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Quenched chiral perturbation theory for heavy-light mesons
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Quenched chiral perturbation theory is extended to include heavy-light mesons. Nonanalytic
corrections to the decay constants, Isgur-Wise function, and masses and mixing of heavy mesons are
then computed. The results are used to estimate the error due to quenching in lattice computations
of these quantities. For reasonable choices of parameters, it is found that quenching has a strong
effect on fgy. /f~, reducing it by as much as 28%. The errors are essentially negligible for the
Isgur-Wise function and the mixing parameter.

PACS number(s): 12.39.Fe, 12.38.Gc, 12.39.Hg, 14.40.Nd

I. INTRODUCTION

I.attice simulations of hadron properties have made
great progress in recent years and there is hope that
they will soon yield accurate "measurements" of quanti-
ties that are diKcult or impossible to access experimen-
tally, such as the kaon mixing parameter R~ and the B
and D decay constants f~ and f~ which play an impor-
tant role in the phenomenology of the standard model.
This progress has come not only through improvements
in computer speed and algorithms but also through bet-
ter understanding of errors. One systematic error present
in most calculations is that arising from the use of the
quenched (or valence) approximation, in which discon-
nected fermion loops are neglected. For heavy quarks,
i.e. , those with masses well above the QCD scale, such as
the 6 and c, the decoupling theorem ensures that quark
loops can be accounted for by suitable adjustments of the
coupling constants. But for lighter quarks, with masses
below the QCD scale, it is expected that quenching will
change not only the short-distance but also the long-
distance properties of the theory; these latter changes
are much more difFicult to quantify.

A straightforward way to study this error is to per-
form simulations with dynamical fermions and compare
the results to similar calculations in the quenched approx-
imation. However, this is still a complicated undertaking
because calculations with dynamical fermions are per-
formed with larger lattice spacings and heavier quarks.
This of course increases the errors and makes it more
diFicult to isolate the effect of quenching. For example,
the study of fgy in Ref. [1] sees little effect due to quench-
ing, but the interpretation is di%cult because of the large
lattice spacing used.

Another approach to understanding the error is to
study how quenched QCD differs from full QCD in the
continuum. That is, one compares the quenched and full
QCD predictions for a given quantity. Then, to the ex-

tent that lattice calculations reproduce the continuum
theory, the difference between the two predictions gives
an indication of the error due to quenching. This ana-
lytic approach was initiated by Morel [2], who studied
how chiral logarithms differ in the two theories. It was
extended by Sharpe [3], who developed a diagrammatic
analysis, and later Bernard and Golterman [4] formulated
quenched chiral perturbation theory to discuss these log-
arithms in a systematic way. Corrections to light meson
decay constants and masses, B~, and recently baryon
masses [5] have been studied using these techniques.

In this paper I will extend quenched chiral perturba-
tion theory to include heavy-1ight mesons. This enables
one to study the effect of quenching on lattice studies
of these mesons. The paper is organized as follows. In
Sec. II, I review the combination of chiral and heavy
quark symmetries. I continue the review by showing
how chiral perturbation theory can be formulated for the
quenched approximation to QCD. Finally I show how to
extend this to include heavy mesons. In Sec. III, I com-
pute loop corrections to the heavy meson decay constants
and mass splittings, the mixing parameter B~, and the
Isgur-Wise function $. In Sec. IV, following a discussion
of the parameters of the theory, the results are investi-
gated numerically. In Sec. V I conclude and comment
on possibilities for future study. An Appendix collects
results for the renormalized couplings.

II. QIIENCHED CHIRAL PERTU'RHATION
THEORY AND THE INCLUSION OF HEAVY

MESON 8

A. Chiral theories

To lowest order in the chiral expansion, the self-
interactions of the light mesons are described by the La-
grangian
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with Z = (2 and

e~4 (~)lf (2)

The light mesons enter the heavy meson Lagrangian
Eq. (9) through the quantities

——7r + —7l
1 0 1

—0K

K+

K (3)

The normalization is such that f = 128 MeV. Under
SU(3)L, xSU(3)R, ( transforms as

( m L(Ut = U(Rt.

This equation implicitly defines U as a function of L, R,
and (. The quark mass matrixr M is given by

where the light mesons are grouped into the usual matrix

It follows from the definitions that,
SU(3) I, x SU(3)~,

V„m UV„Ut +iUO„U~,

while the covariant derivative transforms as

D„X w UD„XUt.

