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Next-to-leading-order temperature corrections to correlators in QCD
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Corrections of order T to vector and axial vector current correlators in +CD at a finite temper-
ature T ( T are obtained using dispersion relations for the amplitudes of deep inelastic scattering
on pions. Their relation with the operator product expansion is presented. An interpretation of
the results in terms of T-dependent meson masses is given: masses of p and aq start to move with
temperature in order T .
PACS number(s): 12.38.Lg, 11.10.Wx, 24.85.+p

In recent years there has been an increasing interest
in the study of the current correlators in QCD at finite
temperatures. The hope is that by investigating the same
correlators, both at high temperatures, where the state
of quark-gluon plasma is expected, and at low tempera-
tures, where the hadronic phase persists, a clear signal
for a phase transition could be found. For a review of cal-
culations of correlators performed by various analytical
methods and in the lattice simulations, see, e.g. , Ref. [1].

The study of temperature dependence of current cor-
relators is interesting in many aspects. At small dis-
tances the correlators are expressed through the operator
product expansion (OPE) in terms of matrix elements of
the operators of low dimension. In this way, the tem-
perature dependence of these matrix elements manifests
itself in the temperature dependence of the correlators
and vice versa. At T = 0 using dispersion relations the
correlators can be expressed in terms of contributions
of hadronic states. Then, using some theoretical tools
(differentiation, Borel transformation, etc. ) it is possible
to enhance the contribution of lowest hadronic states.
Therefore, knowledge of the T dependence of hadronic
correlators can give us information about the T depen-
dence of masses of the lowest hadronic states. Since in
the approach of QCD sum rules these masses are deter-
mined by the matrix elements of operators in OPE, the
T dependences of both are interrelated.

There is a general statement based only on PCAC (par-
tial conservation of axial vector current) and current al-
gebra according to which hadron masses do not move in
the lowest order in temperature, O(T2) [2, 3]. (The re-
sult that the nucleon pole does not move in order T2 was
obtained in the chiral perturbation theory in Ref. [4] and
by considering a current correlator in Ref. [5].) The only
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where C„(q,T) are the correlators of V and A currentsV(A)

at finite temperature, C„(q,0) are the same correla-
tors at T = 0,

(2)

and E = 93 MeV is the pion decay constant.
At T P 0 both Cv and C+„have transverse and lon-

gitudinal parts:

C„( )(q, T) = ( g„„q'+q„q )—C, ( )(q2, T)

+qpq&Ct (q, T).

At T = 0, C& (q, 0) = 0, but C& (q, 0) is nonzero and
in the chiral limit is given by the one-pion contribution

/2
CA( 2

g2
(4)

According to Eq. (1), at T g 0 the longitudinal part (the
pion pole) appears also in the vector channel.

If C (q, 0) are represented through dispersion rela-
tions by contributions of the physical states in the V and
A channels (p, ai), then according to Eq. (1) the poles
that are on the right-hand side (RHS) of Eq. (1), i.e., at
T = 0, appear at the same positions on the LHS. There-
fore, in order T2 the poles corresponding to p and aq do
not move [2]. An important consequence of Eq. (1) is that
at T g 0 in the vector (transverse) channel apart from

interesting physical phenomenon that occurs in this order
is the parity mixing, i.e., the appearance of states with
opposite parity in a given channel and, in some cases,
also an isospin mixing. For the case of vector and axial
vector currents in the chiral limit, this mixing is given by

C„„(q,T) = (1 —e)C„„(q,0) + eC„(q, 0),
C~ (q, T) = (1 —e)C~„(q, 0)+ eC~ (q, 0),
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the poles corresponding to vector particles, there arise
poles corresponding to axial particles and vice versa; i.e.,
a sort of parity-mixing phenomenon occurs.

In this paper we show that in the next order, O(T4),
such a simple picture, where the current correlator at fi-
nite temperature is represented by the superposition of
T = 0 correlators, does not take place. Interpreted in
terms of temperature-dependent poles, it would mean
that masses are shifted in this order. In what follows
we consider only the transverse part of the correlator be-
cause the T dependence of the pion mass and the decay
constant F were thoroughly investigated earlier [6], and
we can say nothing new here.

