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Baryon magnetic moments in a simultaneous expansion in 1/N and m,
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We consider the baryon octet and decuplet magnetic moments in a simultaneous expansion in m,
and 1/N taking NF/N 1, where N is the number of /CD colors and N~ is the number of light
quark fIavors. At leading order in this expansion, the magnetic moments obey the nonrelativistic
quark-model relations. We compute corrections to these relations using an efFective Lagrangian
formalism which respects chiral symmetry to all orders in the 1/N expansion. Including corrections

up to order m, , we 6nd eight relations among the nine measured octet and decuplet magnetic
moments; including corrections up to order 1/N and m„we find. four remaining relations. The
relations work well, and suggest that the expansion is under control. We give predictions for the
unmeasured magnetic moments.

PACS number(s): 13.40.Em, 11.15.Pg, 12.39.Fe, 14.20.—c

I. INTRODUCTION

In this paper, we consider the baryon magnetic mo-
ments in a simultaneous expansion in m, and 1/N, where
N is the number of QCD colors. There has been a re-
cent revival of interest in the 1/N expansion for baryons,
started by the results of Ref. [1]. For example, it was
shown that many interesting large-N relations have cor-
rections starting at 1/N . These results have been
extended using a number of different methods [2—5]. We
will use the formalism of Ref. [4]. This formalism is based
on an exact relativistic treatment of QCD, yet make di-
rect contact with the static quark model. On a more
practical level, it allows us to write an explicit effective
Lagrangian in which chiral symmetry is kept manifest to
all orders in 1/N.

When the number of light flavors Ny ) 2, the SU
(N+) flavor representations of baryons grow with N, and
so there are ambiguities in how to extrapolate physical
baryon states to N ) 3. We use the approach of Ref. [5],
where it is shown that the 1/N expansion can be formu-
lated to include all of the states in the SU(N~) fiavor
representations for arbitrary N and N~. The physical
results for N = 3 can be obtained without having to
identify the physical baryon states with particular states
for N ) 3, and SU(N~) fiavor symmetry is kept man-
ifest in this approach. This expansion is well defined
even if NF/N 1 [5]; we will work in this limit, since
NF ——N = 3 in the real world.

In the large-% limit, the magnetic moments obey the
nonrelativistic quark-model relations [6]. We find that
the leading corrections to these results are suppressed
relative to the leading terms by order 1/N, m, , andZ/2

m, . We will assume that O(m, ) and O(1/N) corrections
are both O(e) 30%%up, and carry out the expansion consis-

tently to O(c). Including the O(m, ) = O(e / ) correc-
tions, we And eight relations among the nine measured

magnetic moments for the octet and decuplet baryons;
including corrections up to O(e), we find four surviving
relations. These relations agree well with data, providing
evidence that the combined 1/N and chiral expansions
work well for baryons. We then predict the unmeasured
magnetic moments including all corrections up to O(e),
and compare them to calculations in chiral perturbation
theory, lattice calculations, and model-dependent extrac-
tions &om data.

II. FORMALISM

In this section, we briefly review the formalism we
will use to obtain our results. In Ref. [4], it was shown
how to write an effective Lagrangian describing the low-
energy interactions of baryons with the pseudo Nambu-
Goldstone bosons (PNGB's) for large N. The PNGB's
are described in the standard way: the field

(( )
iII(x)/ f

is taken to transform under SU(N~)L, x SU(N~)1t as

( 1-+ L(Ut = U(Rt, (2)

sr+
1 0 1

~6~ Zo

A&)

Note that the rl' is not light if N~/N 1, and is there-
fore not included. The effective Lagrangian is most con-
veniently written in terms of the Hermitian fields

where this equation implicitly defines U as a function of
L, R, and (. For N~ = 3, the meson fields are
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v —= -((~ ('+('~ 6) A, —= -((~ (' —('& () (4)
operators. For example, the leading terms involving
baryons can be written

which transform under SU(Ng)1, x SU(NJ;)g as

V„UV„Vt+.UO„Ut, W„UW„Ut .