(13)

(14)

under

(16)

Finally, the left-handed current which mediates the decay
B + lv is represented by

ms

M w LMRt, (6)

For purposes of determining the allowed form of the La-
grangian M is given the "spurion" transformation rule

J"=

intr~[I�

"Hg(st ],

where I'" = p"L = p~(1 —p5)/2. At lowest order the
decay constants are related (in my normalization) by f&
= n/QMIr, frr. = n+Mrr.

so it is convenient to define the quantities

M~ = —((tM(t + (M()
1
2

(7)

which transform as

M. ~ UM. Ut. (8)

At leading order in the 1/M expansion, strong inter-
actions of B and B* mesons are governed by the chiral
Lagrangian [6]

2 = —trD H (v)iv . Dg Hb(v)

+g trrr H (v)Hb(v) ga ps (9)

The B and B* fields are incorporated into the 4 x 4 ma-
trix H which conveniently encodes the heavy quark spin
symmetry:

B. Quenched QCD

In the quenched approximation to QCD, the deter-
minant which arises in the functional integral when the
quark fields are integrated out is omitted. This can be
implemented in a formal way by introducing for each
quark q a "ghost" partner q with the same mass, but
bosonic statistics, so that the ghost determinant cancels
the quark determinant [2]. The Lagrangian is then

&quenchez = ) qz(P + rrra)qa + ) q&(P + rrra)qa. (18)

Classically, when the masses vanish, the quenched
Lagrangian (18) is invariant under the graded group
U(3~3)L, xU(3~3)rr, but at the quantum level the full
symmetry is broken by the anomaly to the semidirect
product [4] [SU(3~3)1,x SU(3~3)R]U(1). Elements of the
graded symmetry group are represented by supermatrices
(in block form)

H m HUt. (12)

Here v~ is the four-velocity of the heavy meson, the in-
dex a runs over the light quark Havors u, d, 8, and the
subscript D indicates that the trace is taken only over
Dirac indices. Henceforth I will drop explicit reference
to the heavy meson velocity. Under SU(3)L, xSU(3)R, H
transforms as

A Bl
C D)'

where A and D are matrices composed of even (comrnut-
ing) elements and B and C are composed of odd (an-
ticomrnuting) elements. If we assume that chiral sym-
metry breaks in the usual way, then the dynamics of
the remaining 18 Nambu-Goldstone bosons and the 18
Nambu-Goldstone fermions can be described by an eKec-
tive chiral Lagrangian, just as for full QCD [4,3,7,8,5].

There should be no confusion when M is also used to denote
a generic heavy meson mass.

The broken U(1) is that which acts as q m e' ~~q, q m
+

—ia"fs
~
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The meson matrix is extended to a supermatrix

(20)

where yt qq, y qq, and P qj. Note that y and yt
are fermionic fields, while P and P are bosonic. Group
invariants are formed using the supertrace str and su-
perdeterminant sdet, defined as

str(U) = tr(A) —tr(D),
sdet (U) = exp [str ln (U)]

= det(A —BD 'C)/det(D).

(21)

(22)

,

str(B„ZB"Zt) + 4po str(M+)
2

+—19 4pO Cp—
0', p mp

p

The lowest order Lagrangian would then have the same
form as Eq. (1) above, with obvious notational changes.
But because the full symmetry group is broken by the
anomaly, extra terms are required to describe the dynam-
ics of the anomalous field. In full QCD, this anomalous
Beld is the q', and these extra terms can be neglected
because the anomaly pushes the mass of the g' up be-
yond the chiral scale. However, in the quenched. theory,
because of the absence of disconnected quark loops, this
decoupling does not occur: the super-g' remains in the
theory and the extra terms must be includ. ed. To lowest
order, the complete I agrangian is then

with

1 1
C o

—— str C = (rI' —g'),
3 2

it'M 0
&i

( 0 M

(24)

(25)

and M~ defined analogously to M~.
The propagators that are derived from this Lagrangian

are the ordinary ones, except for the flavor-neutral
mesons, for which the nondecoupling of Cp leads to a
curious double-pole structure. For these mesons it is con-
venient to use a basis U, , corresponding to uu, dd, and
so on, including the ghost quark counterparts. Then the
propagator takes the form

S,, e, (—nop2 + m20)/3
p2 —M2 (p2 —M2) (p2 —M2) ' (26)

where e = (1, 1, 1, —1, —1, —1) and M, = 2pom;. It is
convenient to treat the second term in the propagator as
a new vertex, the so-called hairpin, with the rule that it
can be inserted only once on a given meson line.