The thermal correlation functions in Eq. (I) are defined

P„(n~i jd ze' *T(j„(x),j (0)}e ~n)

g„(n(e-~&r (n)

(5)

where I is the QCD Hamiltonian, the sum is over all
states of the spectrum, and j„(x) is either a vector or an
axial current, j„(x) = (I/2)[6p„(pz)u —dp„(p5)d]. It is
assumed that q2 is spacelike, Q = —

q ) 0, and Q is
much larger than a characteristic hadronic scale, Q2 )&B,where B is the confinement radius, B 0.5GeV.

We consider the case of temperatures T below the
phase transition temperature T . In principle, the sum-
mation over n in Eq. (5) can be performed over any com-
plete set of states ~n) in the Hilbert space. It is clear,
however, that at T ( T the suitable set of states is
the set of hadronic states, but not the quark-gluon ba-
sis. Indeed, in this case the original particles forming
the heat bath, which is probed by external currents, are
hadrons. The summation over the quark-gluon basis of
states would require one to take into account the full
range of their interaction. In connection with considera-
tion of current correlators at finite T, this point was first
explicitly made in Ref. [3]. In the early papers [7] devoted
to the extension of QCD sum rules to finite temperatures,
the summation over ~n) at low T was performed in the
quark-gluon basis without account of confinement. In a
recent paper [8] a calculation of T4 corrections to cur-
rent correlators was performed. The authors of Ref. [8]
used OPE and determined the T dependence of corre-
lators through the T dependence of condensates within
the pion basis. However, not all of the T4 corrections
were obtained in that paper: the terms proportional to
T /F4 were missed. Also, in represention of the cor-
relators in terms of contributions of physical states the
spectral functions were written without taking into ac-
count the phenomenon of correlator mixing mentioned
above. In this paper we obtain the full T corrections to
correlators. %le use the spectral representation which in-
corporates the mixing of vector and axial vector current
correlators. In this way we obtain thermal mass shifts of
order O(T4) and establish the connection of our results
with OPE.

At T well below the phase transition temperature T, an
expansion in T can be performed. The main contribution
comes &om the pion states, ~n) = ~vr), ~2vr), ... . In this
paper we restrict ourselves to the chiral limit, when u,
d quarks and pions are massless. The corrections to the
chiral limit will be considered in a separate publication.

In the chiral limit there are two parameters in the low
T expansion. One parameter appears when the pion mo-
menta, p T, in the matrix elements in Eq. (5) can be
neglected. Then, the matrix elements in Eq. (5) can be
calculated using PCAC and current algebra. The powers
of T2 arise due to phase space integration with the Bose
factor. In this case the expansion parameter is T2/F2:
the one-pion contribution is proportional to T2/F2, the
two-pion contribution is of order T4/F4, etc. [3]. In the
order T2 there are only terms of this type. It is clear
that in any order (T2)" the terms of this type are ex-
pressed through the vector and axial vector vacuum cor-
relators C„(q,0) and, as a consequence, do not resultv(w)

in thermal shifts of hadron masses. The other expan-
sion parameter appears if nonvanishing pion momenta in
the matrix elements in Eq. (5) are taken into account.
Since the characteristic distances in Eq. (5) are of or-
der x2 1/Q2, the expansion parameter in this case
is T /Q . It is also worth mentioning that the contri-
butions of massive hadronic states ~n) are exponentially
suppressed as exp( —m„/T).

I.et us start with the calculation of T4 terms of the
first type. The matrix elements over two-pion states in
the limit p —+ 0 give a T contribution. But this is not
just a second iteration of the procedure used to obtain
the one-pion matrix element. It is also necessary to take
into account the interaction between the pions in the ini-
tial and the finite states. This can be illustrated by the
example of T4 terms in the T dependence of the quark
condensate [6]:

(qq)z = (qq)o
~

I ——~ ——e
f 3 3

4 32 )

The e and e2 terms here come from one- and two-pion
matrix elements, respectively. However, not accounting
for the initial (finite) state interaction of pions in the
two-pion state would give 9&2/32 instead. The interac-
tion amplitude for ~~+" —+ m vr' to zeroth order in pion
momenta is given by

, (3b,bbg —b i,b,g —h qadi„).