2 = (8liv" 9'„I8) + g(8I(A" o.„)I8) +

where o„= (gp„—v~)p5 is the spin matrix and we define

We can incorporate SU(N~) breaking due to m, g 0
by including the quark mass spurion (for arbitrary N~)

I'0

(A"o ) —= nt (A") g(o„) pn ~, (12)

etc. The chiral covariant derivative acting on the baryon
Gelds is defined by

m =mS, S—: (6) v„l8) =—(a„—~(v„))18)

transforming under SU(N~)L, x SU(N~)~ as mg
LmqRt. We find it convenient to deGne the even-parity
Geld

m =
2 ((tm~(+ h.c.) m UmUt .

In this notation, the leading terms giving rise to meson
interactions are

8 = f tr(A"A„) + Pf tr(m) +

where P is a coupling and f = f 93 MeV; f ~N in
the large-N limit [7].

We now discuss the baryon Gelds. Because the baryon
mass is of order NAqcD, we can describe the baryons
using a heavy-particle efFective field theory [8]. We write
the baryon momentum as P = Mov + A:, where Mo N
is a baryon mass and v is a four-velocity (v2 = 1) which
deGnes the baryon rest &arne. We then write an efFec-
tive Geld theory in terms of baryon Gelds whose momen-
tum modes are the residual momenta k. This efFective
field theory gives an expansion in 1/Mo around the static
limit.

For N large, the baryon SU(N~) representations are
large, and it is convenient to use a compact notation
to keep track of baryon flavor quantum numbers. We
use a Fock-space notation in which the baryons Gelds are
written

The coupling g can be determined for matrix elements of
the LS = 1 axial current measured in semileptonic hy-
peron decays. We obtain g = 0.83 +0.08, where the error
is obtained by assigning a 30% uncertainty to the higher-
order corrections. This value should be used with cau-
tion, since the SU(NF)-breaking corrections are known
to be large [8,9].

In this notation, the leading N dependence of an ar-
bitrary term in the efFective Lagrangian is given by as-
sociating a factor of 1/¹ with every r body o-perator
(that is, an operator constructed from r creation and r
annihilation operators), and a factor of 1/N for every ex-
plicit flavor trace [4]. The reason for these rules is that
an r-body operator can arise only from quark-level dia-
grams involving at least r —1 gluon exchanges, and flavor
traces arise &om quark loops. Each gluon exchange or
quark loop gives rise to a suppression of 1/N, yielding
the rules given above. For more details, see Ref. [4]. Ac-
cording to these rules, the coupling g in Eq. (11) is order
1 in the large-N limit.

III. MAGNETIC MOMENTS

We now apply the formalism discussed in the previous
section to the magnetic moments.

A. Leading order

18(~)) —= 8" ' '" "(*)n' ".n.'„. Io).

The o.t's are bosonic creation operators which create a
"quark" with definite flavor and spin, and IO) is the Fock
"vacuum" state; ai, . . . , a~ are SU(N~) flavor indices
and ni, . . . , niv =t, $ are spin indices in the rest frame
defined by v.

Under SU(N&)L, x SU(Nz)z, the baryon fields trans-
form as

hC = ' v„F" (8I(Qo„)I8), - (14)

where E~ = 2e " Ep~, so~23 ——+1, and

Q—:2(( Ql.( +(Q~() m UQU

At leading order in the large-N and chiral limits, the
baryon magnetic moments are described by a single term
in the e8'ective Lagrangian:

where U is defined in Eq. (2). 8 transforms under a"'
highly reducible representation of SU(N~), but we will
have to carry out calculations explicitly only for N =
Np ——3.

Meson-baryon interactions are written in terms of op-
erators constructed &om the creation and annihilation

Here (at N~ = 3)

1
3

j.
3

(16)

are the left- and right-handed quark charge spurions. The
parameter A 1 GeV is the chiral expansion scale; naive
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dimensional analysis leads us to expect that ao 1. The
magnetic moments arising from Eq. (14) are given by

r
/

/
I

I

VB'B+g'g (B l(Q~'klB)
A

where o.~&, & is the matrix element of the spin matrix be-
tween the states lB) and lB') normalized so that its maxi-
mal value is +1. (We use nonscript capital letters to refer
to specific baryon states. ) The operator (Qo ) has ma-
trix elements O(N), so that the leading contributions to
the magnetic moments are O(N). ~

At this order, there are nine experimentally measured
octet and decuplet baryon magnetic moments determined
by a single unknown constant ao/A. There are therefore
eight relations among the magnetic moments. Of these,
six are the Coleman-Glashow relations [10]