Heavy mesons can be incorporated into this framework
by adding to H extra fields B and B* derived from the
heavy fields B and B*by replacing the light quark with a
ghost quark. It is necessary to include in the Lagrangian
vertices which couple @p to H. Symmetry requires that
this coupling occur through str(A&), which no longer van-
ishes. Including also explicit SU(3)-breaking terms, the
Lagrangian is

8 = —trD H iv . Ds Hb + g trD H Hi, @gyps + ptrD H H p„ps str(A")

+ 2%i trD H Hg (M+)s~ + ki trD [H iv Db, Hs] (M+)«
+ k2 trD H iv Di, Hs str(M+).

The B and B* propagators are 2„' &
and

respectively; the ghost mesons have the same propagators
as their real counterparts. To the same order, the current
is given by

1"= iatrD[I' Hs(& ] + inKi trD[l "H,(& ](M+),g

+iar2 trD [I'"HS(& ] str(M+). (»)
In the sequel, the terms proportional to mq will be loosely
referred to as counterterms because they are required to
absorb the divergences encountered in loop calculations.
In addition, the presence of the additional mass scale mp
means there will be new divergences (not found in the
unquenched theory) proportional to it. For completeness,
the divergent portions of the counterterms can be found
in the Appendix.

At this point let me pause to note a few peculiarities
of the theory just formulated. First, while the symmetry
allows terms involving str(M+), they do not contribute
at tree or one-loop level to any of the quantities I will
consider (although they do contribute in the unquenched
theory). Second, the loop structure of the quenched

theory is rather odd. Because the heavy mesons con-
tain only one light quark and there are no disconnected
quark loops, none of the meson loops involve any flavor-
changing vertices. Consequently, the loop corrections for
a generic heavy Ineson Bq containing the light quark q
will be a function of Mq alone. The three-flavor theory is
then just three copies of a single-flavor theory. This tends
to heighten the difference between the full and quenched
theories.

p 1
2

(2~)D p2 m2

—m21
16vr2 e 16vr2

m ln(m /p, ),

(29)
arises from light meson tadpoles, while the heavy-light
loops require

III. LOOP CDHHECTIDNS

A. Loop integrals

There are several loop integrals which will be encoun-
tered. Two of these integrals are shown below. The erst
(here D = 4 —2e, 1/e = 1/e + ln 4vr —pE + 1),
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p v
JP~( ~) ~ P P P

(2')D (p~ —m')(p v —6)

16~2
(m* —-'A') —+ ('-m* ——"A') + Ji(m, L) )g"(

2m —-6 —+ — 76 —3m + J2 m 6 v"v"

The remaining integrals can be obtained by diKerentia-
tion with respect to m, which will be denoted with a
prime. The definitions of the functions J~ and J2 can be
found in Ref. [9]. For my purpose I need only the limiting
values

16vr~f~ ( p~ )
m~0/3 (Md~ )

p, =, , in'

J(m, o) = —m,=2~ 3
3

OJ(m, 0)

(31)

(32)

where I have defined J(m, 6) = 6Ji(m, 6).
The graphs which contribute to the self-energy are

shown in Fig. 1. In diagram 1(a), the ghost mesons will
cancel the contribution from the real mesons unless one
of the vertices involves the singlet field. Combining this
with the contribution of the hairpin vertex diagram 1(b),
I obtain

inv" (—2npMq + mo)/3 (Mq ~
ln

2 167r&f& ( p& ) (36)

The final results for the decay constants are then found
by combining the wave function and vertex corrections:

Loop corrections to the left-handed current vertex arise
from the diagrams of Fig. 2. It is easy to see that the
diagram Fig. 2(a) vanishes: the loop integral must be pro-
portional to v", which will vanish when contracted with
the projection operator in the numerator of the B*prop-
agator. The remaining tadpole graph Fig. 2(b) yields

iZ(v. k) = 6i 1 2

16m~ f ~ [(2gp ——g no) J(Mg, —v k)

