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An effective, low-energy, field theory of 8-wave quarkonia, constituent heavy quarks, and gluons
is constructed which is manifestly gauge invariant. The interaction Lagrangian has the form of a
twist expansion, as typically encountered in hard processes, and involves derivatives of arbitrary
order. The parameters in the interaction are related with the nonrelativistic wave function, and
standard results for QQ inclusive decays and radiative transitions are shown to be easily recovered.
The light-cone gluon momentum distribution at very small x is calculated and shown to be uniquely
determined by the nonrelativistic wave function. The distribution has a part which goes as x ln x,
i.e., is more singular than the usually assumed 1/z behavior. The fragmentation function for a
virtual gluon to inclusively decay into an g or g& is also calculated. We find that the emission of
low momentum gluons makes this process quite sensitive to assumptions about the binding energy
of heavy quarks in quarkonia.

PACS number(s): 14.40.GX, 12.40.—y, 13.40.Hq, 13.85.Ni

I. INTRODUCTION Q(x, t) = U '(x, t)q(x, t),
Heavy quarkonium is traditionally modeled as a non-

relativistic, color singlet bound state of a QQ pair with a
static Coulomb potential at short relative distances, and
some confining type of potential at long distances. The
binding energy, which is small relative to the heavy quark
masses, is taken as justification for low quark relative ve-
locity as well as the neglect of explicit gluon degrees of
freedom in the hadron's wave function. In hard processes,
the entire nonperturbative @CD physics is buried into a
single parameter: the wave function at the origin for the
case of 8-wave quarkonia, or its derivative for the case of
P waves. This model has been widely used in calculat-
ing the decay rates of quarkonium states, as well as their
production in e+e collisions, deep inelastic processes,
Z decays, etc. [1,2].

The problem with this traditional approach to quarko-
nium modeling is that gauge invariance, which is obvi-
ously fundamental to @CD because it is its legitimizing
principle, is not respected as an exact symmetry. Under
a local gauge transformation q(x, t) + U(x, t)q(x, t), the
state normally used to describe quarkonia,

d +id x2f (xi —x2)q(xi, t)1'q(x2, t) ~0)

does not remain invariant. In the above equation I' is a
space-time-independent matrix in spin, color, and Bavor
indices and f (x) is the relative w'ave function. However,
one can construct gauge-invariant states in the following
manner [3]: define

U(x, t) = P exp
i
ig

jc

dy A(y, t)
~

Then, the state constructed from Q and Q,

d x,d x f(x, —x )Q(x, t)I'Q(x, t) ~0)

is indeed invariant for arbitrary f (x). The gluon field A"
transforms in the usual way:

A" m U A"U ——U 0"U
g

Unfortunately the operators Q(x. , t) are not pure (cur-
rent) quark fields; they also involve arbitrary numbers
of soft gluons which are responsible for transporting
color between the quarks and for quarkonium binding.
These constituent quarks are clearly extremely compli-
cated objects. Therefore, to make a gauge-invariant
model of quarkonium requires more than that suggested
by Eq. (1). Fortunately, traditional quarkonium models
are not widely oK the mark because quarkonia are fairly
small and the path-ordered integral in Eq. (4) is possi-
bly negligible. For p waves one expects that the problem
would be more acute than for 8 waves since a centrifu-
gal barrier serves to keep the quarks apart, leading to a
larger meson. However, to our knowledge, the validity of
using a nongauge invariant state for either 8 or p systems
has not been investigated.
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II. THE MODEL

Heavy quarks can be considered as external sources
placed in a gluonic vacuum which undergoes nonpertur-
bative fI.uctuations, and results in a lnodification of the
potential-type interaction between quarks in quarkonium
[4]. For a large quark mass m, one can consider a QQ pair
localized at a relative distance R such that m )) 1/R, and
hence the relative momentum of quarks p « m. This to-
gether with the assumption that the quarkonium system
is weakly bound, ensures that the nonrelativistic approx-
imation is valid. At the same time, we would like per-
turbative methods to be applicable, i.e. , n, (p) « 1, and
hence that R « 1/AqcD. We shall assume that charmo-
nium systems (bottomonium is obviously better) fulfill
the requirement of being suKciently heavy, yet also suf-
ficiently small and weakly bound.