The m in the numerator of the above amplitude cancels
against the pion mass in the pion propagator at p ~
0 and contributes —3e2/8 to the T dependence of (qq),
making the correct total of —3e2/32.

Similarly, it is easy to show that in the case of vector
and axial correlators the two-pion matrix elements with
the account of initial (finite) state interaction of pions
result in the following expressions for the transverse part
of V and A correlators:
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~„.~"l(q, T) = (-. q'+ q.q. ) (~-~-l(q')+ (
—-', ") ~-~-l(q') —~-~-l(q') )

As was expected, the T4/F4 terms above are again expressed through correlators at T = 0, and they do not result in
a thermal mass shift. Also, these terms are Lorentz invariant, since only the tensor —g~„q2 + q„q appears here.

Consider now the terms of the second type, that arise from nonzero pion momenta. It is well known from the
description of deep inelastic electron-hadron scattering that a matrix element of the product of two vector currents
may be represented using two tensor structures

T„(p,q) =i d xe' (7r(p)~T(j„(x),j (0))~vr(p))

&~" + 2 I
i(~ q )+

I
»

) & qr& q) (9)

where v = pq, Tq is dimensionless, and T2 has dimension
(mass) 2. The corresponding contribution to the ther-
mal correlation function is obtained by integrating the
above equation over the pion phase space with the Bose
factor. And it is the second term in the RHS of Eq. (9)
that, after this integration, provides the expected Lorentz
noninvariant contribution to the thermal correlator. In
terms of the OPE, the function T2 is contributed only by
averages of Lorentz nonscalar operators, while Tq receives
contributions kom both Lorentz scalar and nonscalar op-
erators [9].

It is well known [10] that the function T2 satisfies a
dispersion relation without subtractions:

2 v'Im T2(v', q') dv'
T2(v, q') =-

g2 /t 2 7/ —7/2

Having in mind the subsequent integration over p, we are
interested in T2(0, q2). Then, using the relation between
the imaginary part of T2 and the structure function Fz,

8v2
Ti(v, q') —Ti(0, q') = 2xFi (z, q2) dx .

Fg(z)dz (16)

(15)

The subtraction constant Ti(0, q ) corresponds to zero
momenta of the initial and final pions and was already
accounted for in the terms proportional to T2/F2. It
is worth mentioning that at this stage the assumption
Q2 )) B2 was not used. In the derivation of Eqs. (12)
and (15) it was assumed that v « Q2, which is equiv-
alent in the chiral limit to Q & T. The same assump-
tion was sufficient for the derivation of Eq. (8). There-
fore, Eqs. (8), (12), and (15) are correct also at moderate
Q2 ~ 1 GeV2.

At higher Q, in the scaling region, the integrals
in Eqs. (12) and (15) are equal, since in this region
2xFi(x, Q ) = F2(x, Q ). The integral

ImT, (v, q') = —F2(x, q'),

where x = Q2/2v is the standard deep inelastic scaling
variable, we get

is the second moment of the structure function and in
the parton model has the meaning of the &action of the
pion momentum carried by quarks. In our normalization
of currents

1

T2(0, q ) =
2 F2(x, q )dz.

0
(12)

( 2) ( 2)
2v Im Ti(v', q )dv'

7C Q2 /2 7/ 7/

Again, using the relation between Im Tq and the structure
function Eq,

ImTi(z, q') = 27rF, (x, q'),

we obtain

(14)

Similarly, the function Ti(v, q ) satisfies a dispersion re-
lation with one subtraction:

11
M2 ———— x dz ) [q .(x) + q - (x)]

q, a
1

x dx [v(x) + 2s(x)],
2 0

where v(z) and s(x) are the distributions of valence and
sea quarks in the pion (see, e.g. , [10]). The factor 1/4
in Eq. (17) comes from the definition of the currents in
Eq. (5), and the factor 1/3 arises due to averaging over
z+, vr, pro in the heat bath.