+s g (mo —noM~) J'(Mg, —v k) + ].
(33)

QMBfB = n 1 ——(1+3g )Pq
1 2

2

3gIt' — 1 + 3g —pg + Kymg . 37
0!O

3
The terms not shown are analytic in Mg and can be ob-
tained from Eq. (30) above. In contrast, the results in the full theory are [10,11]

B. Wave function renormalixation and decay
constants

The wave function renormalization constants are ob-
tained by differentiating the self-energy with respect to
2v . k and evaluating on shell. I find

QMBgfBg n 1 ——(1+3g ) ~

—~-+ Sa + —
V~

+rimd, + Kg(m, + 2m')

/MB. fB. = n I ——(I+ 3g ) l
2 ps&+ —u, I2 ( 3 ")

Z = 1+3g pq + 6(gp —
s~ g no) pa + A'imp. (34)

+rim, + rg(m, + 2m') (38)
Here and below, it is convenient to adopt the definitions

C. Masses

X
I \

The correction to the mass is obtained by evaluating
the self-energy on shell and removing the wave function

(a) (b)

FIG. 1. The diagrams which contribute to the heavy meson
self-energy. Solid lines represent heavy mesons, dashed lines
represent light mesons, and the cross represents an insertion
of the "hairpin" vertex.

(a)

FIG. 2. Corrections to the weak current vertex. The box
represents an insertion of the weak current.
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renormalization constant (though to the order I am work-
ing it does not contribute). Defining

3
Mgy = M~ ——6+ bM~,

4 (39)

where M~ is the spin-averaged mass in the chiral limit,
4 is the hyperfine splitting, and bM~ is the light-quark-
dependent contribution to the mass, I find

(a)
r

I
I I

(c)

27l 2 mO
2

bM~o = 2Ai mg — g Md
167r2 2 3

+ 2gp —5g (40)

FIG. 3. The corrections to B-B mixing. The double box
represents an insertion of the mixing operator. Corresponding
diagrams with hairpin vertices are not shown.

while in the unquenched theory [11,12],
—hMgg, = 2Ai(m, —mg)

7r 2

16~2 , (—3m' + 2m' + m', ). (41)

D. Mixing

The constant B~ is defined as the ratio

(B-
I &I.~~b~ gr, ~"bL

I B.)
,'(B.

I
g-l.~,bi

I o) (oI ex~"bi B.)
42

(B.
l
;„„b,;.,-"b.lB,—)

sf~ m~ Bg
As shown by Grinstein and collaborators [10], in the ef-
fective theory the operator

qI p„bI, ql p"bL,

is represented by

4pt» ((H ) p„L tr ((II ) Y L

(43)

(44)

(45)

which is essentially just the square of the left-handed
current. The one-loop corrections to this operator are
shown in Fig. 3. There are two types of tadpoles which
arise from the operator Eq. (43): those where each ( is
expanded to O(P) [Fig. 3(a)] and those where only one of
the ('s is expanded [Fig. 3(b)]. The latter tadpoles just
renormalize f~ and will cancel in the ratio for BI3. Thus
it is only necessary to consider the former. I find

B~a —4P[1 —(1 —3g ) [(1 —
s~ nP) Pd + Pq]

+6g'7 p& + pimd]

which should be compared with the unquenched results
[10] (Pi and P2 are additional counterterms)

B~ —4P 1 —(1 —3g ) —pq + Pimd + P2(m, + 2m')2 2

3

(46)

B~. = 4P 1 —(1 —3g ) I

—p + —p,„
q2 6 ")

+pim, + p2(m. + 2m') (47)

The reader will note that in contrast to the earlier re-
sults, B~ has true chiral logarithms even in the absence
of the singlet coupling p and the kinetic coupling o.o. A
similar phenomenon occurs in B~, as shown by Sharpe
[3]. The reason is that flavor conservation allows discon-
nected quark loops to appear only in the guise of the g',
so that even in full @CD they do not contribute.