We would like to construct an effective theory of
quarkonia, constituent quarks, and gluons which respects
gauge invariance. Towards this end, consider an elemen-
tary pseudoscalar meson field P(x), representing an rl or
gp meson for example, which interacts with quark fields

Q(x) according to QpsQP. This is clearly wrong since
quarkonia are extended, weakly bound, systems which
can be formed only when the heavy quark and antiquark
happen to have small relative velocities. In contrast, a
point coupling gives an amplitude for meson formation
independent of relative velocity. To remedy this situ-
ation, and introduce the appropriate nonlocality, con-
sider an effective interaction with an arbitrary number
of derivatives:

-').~-Q(*) M, ~ ~.Q(*)4(*)M2

) y: (iD ' iD) F~ + (iD ' iD) F" (iD ' iD)

+ E" (iD . iD)" . (8)

A. P-quark vertex [Fig. 1(a)]

1S

The vertex factor for pseudoscalar coupling to quarks

WsF(p')

where

F(p') = ):~- I- " qm') (10)

and p" =
2 (pz —pi)" is the relative momentum.

Do we have any intuition about F(p2)? Since (pi +
p2) = M, it follows that 4p = 2pi + 2p22—M2 ap-
proaches zero for r = 2m —M approaching zero, i.e. , the
weak binding limit. It is therefore reasonable to expect
that E(p ) is steeply peaked around p2 = 0. These expla-
nations are confirmed in the next section, where it will
be shown that F(p ) can be expressed directly in terms
of the nonrelativistic wave function of the quarks.

The interaction in Eqs. (6)—(8), consisting of an infinite
tower of operators grouped together by symmetry, is, in a
sense, a twist expansion of the type encountered in hard
processes. Here the "hard momentum" is the quarko-
nium mass. Equation (6) is complete at the leading twist
level; other terms added on to it will be subdominant.
The model leads in a straightforward manner to Feyn-
man vertices. These are discussed below.

Here a are dimensionless numbers, to be determined
later, and M is the quarkonium mass. Before we show
that this leads to conventional formulas for decays etc. ,

we ask what is its gauge-invariant generalization. This is
too unwieldy in general. But as discussed earlier, per-
turbation theory holds in this model, and so we can
meaningfully consider a gauge-invariant model at the one
gluon level. The most general form of this must be

fiD iD&"
Z~ = —i) a„Qp,

~ M2

B. P-quark-electric gluon vertex [Fig. 1(b)]

The vertex factor for coupling to an E1 gluon originates
from expanding out the covariant derivatives in the first
term of Eq. (6) and keeping a single gluon operator only.
Taking the matrix element indicated in Fig. 1(b) and
organizing the terms suitably leads to a rather nice and
compact form:

Zg ) bn+1 Q'75~y»
n=0

The function P(p, q) is most easily expressed in terms of
the dimensionless variables y and z:

�

~8.iD
M )

(6)
&(p, q) = (12)

where D~ is the usual covariant derivative,

D" = —(cl" —cl") —g—A—",
2 2 2

and the symmerization braces are defined by

i Equation (6) contains derivatives and therefore Hi g Li . —
The presence of derivatives leads to additional terms upon
quantization. To illustrate, suppose 8 g@p"@B~C'.
the Hamiltonian contains a term proportional to g (@ g)
Quartic and higher self-couplings can be neglected at the or-

der of accuracy of our calculations.
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and

'Y, F .

(a)

F(p2) is in principle different &om F(p ) although one
can expect a similar functional dependence.

The symmetry of operators will be difFerent in difer-
ent mesons. Since we shall deal with J/g decays, it is
useful to consider the generalization of the pseudoscalar
results. All vertices in Fig. 1 are immediately applica-
ble to the 1 system by substituting p5 ~ —ip" and
contracting with the meson polarization vector. In the
limit of large M, the spin-spin interaction is weak and
therefore FI (p2) = Fv(p2).