(1a)

/
/

I
I

(1c)

(1b)

pp —p, g+ = 0 (15'%%uo),

p„+p„+ p~- ——0 (10%%uo),

p„—2pp = 0 (40%),

pg- —p=- = 0 (55%%uo),

p,„—y, =o = 0 (40'%%uo),

~31 + 2ygo~ = 0 (5%)

which hold in the limit of exact SU(3) to all orders in
1/N; the remaining relations can be taken to be the
quark-model relations

3p„+2p~ = 0 (3%%uo),

un- + S &
= o (35%),

(i9)
(20)

B. 1/N corrections

The O(1/N) corrections to the magnetic moments arise
&om the term

~& = N'~~~+""(~l(Q)(~-)lB) . (21)

Because matrix elements of the operator (Q)(o") can be
O(N), the contributions to the magnetic moments arising

which are the consequences of the large-N limit. The
numerical accuracy indicated is defined by dividing the
numerical value by the average of the positive and nega-
tive terms on the left-hand side. If we perform a best fit,
the average deviation is 0.3@~.

(1e)

FIG. 1. Feynman graphs giving rise to nonanalytic correc-
tions to the baryon magnetic moments. Figure 1(c) is wave
function renormalization; Fig. 1(e) does not contribute to the
magnetic moments.

from this term are O(1) in the large-N limit. Including
this term, the Coleman-Glashow relations in Eq. (18) still
hold, but the quark-model relations Eqs. (19) and (20)
no longer hold. Note that the relation Eq. (19) involves
states with zero strangeness, and therefore receives fur-
ther corrections only from isospin breaking, which are
expected to be about 5%%uo. The experimental deviation
of this relation is therefore a direct measure of the 1/N
corrections, and we have no understanding of why these
corrections are so small in this case.

C. SU(N~)-breaking corrections

In chiral perturbation theory, the leading SU(N~)-
breaking corrections generally arise &om loop graphs
with PNGB intermediate states. Such graphs can give
nonanalytic dependence on the quark masses. In the case
of the magnetic moments, the leading dependence on m,
is m, and m, lnm, [11].The diagrams which give
rise to these corrections are shown in Fig. 1.

The graph which gives rise to the m, corrections
is easily evaluated using the meson-baryon coupling from
Eq. (11):

»g 1(a) = —,(B'l(T~~ )P~&")IB)tr(T~[T~ Q])

d4k (2k+ q)„k„(k+q)p
(2vr) (k —M~z + i0+) [(k + q)

2 —M~2 + i0+](k U + i0+) (22)

We could normalize the electric charge of the quarks to be of order 1/N so that the baryons have electric charge of order 1
in the large Nlimit. If we did thi-s, the magnetic moments would be O(1) in the large Nlimit. Such a r-escaling would modify
the formulas which follow in a trivial way, and would not a8'ect our results for % = 3.

2Note that Mzo —MA = O(m, /N), so that we can treat the . Z and A as degenerate to the order we are working.
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where the Tg are SU(Ny ) generators normalized so that
tr(TgT~) = 8ggg and

2M~~—
2

tr((T~, T~)m~) (23)

is the mass-squared matrix of the PNGB's [see Eq. (8)].
We have neglected the 0(m, ) mass differences between
baryons in the same SU(N~) multiplet, as well as the
0(1/N) difFerences between octet and decuplet baryons.
(Including these efFects gives corrections suppressed by
m, and/or 1/N. ) The sum over all intermediate spin
states is then included in Eq. (22), with the large-% re-
lations properly taken into account. Evaluating Eq. (22)
gives rise to a contribution to the magnetic moments

tions can be written

uz- + u- + u~ = o (1o%),
p=o —2@=— = 0 (4%)

pz+ —2v 3Vzo~ + pr = 0 (7%%uo) ~

1
pz+ + p'go~ + p~ + p& = 0 (2%)

3
V=--+Vs. —u~- —~& = o (4%%u')

Sn —-S=- —u=-- = o (2%) .