E. Isgur-Wise function

The heavy quark current which mediates the decay
B ~ Dev is represented at leading order by

( (tv) tr~[II (~')p„LIIl l(~)] IIl'l(~')& LH~ l (~)]

(48)

~h~r~ (o(~) (~ = v v') is the leading-order Isgur-~ise
function. In the full theory, the leading corrections are
[11,13] (here the counterterms gi and g2 are functions of
io)

g~, g = (0(~) 1 + 2g [&(~) —1]
I

—p7r + pR + —p
2 (3 1

(2 6

+ 2[r(zu) —1][gi(zv) m& + &2(zo) (m, + 2m&)]

& =&o(~) 1+2g [r(~) —1]
I
2u~+-~~

I

2 f 2

(49)
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TABLE I. Quenched and full heavy-light quantities. Only the nonanalytic part of the mass
difference is shown.

Quantity

f&. / fbi~ —1
Bs./Bs~ —1

(,/(g —1

~Ma. —~Ma,

Unquenched

0.074(1+ 3g )
0.052(l —3g )

0.059 g
—450 g MeV

mo ——750 MeV
—0.11(1+3g )
—0.11(1—3g )

—0.086 g
—340 g MeV

mo ——1100MeV
—0.23(l + 3g')
—0.36(l —3g')

—0.18g
—740 g' MeV

where

1
ln(ur + Qt02 —1).—1

(50)

The quenched results take the by-now-expected form

&~(~) = t!p(~) [1+2[r(~) —1]
x [g p~+ (2gp —sg np) pg+ rji(ip)rnid] . (51)

IV. DISCUSSION AND NUMERIC RESULTS

To obtain numeric values it is necessary to know
the values of the various couplings which enter the La-
grangian. Combining data on the D* width and branch-
ing fractions [14,15], Amundson et al. [16] obtained the
constraint 0.1 ( g ( 0.5. The spread is caused by the
uncertainty in the branching fraction B(D*+ +D+p);-
taking the central value yields g 0.5. @CD sum rules
[17] and relativistic quark models [18] favor a smaller
value, g 1/3. Given this uncertainty, I will show results
for difFerent values of the coupling. There is no informa-
tion on the coupling p, but 1/N, arguments suggest that
it is small. They also suggest that o,p is small; direct
evidence Rom g-g' mixing confirms this. Consequently, I
will take both p and o,p to vanish. The maximum value
of m in the decay B ~ D/v is about 1.8, so I will use
r(1.8) = 0.76 when evaluating (. Finally, I will choose

p = 1GeV.
There are several ways to determine mp, each giving a

difFerent result. The Witten-Veneziano large N, formula

[20] mp ——m„, + m2 —2m~ gives mp 852MeV, while

from the rI-rt' mass splitting Sharpe [3] estimated mp—
900 MeV. It has also been computed directly on the lat-
tice. Early attempts [21] found rnp —570-920 MeV,
but with limited statistics and a strong dependence on
the lattice spacing. Recently, a more accurate computa-
tion has been performed. Kuramashi et aL [22] extracted
mp by comparing the one- and two-loop contributions to
the rl' propagator; they found mp ——751(39)MeV. Us-

1.2-

0.4

0.2

N=2f
quenched

Extrapolated

ing the U(1) Ward identity relation mpz ——6y/f2, with
y the topological susceptibility, the same group found
mp = 1146(67) with y and f obtained on the same lat-
tice. They attributed this larger result to contamination
from extra terms in the Ward identity induced by the
use of Wilson fermions. I will choose mp ——750 MeV, but
will also show some results for mp = 1100MeV.

For an honest calculation, it is also necessary to spec-
ify the O(m~) counter-terms. But it is an unfortunate
fact that there is little to constrain them, save the gen-
eral expectation that their natural scale is Ax —4vr f
A common practice when confronted with this situation
is to assume that the counterterms are overshadowed by
the logarithmic contributions. Another approach is to
reduce the dependence on these unknown terms by tak-
ing appropriate ratios. Fortunately, since it is expected
that the coefficients in the chiral expansion should be (al-
most) the same in the quenched and full theories, some
of the counterterms will cancel when the predictions of
the two theories are subtracted to compute the error. In
particular, the errors in fg /f~, , (,/(q, BIB /B~„, and
bM~ —bM~„are free of counterterms. Results for these
quantities are shown in Table I; in order to illustrate
the mp dependence, the quenched results are shown at
both mp ——750 MeV and mp = 1100MeV. The ratios
in the quenched theory are computed by substituting
M, = +2m~ —m2 = 680 MeV and Mg = m . Con-
centrating on the results at mp ——750 MeV, one sees that
the corrections to the ratios are similar in magnitude but

The same argument implies a suppression of the singlet cou-
pling to the nucleon. This is con6rmed in a phenomenological
study by Hatsuda [19], who found g„i~rv & 1.1, which should
be compared with g ~~ ——13.4.