(b)

III. CONVENTIONAL LIMIT

(c)

FIG. 1. Vertex factors for the coupling of pseudoscalar
quarkonium to quarks and gluons. (a) Quarkonium-quarks
coupling; (b) and (c) coupling to electric and magnetic glu-
ons respectively.

Now that the Feynman vertices for the model have
been made explicit, several calculations can be done
straightforwardly. But Grst, to understand the physics of
F(y2), consider the lowest-order diagram [Fig. 2(a)] con-
tributing to the electric form factor. The contact term
[Fig. 2(b)] involves a higher power of p and is therefore
neglected. Imagine that only the quark has an electric
charge and the antiquark is uncharged. The amplitude,
to leading order in the quark relative momentum p and
for small photon momentum q", is

where
(p+ —.'q)'

(»)

m2 P

Note that this vertex is directly expressible in terms of
F(p ) and, hence, as we shall see, in terms of nonrela-
tivistic quark wave function. This is a simple and direct
consequence of gauge invariance, and involves no new as-
sumptions. This is not true for the other gluon vertex
discussed below.

(a)

C. P-quark-magnetic gluon vertex [Fig. 1(c)]

This vertex follows from systematically expanding the
second term in Eq. (6), keeping only one gluon, and tak-
ing the matrix element indicated in Fig. 1(c). This yields P

p+—P
2

i pscr„„e q"Q(p, q),

with (b)

F(y) —F(z)
pi q 7

y —z
FIG. 2. Contributions from (a) direct and (b) contact

terms to the form factor of So.
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(2~)4 [(p+ 2P)2 —m2+ ie][(p —2P)2 —m2+ iz][(p+ 'P-—q)2 —m2+ is]
~ ~ ~

~

The p integration may be performed by keeping only the contributions of poles in the vicinity of small p . This
yields, for q2 = 0,

A= —2i es'. P d p
F(p')

(2~) ~ M'& (a+ p /m)

- 2

(18)

On the other hand, if we consider a charged spinless particle scattering &om an em field, this has an amplitude equal
to —2iee . P. This allows us to identify the factor in the brackets in Eq. (18) with the nonrelativistic quark wave
function:

F(p')
(2') ~'M'~'(e+ p'/m)

1
7Z(p) .

As a consistency check, we calculate the g ~ 2p decay in the model defined by Eq. (6). In the c.m. f'rame both
photons have large energy M/2, and therefore the contact term in Fig. 3(b), which is sharply damped by the form
factor Q, does not contribute. Figure 3(a) and its crossed version yield, for the amplitude,

& = 2e Ms e* (qi)sp(q2)qi~q2$+, (2O)

where

(2') [(p+ 2P) —m2+ is][(p —2P) —m + ie][(p+ 2q2 —2qi)2 —m2+ is]
~ ~ ~

~ (21)

'S, 'S,

P

q

(a)
'S,

P
'S,

(b)

'S, —'S,

(b)

FIG. 3. Contributions froin (a) direct and (b) contact
terms to the g ~ 2p decay rate.

(c)

FIG. 4. Probing the gluon distribution in a So meson:

(a) gluon and unobserved final state hadrons X; (b) gluon
emission from a quark line; and (c) gluon emission from So
vertex.
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Performing the p integration as before, using Eq. (19) to relate F(p ) to the wave function, doing the final state,
phase space, integration, and summing over colors, one arrives at the standard expression for g ~ 2p decays:

I q~g~ = 12&I, IR(0)l'
(22)

Only R(0) enters the expression, which is natural enough since the two quarks annihilate only when very close together
[and a check of the model in Eq. (6)]. Gauge invariance of the quarkonium state does not play a significant role in
this process.

