +~(x)]& =- H (A8) The axial vector current in this model is given by

y = —Av + A(o. + ~ vr) + ANGp(x, x). A'„(x) = [n'o)„o —(7o)„7r']. (A20)

In the static case when we are considering symmetry
breaking, we obtain the lowest energy state when

The PCAC (partial conservation of axial vector current)
condition is given by

yo. = H, y = —Av + Ao. + ANGp. (A10) B„A'„(x) = H7r'(x). (A21)

By considering the fields (4, y) to be a five-dimensional
vector 4, and the matrix inverse propagator to be

Therefore one has

H=f m (A22)

b2I'

bChC ' (A11)

we obtain by inverting this matrix the relevant vr, 0, and
y propagators. Performing this inversion we obtain for
the vacuum Feynman y inverse propagator m = —Av + A f +. ANGp(x, x), (A23)

Since we also have that the vacuum is defined by ye =
m~o = H, we immediately find that o' = f We ca.n
rewrite the gap equation in terms of physical quantities
as

O
2

G..'(p') = G. ',„(p') +
x —p'

where

(A12) where

A

G, (*,x) = [d'a]
o 2 k2+m2 (A24)

G „(p') = —„+ —, il(p') (A13)

is the inverse propagator in the absence of symmetry
breaking, and the polarization II = iGp is given by

&(4') = r f (d'4) (X —4'—) '(X —
(4 +4)') ' (&44)

In our simulations we have a three-dimensional cut-
ofF. If we integrate over q and perform the remaining
three-dimensional integration with a cutofF A we obtain
explicitly

II(p') = (1
2

ln —+ ~+ 2 +
8' 2

~
x x ) 2

(1 —'™')(1+*') —1l

(1+ 1 —',')(1+x') j
xln

4m21—I'

(A15)

where x = m/A and m is the pion mass: g = m2.
For the pion inverse propagator we obtain, in the vac-

uum sector,

G..'(p')V = ~V (p' —&) = ~V(p' —m'). (A16)

Thus we see that y = m is the pion mass squared. In our
initial value problem one can have vr; P 0. For that case

This relationship allows us to determine the bare mass
—Av in terms of the renormalized mass m, the pion de-
cay constant f, and the cutofF A.

To determine A„we must look at either the cr mass
which is not well determined by experiment, or the low

energy scattering data such as the 8-wave scattering
I = 0 scattering amplitude. Although at tree level the
o. mass is an arbitrary parameter, that is not true for
the quantum theory. The reason for this is that we only
want to consider this model as an efI'ective field theory
with a cutofI', so that the bare coupling constant is always
positive. (Renormalized ordinary perturbation theory re-
quires that the bare coupling constant is negative as we
take away the cutoff. ) Once there is a cutoff, then the
property of the exact O(N) o model, as determined by
lattice or strong coupling expansions, is that the renor-
malized coupling is a monotonically increasing function
of the. bare coupling reaching a finite maximum as the
bare coupling goes to infinity. In four dimensions, this
maximum value decreases logarithmically with the cut-
ofF. This exact feature of the O(N) sigma model is pre-
served in the large N approximation which is a virtue of
our approximation. However, for reasonable cutoff (say
1 GeV) this puts and upper bound on the o mass of
around 3 m as we shall see below. The low energy scat-
tering data presents another problem. This data is quite
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T = b;, hi, iA(s) + b, l, b, iA(t) + 8;ih, A,, A(u), (A25)

where the isospin indices i, j, k, I are coupled to the
four momenta pi, p2, ps, p4 such that s = (pi + p2),
t = (pi —ps), u = (pi —p4) . In leading order in large
N the amplitudes A(s), A(t), and A(u) are exactly the
y propagator. Namely

difIicult to fit in perturbation theory because perturba-
tive results violate partial wave unitarity. Basdevant and
Lee [25] were able to fit early s-wave data by first calcu-
lating to one loop and then enforcing unitarity by doing
a Pade approxiinant. Our 1/N approximation is related
to the Pade approximant since it sums the bubbles of the
perturbative result, but it does not automatically obey
partial wave unitarity. Since that work there has been
some further experimental and theoretical work on the
7r-vr phase shifts [26]. It is important for us to see what
values of A„give reasonable s-wave phase scattering am-
plitudes in our approximation. We realize that this model
cannot totally describe low energy pion physics, but we
will do the best we can with its shortcomings. We are
mostly interested in the region just above threshold since
those are the energy regimes relevant for the phase tran-
sition. Let us therefore turn our attention to determining
the low energy scattering amplitude in the large N limit.
The pion-pion scattering invariant T matrix is given by