The distributions v(x) and s(x) were parametrized in
Ref. [12] to fit the experimental data on the Drell-Yan
process sr+ N -+ I+I +X and on the direct photon pro-
duction m+N ~ p+X, and it was found that M2 = 0.12,
which is somewhat lower than the result 0.15 + 0.02 of

We are now considering the case of a vector correlator. However, the axial correlator in the chiral limit has the same tensor
structure, and the results obtained in the vector case may be directly applied to the axial one.
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Ref. [11], where this quantity was obtained from QCD
sum rules for a correlation function in external symmet-
ric tensor field, and close to 0.11 + 0.03 as estimated in
Ref. [9]. These numbers correspond to the normalization
point p = 1 GeV.

Now, to obtain the corresponding contribution to the
thermal correlator, one has just to do the Bose-weighted
integrals over the pion momentum and sum over the three
pions

d'p 1

(2~)s2p exp(~up~/T) —1
T .(p, q)

(u is the four-velocity of the heat bath), which gives,
together with Eq. (8),

C~-(q T) =
( g~-q'—+ q~q-) Ci(T, q')

tC (T 2)

where u'„= u„—(uq)q„/q2,

Cq(T, q ) =Cv. (0, q ) +
~

e ——e
~

C~(q )
—Cv(q )

1 1+ 2q2/q2

the hadron matrix element of an s = n, n & 2 operator
is (p~O„, „, „„~p) = ap„,p„, p„(in the chiral limit
there are no trace terms g~, „,). These matrix elements
cannot be reduced by PCAC to vacuum averages and are
new nonperturbative parameters. Their Bose-weighted
integrals over the pion momenta are T-dependent s g 0
condensates which are suppressed as T' compared to the
T-dependent parts of s = 0 condensates.

It is clear that in terms of the OPE the function Cq
is contributed both by s = 0 and s P 0 condensates, as
is Tq. However, C2 and T2 are related only to the s g 0
condensates.

In the chiral limit a difference in the s = 0 opera-
tors for the vector and axial correlators appears on the
level of four-quark operators. A good consistency check
of the calculation of correlators in the pion gas approx-
imation is on whether the T dependences of the s = 0
4-quark condensates in C~ match the V-A mixing in
the Brst of Eqs. (20). This indeed turned out to be the
case, as demonstrated (to order T2) in Ref. [14], and also
in Ref. [15] for baryonic currents. The correlation in T
dependences of the s = 0 condensates in opposite parity
channels is not accidental and is related to the scattering
of thermal pions on the currents. Notice also, that since

T4
C2(T, q') = —c (20)

C, (T) —C,"(T) = (1 —2~+ e') [C~(0) —C,"(0)]
(22)

and

Sar'M
15

The low temperature expansion of Ci contains powers of
both T /F2 and T /Q2, but powers of T2/F2 are absent
in C2. Notice, that while all three pion charge states
contribute to T2/Q2 terms, only two of them contribute
to T2/F2 terms. The same formulas hold for the axial
correlator, with the obvious change V ~ A.

The above formulas for the thermal correlator may
be considered also &om the viewpoint of the OPE for
the correlation function (see Refs. [8, 9]). The OPE it-
self of course carries no information about the state over
which the matrix element of the operators is considered,
or about the heat bath, in case of finite T. It contains
operators of arbitrary Lorentz spin s and twist t. When
vacuum correlators are considered, only scalar, s = 0,
operators contribute, while nonscalar, s j 0, operators
drop out in the averaging. When averaging over a hadron
state or over a heat bath, the s P 0 operators do con-
tribute, since there is an additional vector in the prob-
lem, the target momentum p or the four-velocity of the
heat bath u. Th'e matrix elements of s = 0 operators
over pions or the heat bath may be estimated (if the
pion momenta can be neglected) using PCAC, which re-
lates them to vacuum averages. The terms in OPE with
s = 0 operators give either corrections of order T /F
(matrix elements over one-pion state ~x(p)), p2 = 0), or
corrections of orders higher than T4 (matrix elements
over states with two or more pions). Thus, they do not
give (T2/Q2)2 terms and therefore do not result in ther-
rnal mass shifts of order T . The general expression for

this correlation exactly satisfies Weinberg sum rules gen-
eralized [16] to Bnite T.