The emission of a soft gluon or photon, as in the Ml transition J/g —+ rk + p (Fig. 4), does bring forth the issue
of gauge invariance in an important way because the contact diagrams [Figs. 4(b) and 4(c)] are unsuppressed. The
amplitude for the process is

A = 4i s ~—~ s*(q)Ep(P)P~qg(Tg;, +Z', „) .

Here M, P",e'"(P) refer to the J/g. The "direct, " or conventional term, follows from [Fig. 5(a)] and its crossed
version:

xd„—xM F~(q (p) F~(p —
~ q)

(27r)' [(p+ —,'P)' —m'+ i~][(p —
—,'P)' —m, '+ is][(p+ ,'P —q)'——m, '+ i~]

' (24)

Performing the p integration and keeping only the con-
tributions from the poles in the lower half plane near
p = 0 yields

"'p F~fq(p)F~(p —~q)
(2') s (s + p /m) ~

Ci
drr exp

~

—q r
~
R~~y(r)R„(r) . (25)

In the above, we have kept only the leading-order term
in the photon energy q . In the dipole approximation,
the exponential factor is unity and if the two mesons
had identical wave functions then one would simply have
Zg;, ——1. Because of the hyper6ne splitting this deviates
from unity, and a typical (model-dependent) value [5] is
Xg;, = 0.987. Another set of model parameters used by

I

I

the same authors yields 0.984, 0.920. From the ampli-
tude, Eq. (23), the decay width is readily seen to be

2I.„,('S, +' S.) = — " —'
3 m
2.41 keV . (26)

This differs substantially from the measured width,
1.11 + 0.35 keV. This is a well-known problem with the
usual charmonium model, and a wide range of explana-
tions exist for the factor of 2—3 discrepancy. These in-
clude relativistic corrections, missing efFects, anomalous
quark magnetic moment, etc. References to these may
be found in a recent review by Schuler [6].

The contact terms in Figs. 4(b) and 4(c), which are re-
quired by gauge invariance, may also be calculated quite
straightforwardly:

X „=4i &(p q)F(p)
(2~)~ [(p —,'P+ —,'q)' —m—'+is][(p+ —',P —-', q)' —m'+ i~]

(27)

4
COll M g

2~2

d'p &(p q)F(p)
(2vr)s s + p~/m

dpp'&(p, q)R(p) . (28)

Since ~q~ && ~p~, it is adequate to replace Q in Eq. (15)
by

&(P) = —2„d„.
At this point one needs to confront the following issue:

Since this is a correction term, it is adequate to take
FJgg = Fq ——F and gj/@ —gg —g The p integration
gives, keeping only the contribution of nearly coincident
poles near the origin,

X, „=——$M
1

2

OO
cL

dp(s + p~/m) R(p) pR(p)—
dp

(so)

what is I" equal to? We have seen that E is related to the
electric charge distribution and is expressible in terms of
the nonrelativistic (NR) wave function [Eq. (19)]. It is
possible to show that E is related to the magnetic re-
sponse of the system and can, in principle, also be found
from a NR quark model (NREM) calculation. But this
is not immediately useful as these calculations have been
done only for static quantities. Instead, we make the
physically plausible assumption that F(p) = $F(p) where
( is a scale factor. Substituting this into Eqs. (29) and
(28) yields
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(b)

bound heavy quarkonium system. It will be shown that
requiring gauge invariance of the hadronic state implies
the existence of a term which goes as x lnx, which
is more singular than the x dependence calculated by
Brodsky and Schmidt [7] using simple perturbative ar-
guments for positronium. An explicit expression for the
coefBcient of the x lnx term can be provided in terms
of the nonrelativistic wave function. Although calculable,
we shall not worry about the x terms as this is anyway
a theoretical exercise —stable quarkonium targets unfor-
tunately do not exist, and so gluonic distribution is not
directly measurable.

