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Amplitude zeros in radiative decays of scalar particles
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We study amplitude zeros in radiative decay processes with a photon or a gluon emission of
all possible scalar particles (e.g. , scalar leptoquarks) which may interact with the usual fermions
in models beyond the standard model. For the decays with a photon emission, the amplitudes
clearly exhibit the factorization property and the diA'erential decay rates vanish at specific values
of a certain variable which are determined only by the electric charges of the particles involved and
independent of the particle masses and the various couplings. For the decays with a gluon emission,
even though the zeros are washed away, the difFerential decay rates still have distinct minima. The
branching ratios as a function of leptoquark masses are presented for the scalar leptoquark decays.
We also comment on the decays of vector particles into two fermions and a photon.

PACS number(s): 13.40.Hq, 12.38.Bx, 12.60.Fr, 14.80.—j

I. INTRODUCTION

It has been known that there is a specific angle at which
the angular distribution of the process qq ~ Wp in low-
est order vanishes, the so called radiation amplitude zero
(RAZ) phenomenon, if the magnetic moment of the W
has the standard model (SM) value K = 1 [1]. This phe-
nomenon is a consequence of the factorization property of
the four-particle scattering amplitude [2]. For any gauge
theory, the internal symmetry (charge) dependence and
the polarization (spin) dependence of the scattering am-
plitude can be factorized into separate parts at the tree
level if one or more of the four particles are massless
gauge bosons. Such a characteristic phenomenon may
provide a test for the magnetic moments of the W [3]
and the charge of quarks [4]. The RAZ phenomenon
has been studied in a number of processes in the stan-
dard model and it has also been investigated for processes
with charged Higgs bosons in extensions of the standard
model, such as qq ~ H p, H —+ qqp and H ~ dug
(where du are squarks with charges —— and ——,respec-
tively) [5—7].

Depending on the particle contents in the model,
there are difFerent processes which exhibit RAZ phe-
nomena. The particle contents of the minimal standard
SU(3)c x SU(2)1.x U(1)y. model are (1) gauge particles: a
gluon which transforms as 8 under SU(3)c and does not
transform under SU(2)1. x U(l)v. , W+, Z, and p which
are the gauge particles of SU(2) J. x U(1)y, (2) the Higgs
particle II which transforms under the SM group as (1,
2, 1); (3) the fermions, which are left-handed quarks Qi,
right-handed up-type quarks uR and down-type quarks
d~, left-handed leptons II„and right-handed charged
leptons eR. Their transformation properties under the
SM group are

I: (3~2 s) ~ uR: (3~1~ s)i d&: (3~1~ s)~
11, . (1,2, —1); eR . (1, 1, —2).

In this model, the factorization property exists in the

processes qq ~ Wp and lv ~ Wp [8]. If the model
is extended to include two or more Higgs doublets, like
the supersymmetric SM, charged Higgs particles H+ ex-
ist. Many theories suggest the existence of new particles.
For example, in superstring-inspired Es models [9], lep-
toquarks which couple to a lepton-quark pair naturally
appear as the supersymmetric partners of the exotic col-
ored particles which lie in the 27 representation of E6.
These particles are bosons with fractional charges and
color triplets. There are also many particles which can
couple to standard fermions directly at the tree level.
With new particles there are more processes which ex-
hibit the RAZ phenomenon. It is interesting to study
the RAZ phenomenon in all these processes. In Table I,
we list all the scalar particles which can couple to the
standard fermions at the tree level.

If some of the new particles in Table I are not too
heavy, they may be produced in collider experiments.
The scalar leptoquark production in hadron colliders or
ep colliders has been studied in many papers [10,11]. The
discovery limits depend on the strength of the Yukawa
couplings A. For example, it was shown that the discov-
ery limits for pair production of scalar leptoquarks are
M —120 GeV at the Fermilab Tevatron, and the lim-
its for single production are model dependent [10]. In
particular, an ep collider may be considered as an ideal
machine to search for leptoquarks. At the DESY ep col-
lider HERA (scalar) leptoquarks with masses as heavy as
200 Gev can be discovered even in the case of couplings
as small as 0.01 [11]. Thus, it may be possible, for in-
stance, at HERA, to detect the RAZ phenomenon in the
decays of scalar leptoquarks with relatively heavy masses
if the couplings are not too sma'l.