(26)

2eM
(—0.51 = —2.0) . (27)

In addition, there is one relation which depends on g,

B'B 2 (B I+K IB)
16vr

(24)

where

= (N + N ) t'[Q(1 —S)](S ')

(25)

This gives contributions to the magnetic moments which

are 0(Nm. ) = 0(Ne i ).
Including these contributions along with the leading

term in Eq. (14), we obtain seven relations valid to
0(Ne i ) which are independent of g. One of these is
the quark-model relation Eq. (19). The remaining rela-

(We use f = f~ 114 MeV in the evaluation. ) The rela-
tions which are independent of g work much better than
the g-dependent relation: a flt including the 0(Nm, , )

1/2

corrections and treating g as a free parameter has an av-
erage deviation of 0.08 p~. The nonanalytic corrections
have the right sign, but their predicted magnitude for
the lowest-order value g 0.8 is too large. However, we
expect that including the SU(N~)-breaking corrections
in the Bt to the semileptonic decays will substantially
decrease g [8,9], and it is not clear to us that the large
discrepancy in Eq. (27) indicates a breakdown of the
expansion.

The vertex graph [Fig. 1(b)] and wave function graphs
[Fig. 1(c)] combine to give the contribution

Figs. 1(b, c) =
z eg ~~~v q" (B'([(T~a ), [(T~n ), (Qu )]]iB)

d4k k kp

(2vr)4 (k2 —M&2 + i0+)(k v + iO+) [(k —q) v + iO+)]
(28)

The double commutator can be written as a one-body operator; this contribution is therefore 1/N times a one-body
operator, and can be at most 0(m, lnm, ) = 0(¹lne). This is negligible compared to the 0(Ne) counterterms
which we will discuss below. The graph in Fig. 1(d) gives a contribution which is 1/N times a one-body operator,
which is negligible for the same reason as for Eq. (28); the graph in Fig. 1(e) gives no contribution to the magnetic
moments.

The leading SU(N~)-violating counterterms are

bZ = ev~F" (Hi ((Qm)o„) + (Qo )(m) + (Q)(mo„) ~8) . (29)

These counterterms give 0(Nm, ) = 0(¹)contributions to the magnetic moments. There are also 0(Nm, )
contributions &om the loop graph in Fig. 1(a), but these have the same spin-flavor dependence as the counter-
terms considered above, so we will not need to evaluate them explicitly. Including the counterterms in Eq. (29) and
the nonanalytic corrections computed above, we obtain the relations

p=-' + 2V z+ + 2V ~- + & = 0 (10%%u)

p=- +4pz- + 2v 3pz'-x+ 5pp+ 8p = 0 (2%)

Vn- + 4@=- —3m=-- + 8S z+ + 5Vz- —3u&+ V = o (8%),

4p=o —p + —p, — + 4v 3p ~ —6p + 4p„= 0 (6%) .

(30)
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The last to these relations was noted in Ref. [12], and is
valid to O(m ) independent of the 1/N expansion. The
average deviation of a fit which treats all of the countert-
erm couplings as free parameters is 0.08 pN, the same as
the fit including only the O(Nm, ) terms.

fit. This theoretical uncertainty is approximately the av-
erage deviation of the fit when corrections up to O(Ne)
are included, and is consistent with the expectations of
dimensional analysis: the largest contributions not in-

3/2eluded are m, nonanalytic terms

IV. PREDICTIONS

We can use the results obtained above to predict the
unmeasured octet and decuplet magnetic moments in-
cluding all contributions up to 0(¹).We first give these
predictions in the form of relations, and then give numer-
ical predictions.

The predictions include the isospin relations

2Pzo = Pz+ + Pz- i

p~++ —p~+ —p~o —p~- ~

p~++ —pe — = 3(Pz + —Pr o )
2Pz. o = Pz.+ + Pz.—

~

which are valid to all orders in rn, and 1/N; we also have
the SU(3) relations

(p~++ —p~+) —(pm+ —pz-) + (p=- —p=--)
Pz.— —2P=-.— + pn-

=0,
=0, (32)

p~o —2pz~o + p=.o = 0,
which are valid to O(m, ) to all orders in 1/N. The new
relations which are consequences of the 1/N expansion
may be written

There are two more relations than one would expect from
naive parameter counting, because (Qa'„) oc (Q)(o~)
and (Qa„)(m) oc (Q)(mcr~} on decuplet states. The
leading contribution to the 6 magnetic moment comes
&om terms such as

tr(m Q) v"e„~gpss""(8](a~)]8),

P~o = 0

p~+ = 3(pp+ p-) (33)
Pz.+ —Pz- =3( Pr + P-z +—3Pz+ —P-=- +2P=-') . -

hP 2 2 Piv 02Pw .
16vr 2A2

The predictions we obtain are given in Table I, along
with a comparison to predictions &om chiral perturba-
tion theory [13] and lattice data [14]. Note that in the
limit of exact SU(3) fiavor symmetry, the decuplet mag-
netic moments are proportional to their charges. Table I
therefore should be viewed as giving predictions for the
pattern of SU(3) violation.