The starting point [8] is the formula for the gluon mo-
mentum distribution inside a spinless hadronic target,
written as a correlation of operators on the light cone:

G(x) = x —e'" (PIA'(0)A'(An)IP) .dA;q
(32)

p

Here k" and n" are two null vectors k = n = 0 with
k. n=1, k =n+ =0 andj'~ =k" + —M n~.) 2

Only the transverse components of the gluon Beld are
involved. Inserting a complete set of states between the
two operators, and limiting the outgoing X to two quarks
only, yields

FIG. 5. Contributions to Sz ~ p + So decay rate from:
(a) direct diagram; (b) contact diagram with p emanating
from Sq vertex; and (c) contact diagram with p emanating
from So vertex.

Any given quarkonium model allows for the calculation of
s' and (1/p ). For definiteness, assume a Gaussian wave
function of the type exp( —p /2P ), which yields (1/p2) =
2/P . Fitting to the q, decay rate gives P2 0.413 GeV2.
With m, = 1.65 GeV, a commonly used value for the
charm quark mass, it follows that 2', „=—0.65(. Now
suppose that the entire (large) discrepancy between the
measured decay width and the conventionally calculated
value can be attributed to the magnetization term which,
as we have argued, symmetry requirements force us to
include in the Lagrangian, Eq. (6). The total decay rate
1s

&(~) = ~ [d»l[d»]~(* —q. ~) I(»»IA'IP) I' (33)

A summation on physical gluon polariations (i = 1, 2), as
well as color indices (a = 1, 8), is implicit. The measure
[dp] is

dp I p~
[ 1

—2„+(2), . (34)

We now concentrate upon calculating the matrix ele-
ment in Eq. (33). If we limit our interest to the terms
most singular in x, it turns out that the term corre-
sponding to radiation from a quark line [Fig. 4(b)] can be
ignored. The emission of a magnetic gluon from the ver-
tex [Fig. 4(c)] is also subdominant this follows because
the amplitude, Eq. (14), vanishes as q + 0. The domi-
nant contribution comes from the emission of an electric
gluon. Keeping just this term, we have from Eq. (11),
that

I'( Sg m p+' Sp) = —ne~ — q(X&;, +2, „)3 m
= 1.11 + 0.35 (for J/@ -+ p+ q, ) .

(31)

g iD"
(p»2IA" IP) = 2,n(»)»~(p2), p-& .

m q

The light-cone propagator is used in the above:

(35)

This suggests that ( is a number around 0.33—0.66. With
the magnetization term thus determined, one can make
physical predictions for quarkonium processes involving
soft photons or gluons. An application to gluon frag-
mentation into heavy quarkonium will be described in
the section after next.

q"n +q n"—g +
q n

(36)

Keeping only the most singular term at small x, as well
as the lowest-order term in the quark relative momentum
p~ = —(p~z —p2), and performing the polarization sum,
the squared matrix element is calculated to be

IV. GLUONIC DISTRIBUTION

In the present model it is possible to calculate the light-
cone distribution of low momentum gluons in a weakly

This is the diagram which yields the x behavior in the
work of Brodsky and Schmidt [7].
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):I(p»21&*IP) I' = (37)

Again, for small x,

q = —xM —q~

[dp 1[d»]~(*—~ ) = dp d p~d K~
(39)

where K~ ——pi~ + p2~. This yields

8p 8 peed Kg K p
(27r) (x2M +K )

From Eqs. (12) and (13) Q is related to the wave function
Eq. (19) and its derivative through

into Sp and Si heavy mesons.
In the first part of this section we show that the result

of the calculation of Braaten and Yuan [9] can be exactly
replicated by considering the direct diagrams [Fig. 6(a)]
implied by the model. The only difference is that our
calculation can be performed entirely in field theoretical
language, which is perhaps an advantage. In the sec-
ond part, we show that long wavelength magnetic gluons
emitted by the contact diagram [Fig. 6(b)] augment the
previous contribution. We remind the reader that, in the
present model, "long wavelength" nevertheless means a
wavelength sufBciently small for perturbative @CD to be
valid: as discussed earlier there is a hierarchy of scales,
~@CD (( q (( p &( M.