In this paper, we study the RAZ phenomena in decay
processes with a photon or a gluon emission of all possible
scalar particles that can couple to the standard fermions
at the tree level. We study these RAZ phenomena in
a model independent way. We assume the existence of
these particles and find the properties related to the RAZ
phenomena. The results can be easily applied to a spe-
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Scalars
H1

H2

H3

H4

H5

H6
Hs
Hg

H1o
H11

H13
H14
H15
H16
H17
H18
H19

Representation
SU(3) SU(2)

1 2

7
3
1
3

2
3

2
3
8
3
2
3
2
3
2
3
2
3
8
3
8
3

4
3

3

Fermion bilinears
A„Qg uR) Ag Ql. da,

A, LI.eR

A2Qt, uR, A2Qi, dR
I

A3QI. eR, A~uzLL,
l

A4dRLL,

AgQL, LL,
II

A5 uReR
ASQgL~
AsdReR

I

AguRd&, AgQI QL
I

A)Duad~, AzoQI. QI.
Aii QI, QI.
A)2QI QL,
A13&R&R
A14&R&R
A]-5dRAR

A16dRQR
A17LI.LI,
A1s LI.LI.
AlgeReR

TABLE I. Set of scalar multiplets that can couple to the
standard model fermions, as well as their quantum numbers
under the gauge groups. The fermion bilinears to which the
scalars may couple are also shown with the corresponding
Yukawa couplings A. In the table all generation indices are
suppressed.

M = ~e
l „— „ l

qg(pg)(A+ Bps)ll„q2(p2)e",Qs Qi )
(pk p, k)

where Qs and Qq are the electric charges of S and qq,
respectively, and e" is the polarization vector of the pho-
ton. II~ is defined by

1II„= [p . k(2pg + p„p k) —2p„pq kj.
2p . k

The factor (~~& —~'&) causes the RAZ phenomenon and
determines the position of the zero.

Here we would like to comment on similar decays
of a vector boson into two fermions and a photon.
The most general vector boson-fermion coupling can be
parametrized as

&i' = fig„(a+ bps) f2V",

where a and 6 are model-dependent coupling parameters.
For the decay V(p) ~ fq(pq) f2(p2)p(k), there are three
diagrams at the tree level similar to the ones in Fig. 1.
The decay amplitude can be written into the factorized
form as

„ l fi(px)ll~ (~+ bus)f2(p2)&", &v
&Qv Qi l-
(p ~ k py k)

cific model.
We present in Sec. II the radiative decay cases along

with a photon emission and in Sec. III the cases along
with a gluon emission. In Sec. IV our conclusions are
summarized.

where Qv and Qq are the electric charges of V and fj,
respectively, and e" and e& are the polarization vectors
of the photon and the vector particle, respectively. II„
is de6ned by

II. CASES WITH THE EMISSION OF A PHOTON S

The most general coupling of a scalar S to fermions qq
and q2 can be parametrized as

l:;„t, ——qg (A + Bps) q2S, (2)

where A and B are model-dependent coupling parame-
ters. To lowest order, there are three diagrams (Fig. 1)
which contribute to the radiative decay

S(p) m q~(p~) + q2(p2) + 7(k). (b)

The decay amplitude is given by

M=M +Mg+M

where M, Mg, and M, are the amplitudes corresponding
to (a), (b), and (c) of Fig. 1, respectively. As mentioned
before, there is a factorization property in the decay am-
plitude M because a massless gauge particle p appears in
the processes. Indeed the decay amplitude can be written
in the factorized form as FIG. 1. Tree level diagrams for S ~ q1q2p.
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1II„„= [p. k(2p, „+p„p k)p„—2pi . k(p„p„+ p„k„—g„„p k)].
2@2. A:

A'~ U

e;(1 —ps)u~Hs ~ + e, (1+ps)u; Hs
2

' ' 3 2

A'~ A
'~

e;(1 —ps)d~Hs ~ + v;(1+ ps)u, -Hs

+H.c. , (10)

%'e have used the vector-vector-photon vertex which is
the same as the W-W-photon vertex, except for the cou-
pling strength given by eqi . The factor (~& —~'&) is
the same form as that for the scalar decay given in Eq.
(5). We see that the same factorization property exists
in vector boson decays.