Among the nonsinglet condensates, the leading contri-
bution to C2 at low T comes &om the lowest spin, s = 2,
which corresponds to the T behavior. In the leading
twist there are two s = 2 operators which are related to
the energy-momentum tensors of quarks, 0&, and glu-
QIls) Op

Z

t1&. =
2

(qV»-q+ qW-»q),

gG' Ga Ga Ga Ga (23)

T, (v, q') = T, (v, q')

1 ———' ln(Q'/p') ( iZ, O„' i~)

'
1n(Q'/p, ') (vr ~0„~~)

The gluon condensate gets its T dependence only in order
T [13], anyway.

Explicit expressions for the contribution of these op-
erators to Tq and T2 can be obtained &om the general
formulas of the theory of deep inelastic scattering (see,
e.g. , [17]). We present here the result for the case, when
the longitudinal structure function Fl, = 2xFj (x) —F2(x)
is neglected and only QCD corrections proportional to
a, In(Q2/p2) are retained. It can be shown that since all
pion charge states are equally populated in the heat bath,
only Havor-singlet operators contribute to the structure
functions. Then
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where the averaging over the three pion charge states
must be performed. It is easy to see that the contribution
of OP to Eq. (24) is small at Q2 1 GeV2.

The pion matrix element of the total energy-
momentum tensor is just a normalization constant:

(~(p) le". + ~,'.+ ~„.l~(p)) = 2p.p- (2s)

T 2 T«Oo=q. «
Cr (g q'Qi l, Cr + q'qi 2Cr

or, in terms of Cq and C2,

Cp ——q Cp,2

C) ——C~ + —C2.q
4

(27)

(28)

At T = 0 these two functions are not independent: «» ——

Ct/q = Cv. They are also related at T P 0, if q =
0, qp 7 0, Q

where (vr(p)l7r(p')) = (2vr) 2E8~sl(p —p'). On the other
hand, we have

(~(p)l~". + ~'..I~(p)) = 8M.»»-. (26)

So, if we define also a constant 6 as (wig+„l7r) = bp„»i„,
then 8M2 + b = 2. The constant b enters the matrix
element (7rlE + B lvr) and also (E + B )z. It was de-
termined in Ref. [9] from a duality type of consideration
that 6 = 1.16+0.14 at p = 1 GeV. This is in accord with
the estimates for M2 obtained in Refs. [8, 11] and with
the statement that gluons carry about 50% of the pion
momentum.

Now, we would like to discuss a possibility of interpret-
ing the T /Q corrections to the correlators in Eqs. (20)
in terms of particle thermal mass shifts. It is conve-
nient to use the standard representation [7] of the vector
correlator in a medium in terms of two invariant func-
tions «~ and «q, which in the rest frame of the heat bath
[u = (1,0)] are defined as

the contributions of physical states, defined at positive q2

and s. Unlike the case of T = 0, where the correlators are
functions of one variable, q2, at T g 0 they are functions
of two variables, qo and q . In this case the only way
to represent the amplitude at negative q through the
contributions of physical states is to use the dispersion
relation in qp at fixed q2. (In the opposite case, when

qp is fixed and q is variable, the amplitudes would have
nonphysical singularities) .

So, let us consider the case q = 0, qp g 0, Q2 = —qp2.

In this case there is only one structure function, Ci(qp) =
Ci (qp). We choose the standard model for the spectral
densities as a sum of the lowest resonances and contin-
uum. The dispersion relations over qo are contributed by
the physical states in the q2 and s channels. Therefore,
for the structure function Civ(Q2, T) we have

C (q' T) —C"(q' T) — C (Q' o) —C"(Q', o)

= —2~ 1 —— Ci, 0 —«0
If we put

m (T) =m +bm, m, (T) =m, +hm, ,

then &om Eqs. (31) and (32) it follows that

(33)

Q'+ m'(T) Q'+ m' (T)
1 pv(s, T) „
vr „Q2+ s

where the erst and the second terms on the RHS of
Eq. (31) correspond to the contributions of p and ai
mesons to the vector current correlator, A2 v(T) and
A2 v(T) are the corresponding T-dependent coupling
constants, and A, v T2. (The subtraction constant
is omitted. ) A similar equation holds for the axial cur-
rent correlator Ci (Q2, T). From Eq. (29) it is easy to
see that the terms of order T4/Q vanish in the differ-
ence Ci (Q, T) —CP (Q, T):

CT CT=0
l (CT CT=0

)
and

(34)

v
I (Ci Ci )+c

) ' ' 2q"
where c was defined in Eq. (21).