The starting point of the calculation is the expression
for the unpolarized gluon fragmentation function into a
specific quarkonium state with momentum P". The ref-
erence frame is chosen to be the rest frame of the hadron:

dE
dt

(41) D(z) = — —e *"'«I&'(0)IPX) &PXI&'(») I0) .
1 dA

where t is a dimensionless variable:

(&'+ 4&')
m2

( K' p' 2p+' )
4m' m' m' )

~'+ + +
2 2X 77 (42)

(43)

Performing the angular integration yields, for the gluon
distribution,

(45)

The notation here is identical to that in the previous sec-
tion, i.e. , k2 = n2 = 0, etc. The expression for D(z) fol-
lows from duplicating the analysis of Jaffe and Ji [10] and
replacing quark operators with gluon operators. Since
D(z) involves only the "good" components of the gluon
field, it is a twist two quantity. A sum on the unob-
served states X is implied. To see more clearly the phys-
ical meaning of Eq. (45), put ~PX) = Ct(P) ~X), where
Ct (P) creates a meson of a given type. Using complete-
ness of the states ~X) gives

where A is a positive constant determined by the nonrel-
ativistic quark wave function,

20!
A = dye g (rI) .

3% p
(44)

This is the main result of this section. It shows that
demanding gauge invariance of the hadronic state has a
profound effect upon the distribution of low momentum
gluons.

=S,

V. GLUON FRAGMENTATION

Our final application of the model developed in this pa-
per is to calculate the rate of fragmentation of gluons into
quarkonia. Gluon fragmentation refers to the process of
converting highly virtual gluons into hadronic physical
states. The calculation is done in two parts. First, the
fragmentation function is calculated at the scale of the
heavy quark mass, and, second, it is evolved perturba-
tively from low to high virtualities. If one assumes that
perturbative @CD is valid even at the scale of the charm
quark mass, then a first principles calculation of fragmen-
tation becomes possible. Recently Braaten and Yuan [9]
have performed such a calculation for gluons fragmenting

p+

- 'S,

FjG. 6. Gluon fragmenting into q( So). (a) Direct diagram
and (b) contact diagram.
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» (~l&'9')&(&)l~)
gP+ z) (qlq)

(46)

This makes apparent that D(z) is essentially the proba-
bility of ending a specific hadron with + component of
momentum equal to zq+. The transverse momentum q~ (PX~A&~O) =,"A,".. . (47)

of the incoming gluon is integrated over.
Now consider the production of a So state &om the

process in Fig. 6(a). After calculating traces, the ampli-
tude for the process is

Sg m—s" P~spl~Zg;, ,
'

(48)

8 p F(» —2l)
(2vr)4 [(p + ~

q) 2 —m2 + ic] [(p ——q) 2 —m2 + is] [(p + 2 q —l) 2 —m2 + is]
~ ~ ~

~ (49)

The crossed diagram doubles the above value of Z. Since the form factor, which is essentially the wave function,
restricts the relative quark momentum to small values, it is apparent &om the denominators in Eq. (49) that the
dominant contribution to the integral comes &om the region around q 4m . Performing the p integral as in the
previous applications, and using Eq. (19), yields, for the direct amplitude,

8
(50)

where 8 = q is the mass of the fragmenting gluon, and we have set M 4m . The sum over unobserved states in
Eq. (45), which amounts to an integration over the gluon momentum l, leads to

1 g g (0) ds [(1 —2z+ 2z )s —Ssm z+ 16m ]
6vr2 M Mug

82 (s —M2) 2 (51)

The lower limit of integration follows from setting the minimum value of q&
——I& ——0 in

M2 z+ (52)

A color factor of 1/12 has been included in Eq. (51). Performing the integration yields

D(z) = —' [3z —2z + 2(1 —z) ln(1 —z)] .~.' I&(0)I'
3m M3

This is precisely the result of Braaten and Yuan [9], i.e. , Eq. (8) of their paper.
The contact diagram of Fig. 6(a) is calculated similarly, and it has the Lorentz structure given in Eq. (48) with