Table I shows the set of possible scalar multiplets Hq-
H&9, as well as their quantum numbers under the gauge
groups color SU(3)c, SU(2)l„and hypercharge U(l)y.
We follow the labeling as in Ref. [12]. Since we do not
include right-handed neutrinos, Hq and H2o of Ref. [12]
are omitted. Also shown in the table is the fermion bilin-
ear products with the corresponding Yukawa couplings.

As a representative example, we consider the scalar
leptoquark H3 in Table I with the Lagrangian

M3 —ie
l l

ei(pi)(A + Bp,)n„u, (p2)E~,
. & q; q; &

gpi. k p2 k)

where II„ is defined by

1
II = [pi . k(2p2„+ p kp„)2p. k

—p2 . k(2pi„+ p„p . k)]. (16)

The amplitudes for H —+ e,d p and H3 ~ viu .p
have the same form as the above one if we put A3'~ = 0
or As

——0, respectively. We see that Eq. (14) is of the
general form of Eq. (5). The amplitudes obviously reveal
the factorization property and the factor (~~& — ~*&)

determines the position of the zero in each process.
For convenience, we use the following variables intro-

duced in Ref. [6]:

2(pi + p2) k
M2

where i and j are generation indices, and the Yukawa
I ~ ~

couplings Az~ and A3'~ are a priori arbitrary.
The corresponding decay processes are

and

(pi —p2) k

(pi + p2) k

and

Hs "(p) ~ e'(») + u~ (p2) + ~(k)

Hs "(p) ~ e'(») + d~ (») + ~(k) (12)

In the H rest frame, x is just the scaled photon energy
2E~/M. The x and y limits are given by

0&x&1 —r

and, for a given fixed x,

H. "(p) ~ ~'(pi) + u~ (p2) + ~(k)

where H, e; (or v;), and u~ (or d~) have masses M, m;,
and m~, and electric charges q~, Q;, and q~, respec-

tively. The lowest-order amplitude for H3 ~ eiu~p
-5/3

1S

Ms = ~e
l

— '„
l e'(I i)(A+»s)II~u~(»)e,"PQH Q'

qp k pi. ky

(14)

b, —A(x) A+ A(x)Cy( )
1 —x 1 —x

miPi= M) Pj

~= Pa +&g~
2 2

mj . . 2r = (~'+u~)M
L=p; —p.2 2

where

A(x) = Q(l —x)~ —2(1 —x)e+ b, 2.

The parameters r, e, and L above are defined as

(20)

(22)
where A = (As~ + As' )/2, B = (As' —As )/2, and II~
defined by Eq. (6). The amplitude can be written in a
slightly different form as

The differential decay rate for H3 —+ eiu~p in the-5/3

H rest kame can be described as

(23)

with QH = Q; + Q, = —5/3, where

2 2

Q'+ Q,
(24)

]

and

p,
' l0=1—x —2

~1+ y 1 —y)
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TABLE II. The table shows all possible radiative decays of the scalar particles presented in Table
I. The Q values for each decay are shown in parentheses.

Hi 2 m u, d~p
-5/3

H3 m e,u~p
—2/3

H3 m v,.u~p
1/3

H5 ~ vide
2/3

H6 —+ u, u~p
-4/3

H6s ~e
Hg, io, iv, is ~ e'~i&

—2/3
11,12,15,16 i 2~

(i,j generation indices)

(Q = —.')
(Q=o2),
(Q = —1)
(Q = —1)
(Q = —1),
(Q = 0.5),
(Q =1)
(Q=o)

Hi ~ eivjp
—2/3

H3 4 -+ e,d~p
1/3

H4 ~ &idj p—1/3
H5 6 ~ eius

1/3
9,10,11&12 2~
4/3Hii 12 13 14 ~ uiu

His ig ~ e'ejp

(Q =1)
(Q= 2)

(Q = —1)
(Q=5)
(Q = —1)
(Q =3)
(Q = o)
(Q=O)

The difI'erential decay rates for H3 —+ e,d~p and

H3 ~ v, uzi have the same form as Eq. (23) with

QIr = Q, +Q~ = —2/3, and A3'~ = 0 (for H3 m e;d~p)
or A3~ —— 0 (for H3 / ~ vuzp). From Eq. (23),
it is clear that the differential decay rate vanishes at
y = Q = *+ ' independent of x, the masses, and

the couplings. For H3 -+ e,u~p, y = Q = 0.2, for
—5/3

H3 ~ e, d~ p, y = Q. = 2, and for H3 / m v;u~p,
y=Q= —1

For a fixed x, the y limits are given by Eq. (20). In
some decay processes the corresponding values y = Q
for the RAZ's are not between these limit values and
the RAZ's are outside the physical region. Due to this
reason, it is impossible to detect the zeros in some of the
radiative decays.