Even if p is as large as g/3, I find it changes the quenched
results by only 5'Fo or so.

~ I ~ I ~ I ~ I s I ~ I I I I I I I ~

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Md (GeV)

FIG. 4. Quenched and unquenched corrections to fry as a
function of ineson mass. Also shown is a linear (in the quark,
not the meson mass) extrapolation of the quenched f~ The.
horizontal lines are the predictions for f~, and f~ in the full
theory.
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TABLE II. The errors for di8'erent choices of the coupling g. Results are shown using both the
exact and extrapolated quenched predictions. An error is negative when the quenched quantity is
smaller than the full. No extrapolation is performed for meson masses.

Errors

fs. /fs
Bii./Bs
(./(~
M~. —M~„

g =0.7
—0.45
0.078

—0.072
49 MeV

Exact
0.5

—0.32
—0.041
—0.036

25 MeV

0.33
—0.24
—0.11

—0.016
11MeV

0.7
—0.28
0.012

—0.045

Extrapolated
0.5

—0.20
—0.0062
—0.023

0.33
—0.15

—0.017
—0.010

TABLE III. Quenched and unquenched results at
Mq (= m ) = 600 MeV.

Quantity

V Mfs/n —1
Bs/4P —1
(z/(o —1

m, p ——750 MeV

0.031(1+ 3g )
o.20(1 —3g')

0.025 g

Unquenched (Nf = 2)

o.1o(1+3g')
0.069(1 —3g )

0.083 g

opposite in sign to those in the full theory. This is a re-
sult of the fact that the quenched logarithms diverge in
the chiral limit. Notice that the corrections for the mass
splittings threaten to be larger than the splittings them-
selves unless g is small. This suggests either a large can-
celation occurs with the leading A~ term or higher order
corrections are important. Either solution casts doubt
on the reliability of the error estimates in this case.

While the results in Table I suggest large quenching
errors, particularly in f~ /f&, it is likely that the error
in actual simulations will be less. The reason is the fol-
lowing. Currently, most simulations are performed with
quark masses corresponding to pion masses in the range
400 & M 1000MeV. The results are then extrapo-
lated linearly (in the quark mass) to the chiral limit and
the physical m . Because of the familiar property of the
logarithm, quenched loop corrections change as much in
the interval 140 & Mg & 350MeV as they do in the in-
terval 350 & Md & 1000MeV. Consequently, in the mass
range covered by lattice simulations the quenched loga-
rithm appears linear. This can be seen in Fig. 4, where
both the "true" quenched and linearly extrapolated pre-
dictions for f~ are shown. Clearly, the two cannot be dis-
tinguished for masses greater than say 300MeV, but the
extrapolated result underestimates the "true" behavior
by more than 10% at Mg = m . While the primary mo-
tivation for this extrapolation is the desire to eKciently
invert the quark propagators, it has the side eKect of re-
ducing the quenching errors. Moreover, it is the correct
thing to do, since the goal is to describe unquenched @CD
and quenched ChPT clearly fails to do this in the chiral
limit. Table II compares the two methods of computing
the error at diferent values of the coupling. One sees
that the error is substantially reduced by the extrapola-
tion. The errors in B~ and ( are relatively small to start
with and become negligible when extrapolated. However,
even with the extrapolation the error in f~ is larger then
one might have hoped. Note also that f~ /f~ is smaller
in the quenched theory.

In fact, the size of the error in f~ is easy to under-

stand. For the Isgur-Wise function, the error is small be-
cause the corrections themselves are small. Conversely,
the corrections to f~ are large and so the error is large.
Moreover, they are driven by the tadpole terms, which
remain large even if the coupling g vanishes. The tad-
poles, however, do not depend on the heavy quark mass,
so it should be possible to eliminate them by studying
the 1/M corrections [23].