The chiral expansion of Ref. [13] includes the O(m, )
1/2

and O(m, lnm, ) contributions to the decuplet magnetic
moments without making use of the 1/N expansion.
Their predictions dier considerably &om ours: for ex-
ample, their predicted values for pz 0 and p=.o are sig-
nificantly smaller than ours. It is worth noting that
they do not include O(m, ,) counterterm contributions,
which are not expected to be significantly smaller than
the O(m, ln m, ) which they compute, whereas the largest
terms which are omitted in our analysis are suppressed
by a power of the expansion parameter. Our predictions
agree well with the lattice computation of Ref. [14],which
also disagrees with the chiral perturbation theory predic-
tions of Ref. [13]. We do not regard the lattice calculation
of Ref. [14] as definitive, and we hope that results from
experiment or improved lattice calculations will be able
to decide between our predictions and those of Ref. [13]
in the future.

There is also an extraction of the 4++ magnetic mo-
ment from the reaction harp ~ vrpp, which yields p~++ ——

4.52+0.32 p~ [15]. This agrees better with the chiral per-
turbation theory prediction than with our results or the
lattice calculation, but the extraction relies on hadronic
models.

The octet-decuplet transition magnetic moments are
also predicted in the 1/N expansion considered here.
However, the momentum transfer for the process T ~
Bp is

where 64 1. (The reason for the factor of 1/N in the
coefficient is that the QCD diagrams which contribute
to this term contain a quark loop; see Refs. [4,5].) This
gives a contribution to the magnetic moments O(1/N) =
O(Ne ), which is higher order than the terms we are
keeping.

We can also give numerical predictions for the unmea-
sured magnetic moments by fitting to the measured mo-
ment. Up until now, the fits were used only to give a
rough idea of how well the expansion works. We now
give some details on the fit and the treatment of errors
to help the reader understand the numerical predictions.
We add a theoretical uncertainty of 0.1 p~ in quadra-
ture with the experimental error to obtain the error on
the individual magnetic moments, and then perform a y

1/N
5.9 + 0.4
2.9 + 0.2

—2.9 + 0.2
3.3 + 0.2
0.3 + 0.1

—2.8 + 0.3
0.65 + 0.2

—2.3 + 0.15

gPT
4.0 + 0.4
2.1 + 0.2

—2.25 + 0.25
2.0 + 0.2

—0.07 + 0.02
—2.2 + 0.2
0.10 + 0.04

2.0 + 0.2

Lattice
6.09 + 0.88
3.05 + 0.44

—3.05 + 0.44
3.16 + 0.40

0.329 + 0.067
—2.50 + 0.29
0.58 + 0.010
—2.08 + 0.24

TABLE I. Decuplet magnetic moments predicted by the
1/N expansion of this paper, compared with the chiral per-
turbation theory (yPT) results of Ref. [13] and the lattice
results of Ref. [14]. The errors quoted in our predictions are
the formal fit errors; for a discussion of the errors in the other
predictions, see Refs. [13,14].
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A
q MT —M~ N '

and the loop graph in Fig. 1(a) has nontrivial depen-
dence on q/(MT —M~) 1. This makes the coefficients
of the effective operators in the expansion different from
the ones appearing in the expansion of the magnetic mo-
ments. In principle, this difference is computable, but it
depends on the value of the axial coupling g, which is
not well determined. We will return to these issues in a
future publication.

After this paper was completed, we received Ref. [16],
which also analyzes baryon magnetic moments using a
1/N expansion. Their expansion differs from ours in
that physical baryon states are identified with particular

large-N states. The relationship between their expan-
sion and the one carried out in this paper is discussed in
Ref. [5].
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