2 d4p g(p, l)
M2 (2m) 4 [(p + -'q) 2 —m2 + is] [(p —-'q) 2 —m2 + is]

(54)

Only the vertex equations (14)—(16) are involved; electric gluons do not contribute here. Since the magnetic form
factor Q restricts p to small values, &om the two denominators in the above integral it is evident that the major
contribution comes from small values of the outgoing gluon momentum l. Performing the p integratiop gives

8 d3
(55)

il[ = (s —M')/2M . (56)

Using Eq. (29) yields

Since we have chosen our reference frame as the rest-
&ame of the produced meson, it follows that

m d p 1dF
2 (2')s p dp

1 s g(0) +M3/2

x drrg(r)
0

(57)
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Thus the total amplitude is

(PX[A"]0),, + (PX~A" ]0),.„
8e
,], (,)D""&-wI &' P'((@(0)

--,'~(0)), (58)

where

cM
(o) =&(0)+

2
drr&(r) (59)

Using Eqs. (58) and (59) to calculate the fragmentation
function yields

D(z) = ', q(z)(R(0) —
—,'S(0))', (6o)

where

rl(z) = 3z —2z + 2(l —z) log(1 —z) (61)

and

s(0) = /4~~(0) . (62)

The first term in Eq. (60) is the direct term and is the
same as Eq. (53), while the second is the contact term.
To estimate numerically D(z), we shall make the same
assumption as in Sec. III, i.e. , that I" (p) = (I"(p) and
use the same Gaussian wave function. D(z) can then be
expressed as

where a varies from 0.35 to 0.71 as ( goes from 0.33
to 0.66, the range estimated in Sec. III. It is clear from
Eq. (63) that except for a scale factor (I —a) the frag-
mentation function at the initial scale, as well as after
evolution, is identical to that calculated by Braaten and
Yuan [9]. The scale factor, however, causes a substantial
decrease in the magnitude of D(z),

quarkonium mass plays the role of the "hard momen-
tum. " The arbitrary number of derivatives in the theory
serve to bring in the appropriate amount of nonlocal-
ity or, equivalently, a form factor in momentum space
which embodies the extended structure of the meson.
This form factor, which is the basic input into the model,
was shown to be directly related to the nonrelativistic
quark wave function, a quantity calculable in any given
potential model.

An important consequence of gauge invariance is the
emergence of Feynman vertices representing the direct
gluon-quark-antiquark-meson interaction. These vertices
have a substantial effect upon certain heavy-meson phe-
nomena. For example, the radiative Mi transition,
J/g ~ rI, + p receives an additional contribution from
one such vertex. This could help explain why the usual
decay calculations invariably overestimate the decay rate
by a factor of 2—3. As another example, we have cal-
culated the light-cone momentum distribution of glu-
ons in heavy quarkonia. Although these distributions
are probably of no practical interest, nevertheless the
present model does have some interesting theoretical con-
sequences. We find that the QQG So vertex, which con-
tributes to G(x), not only gives the x behavior but also
has a x lnx part which is more singular at small z.

As the final application of our model we considered
the fragmentation of gluons into So mesons. If we ig-
nore the contact (gauge) diagrams, then the results of
Braaten and Yuan [9] are exactly recovered. But includ-
ing these diagrams leads to a downward rescaling of the
their results by an amount which could be substantial. A
proper calculation depends upon knowledge of the mag-
netic form factor, called F(p ) here, which in principle
could be determined from a quark model calculation that
includes states of arbitrary excitation. Finally, we remark
that the model discussed in this paper is extendable to p
states as well. This would be interesting because the cen-
trifugal barrier keeps the quarks relatively further apart,
and thus makes the issue of nongauge invariance of the
meson state more acute.

VI. SUMMARY

We have presented in this paper a low-energy, effec-
tive, gauge-invariant theory wherein the fundamental de-
grees of &eedom are quarkonia, quarks, and gluons. The
interaction has the form of a twist expansion familiar
from hard processes and consists of towers of opera-
tors grouped together according to their symmetry. The
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