Rewriting the propagator in terms of A„, one immediately
gets a 6nite expression for the running coupling constant:

»-(q') = G»(q') =
1 + &„NII„(q2) —',"-';

with

(A30)

II, (q') = II(q') —II(q' = 0). (A31)

1/16~ (1-4m /s)'~z f dz Ao

In Fig. 10 we plot the real part of the s-wave scat-
tering amplitude for A, = 7.3, f = 125 MeV, and

= 7.3, f = 92.5 MeV. By comparing these curves
to the unitarized perturbation theory results of Basde-
vant and Lee [25] we find reasonable agreement in the
regime 2 & gs/m & 2.6 for f = 125 MeV. This value
of f is obviously the preferred one if we want a closer
agreement of our results with those of Basdevant and
Lee. (However since in our large N expansion we have
only a modest value of N, namely N = 4 we might ex-
pect 25% corrections at next order in 1/N). We notice
the existence of the o resonance at a mass of around 3
m. These values of f and m are in reasonable agree-
ment with the fits of Basdevant and Lee using their Pade

A(s) = —G»(p' = s). (A26)
92.5

The large N expansion preserves the current algebra so
that the usual low energy theorem is exact. That is, for
small s, m one easily shows that

7.3
1/2

S

This amplitude is independent of the coupling constant
A. We thus need to go above threshold to determine the
coupling constant. The I = 0 scattering amplitude is

A = 3A(s) + A(t) + A(u). (A27)

The s-wave scattering amplitude is obtained by integrat-
ing the I = 0 scattering amplitude over angles:

fi, = e"(')sin b(s) =
327'

Re(1/167r (1-4m2/s)~~2 j dzAD)

A

1+NAII(q2 = 0)
(A29)

(A2S)

where z = cos 0 and 0 is the scattering angle in the s
channel center of mass system.

It is useful to describe the theory in terms of the renor-
malized coupling constant A„, which depends on A as
well as the cutofF A. The running renormalized coupling
constant is determined by the renormalization group in-
variant composite field propagator G~ ~. We choose to
define the renormalized coupling constant A„as the run-
ning coupling constant at q = 0, for the unbroken mode
of the theory. That is,

350 400 450

4=125
Ar= 7.3

1/2
S

—0.2

—0.4

FIG. 10. The real part of the partial wave amplitude 2f~ e-
for I = 0 computed from the linear cr model in the lowest order
of the 1/N expansion for f = 92.5 MeV and for f = 125
MeV. The value of A„used was 7.3.
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1+ A.%II„(m') (A32)

analysis of ordinary perturbation theory. We see that in
our approximation there is a slight breakdown in 8-wave
unitarity near the peak. (s-wave unitarity requires that
the real part of this amplitude to be less than I/2. ) This
breakdown in s-wave unitarity occurs in the leading or-
der in large-N approximation for renormalized couplings
which are larger than three.

One can approximately calculate the 0. mass from the
zero of the real part of the inverse propagator. In terms
of the renormalized coupling de6ned above we have

This equation, which leads to a similar value for the mass
of the 0 as found &om the peak in the scattering, shows
that there is an upper bound on the 0 mass which de-
pends on the chosen cutoff, since A„decreases monoton-
ically with the cutoff.

The phase structure of the u model in this approxima-
tion has been studied extensively by Bardeen and Moshe
[23]. For zero temperature the expectation value (Top)
in our initial density matrix is the correct energy density
functional to study. At finite temperature it is the free
energy density expectation value that is needed to deter-
mine the phase structure. Explicitly at zero temperature
the energy density functional is:

W(ci Ci, y) = y ln 4-4 —v
64vr2 y 4

N r'eA' l
gin16~2 g y )

Minimizing this functional with respect to y gives the
gap equation

I

where

16ir2 (A34) F(x) = — [exp(gyz + x) —1]
6 dyy

7rz o gy2+ &

which then gives y as a functional of C .Ci. This then im-
plicitly determines the energy functional as a functional
of only 4' - 4. Bardeen and Moshe point out that if one
uses the end point solution y = 0 below the minimum of
the potential, then one gets a real "effective potential. "

At Bnite temperature the phase structure of the cutoff
theory is determined instead by the &ee energy density
functional

N e~A
W(4 C', g) = y ln

The gap equation is now

(A36)

(A37)

4
x~ dF(y)

dy y48 0 dy

Using this &ee energy one 6nds that the critical tem-
perature is determined &om:

A N 2 N4 C —v A x4 16m 2 16~2

2

jVT,z

12 (A3S)

(A35) These relations are used to start our calculation above
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