In another special case qp
——0, q P 0, Q2 = q2,

Q (« —Ci =)=
l

-- l(Cv —C~)+r=o ( T4

C C —
l

~ —e
l

(Cv —C~)+cz' r o ( 1 y4
t t 2Q2

(29)

(3o)

A' v(T)
A2

A2

A.', ~(T)
A2

A.', v(T)
A2

For the sum Civ(Q2, T)
have

(=1 —el 1 ——e l)2)
=el 1 ——elf 1I

(3s)2)
+ Ci (Q, T) from Eq. (29) we

T4= c . (36)

C, (Q', T)+ C,"(Q', T) — C, (q', O) + C,"(q', O)

Until now we considered the correlators at negative
q2 = —Q2. In order to interpret the results in terms of
the particle mass shifts, the amplitudes at negative q
must be represented using dispersion relations through

It is clear from the comparison of Eqs. (31) and (36)
that with our model of hadronic spectrum the contin-
uum cannot contribute to the LHS of Eq. (36), since the
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imaginary part of the RHS vanishes at Q ( 0. Then
&om Eqs. (31) and (36) we have

(Taking into account only terms ~ T, we put A (T)
A (0) = A and A, (T) = A, (0) = A2 .) From Eqs. (34)
and (37) we have

2
T4 T4

2

2A2 ' ' 2A2
P G1

(38)

In Ref. [8] it was claimed that the p and ai masses move
in order T . This conclusion comes from an incorrect choice
of the spectral density in the sum rules: the mixing of vec-
tor and axial vector channels was not taken into account. For
this reason the results obtained in this paper for the T depen-
dence of the masses are not reliable, though we agree with the
analysis of T-dependent condensates carried out there.

The residues in Eq. (38) are the standard couplings of
p and a~ mesons with the vector and axial currents,
A = m /g, A = m, /g, . Numerically they are
rather close, A2 A, 0.02 GeV [3].

We see that both the p and ai masses start decreasing
with T, and the mass shifts appear in order T4 and, in
terms of OPE, are due to Lorentz nonscalar condensates
as emphasized in Refs. [9, 14].s The corrections propor-
tional to powers of T2/F affect only the residues of the
currents. This fact can be easily understood. Indeed,
in the OPE for the correlators taking into account finite
temperatures to order T2 would result only in the change
of the same Lorentz scalar condensates which appear in
OPE at T = 0. Then it is clear from the representation
through dispersion relations that any such change can be
described by modifications of the residues without affect-

ing the position of poles.
The scenario when both the vector and axial vector

masses decrease with T is allowed by Weinberg sum
rules at T g 0 [16]. Numerically the mass shifts are
rather small. Even at T = 150 —200 MeV (usually
accepted values for the phase transition temperature)
b'm2 = bm (0.01 — 0.02) GeV2. At the same time
at these temperatures the change of residues according
to Eq. (35) is very essential. [For this reason Eqs. (38)
are not completely reliable at T ) 100MeV, since we put
Az(T) = A'(0). ]

Let us summarize our main results. The corrections of
order T4 to the correlators of vector and axial currents
were calculated in QCD in a model independent way in
the chiral approximation when u, d quarks and pions
are massless. The results are expressed in terms of the
second moment of the pion structure function in deep in-
elastic lepton-pion scattering that is equal to the matrix
element of the quark energy-momentum tensor over the
pion state, or to the &action of the pion momentum car-
ried by quarks in the parton model. Interpreted in terms
of physical mesons the calculated corrections correspond
to negative mass shifts of the p and ai mesons propor-
tional to T4. (As was shown earlier [2, 3], the mass shifts
are absent in order T2.) These mass shifts originate &om
Lorentz nonscalar condensates in OPE. Numerically they
are rather small at T & 100 MeV, where our approach is
correct. The corrections arising &om a finite pion mass
were not touched in this paper. We plan to consider them
in a future work.
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