Some additional understanding of the diBerences be-
tween the quenched and dynamical theories may be
gained by comparing them in the mass range probed
on the lattice. For this it may be better to consider a
two-quark theory with degenerate masses (rather than
the full three-flavor theory), since it is closer to the type
of theory studied in unquenched simulations. In Fig. 4
the predictions for f~ are shown. Here I have neglect, ed
the unknown counterterms, though it is clear Rom the
graph that there must be a positive term of O(mg) since
lattice simulations find that f~ increases with the light
quark mass. There are two general features that should
be noted in Fig. 4. First, that in both the quenched
and two-flavor theories, fgy is less than both f~„and
f~ . This may be attributed to the fact that the full the-
ory has more mesons contributing to loop corrections.
The second observation is that the gap between the two-
flavor and quenched corrections grows as Mp increases
toward the point M, = /2m2~ —mz. Thus, the fact
that quenching decreases the ratio fIi /fIi~ is due to the
di8'erent nature of the quenched logarithm. Finally, Ta-
ble III compares the quenched and two-flavor predictions
at a representative inass of M~ ——600 MeV (again ne-
glecting counterterms). It can be seen that the errors are
comparable to those found in the extrapolated ratios.

V. CONCLUSIONS

I have included heavy mesons into the framework of
quenched chiral perturbation theory and used it to study
the error arising from the use of the quenched approx-
imation in lattice studies of heavy-light mesons. These
lattice studies are important for the phenomenology of
the standard model. Because estimates of the error de-
pend on the as yet unmeasured value of the the B*Bm
coupling g, results were shown for several values of g in
the allowed range. It was seen that the errors in B~
and ((ur) were negligible. However, the error in f~ was
surprisingly large, more than 15% in the best case. It
was observed that the large error follows &om the large
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corrections present in both theories. These large cor-
rections were traced to the tadpole corrections, and it
was suggested that they might be eliminated by study-
ing the 1/M corrections to the theory. Indeed, Grinstein
[24,9] has advocated doing just that in the continuum by

studying the double ratio ' . This is done for thefi). /fD
quenched theory in a forthcoming work [23].

A general conclusion that can be drawn from the
quenched chiral calculation is that quenching tend. s to
decrease the ratio f~ /f~ Th. is is in agreement with the
one unquenched simulation [1], which found fD /f~ =
1.34, a value larger than that typically found in quenched
calculations. This may have implications for reconciling
lattice predictions of fD with the recent CLEO measure-
ment [25].

In the future it would be interesting to study heavy
baryons containing two light quarks within this frame-
work. Because of the presence of two light quarks, the
quenched theory will be less trivial and the loop correc-
tions will have a more complicated Bavor structure, more
closely resembling that of the light mesons. It would
also be useful to to move beyond I/N, arguments for the
magnitude of p. It appears that it could be calculated
within @CD sum rules using the same techniques that
have recently been applied to g [17].

In addition, kj must be taken to be

k] = 6(g'7 —
s g nP)

The current Eq. (28) is renormalized with

0!p 2pp
Ky = — 1 + 3g ——3gp3 2

and in addition o. must be rescaled:

1 mp 3n" (p) = n 1+ —(1+3g') L(p)

(A4)

(A5)

The description of B-Bmixing requires the counter-term
no sum on a

4P/3gtr~ ((H ) p„L tr~ ((H( )) p"L (M+)

(A6)

It is convenient to decompose an arbitrary coupling A: as
k = k'(p) + k L(p).

To render the Lagrangian Eq. (27) finite, it is necessary
to add the counterterm

2

3g tr~ H iv Db Hb L(p).
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and the couplings must ber, m,'3&'(t) =&[1+(1—»') ' L(t)
l

~1 = [(1 —»')(1 —snp) —6W]

(A7)

APPENDIX A: RENORMALIZATION
CONSTANTS

Within the context of dimensional regularization, the
singularities of the e8'ective Lagrangian are customarily
described in terms of the parameter L(p, ) which contains
the singularity at D = 4 (recall D = 4 —2e, 1/e = 1/e+
1n4vr —p~ + 1):

~(~) [r(~) —1] tr~[H. (v')~. LHb' '(v)](~+)b- (A9)

with

2pp
q(tv) = —4(gp —-'g np) (A10)

and the rescaled coupling

r ,mp 3
Q(~, &) = (p(~) [

1+2[r(~) —1]g L(&)
~

.

Finally, the Lagrangian for 6 —+ c transitions needs the
counterterm

1 —2. 1
L(P) =

16 2P (A1) (A11)
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