We summarize in Table II all possible radiative decay
processes together with the corresponding Q values. In
the table we have omitted processes of the type H

I

qqp which does not have a RAZ with finite Q. The only
detectable RAZ's occur in the radiative decays of H1,
H2) H3) H6) HS) H11) H12) H13) H14) H18) and H19.
some decays, such as H —+ eve, H / —+ vugg and
so on, the RAZ's are just outside the physical region at
y = Q = +1. The general form of the decays showing
the detectable zeros is

H-(&) ~ a*(») + b'(«b~) (») + ~(&)

, ((Qa Q,„ia'(»)(&+ &»)II~b'(»)e,"
pi k)

(27)

where

where a; and b~ (or bz.) denote (anti) lepton or
(anti)quark. The indices i and j are generation indices
and o. = 1,2,3,6,8,11,12,13,14,18,19. The corresponding
decay amplitude can be written as

A = B =
2 for H1) H2, and H6)

A'~A= —B= = for H8,2 . .
3 (A~ + A~ ) and + 3 (A~ A~ ) for H31 Hill H12) Hi31 Hi41 Hisl Hisl

and II„ is given by Eq. (6).
In Figs. 2—6, we show some scalar leptoquark decays where the RAZ's are detectable. We normalize the difFerential

decay rate for H ~ a;b~p to the corresponding two-body decay rate I'o (H ~ a;b~) Here I'o .is given by

r, —= r, (H -+ a, b, )

= —V 1 —2e+ A3[(~A'~~ + ~A "~ )(1 —e) + 2(A~A "*+A*'*A '~)pp, .j,
4m

(28)

0.005- 0.004-

o. oo4:x ~~ x 0.003-

0.003-

0.002-

C)

0.002-

0.001- 0 001.

0 . ~. . . . ~ . . . ~

-0.75 -0.5 -0.25 0.25 0.5 0.75
0-.
-0.75 -0.5 -0.25 0 0.25 0.5 0.75

FIG. 2. (1/I'o)(d I'/dxdy) versus y for H —+ eery with
x = 0.4 and M = 200 GeV.

Y

FIG. 3. (1/I'o)(d I'/dzdy) versus y for H ~ m eup with

x = 0.6 and M = 150 GeV (As = As).
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0.004- 0.15.

0.003-

C)

0.002-

0.001-

0-
-0.75 -0.5 -0.25 0.25 0. 5 0.75

0.145;

O. 14'

0.135;

0.13-
CQ

0.125.

0.12.
0 50 100 150

M(GeV)

200 250 300

FIG. 4. (1/I' s)(d I'/dxdy) versus y for H ~ eup with

x = 0.6 and M = 150 GeV (As ——2As).

FIG. 6. B(H -+ eup) versus M w'ith x ) 0.1 and
I

Ag ——A~.

where we have used the parameters defined by Eq. (22).
In the figures we plot (1/I o)(d21'/dxdy) which shows
the position of the RAZ and also indicates the relative
branching ratio of the decay H ~ a, bzp to that of the
decay H ~ a;b~. In Figs. 2—4, we plot the differen-
tial decay rates versus y for the scalar leptoquark decays
H / ~ ebp and H / ~ cup. Figure 2 shows the
result for H / ~ ebp with x = 0.4 and M = 200 GeV.
The plots for H / —+ cup are shown in Fig. 3 with
A3 ——A3, x = 0.6, and M = 150 GeV, and in Fig. 4
with A3 ——2A3, x = 0.6, and M = 150 GeV. In each case
the differential decay rate vanishes at the corresponding
values y = Q (0.5 and 0.2).

The branching ratios versus M are plotted in Figs. 5
and 6. Figure 5 is for B(H / —+ ebp) = I'(H
ebp)/I'o(H / —+ eb) and Fig. 6 is for B(H s/s -+
eup) = I'(H / ~ eup)/I o(H / ~ eu) with As ——As.
In both cases, to ensure identification of photons in the
experiment, we have used the cuts on the photon energy:
x & x,„t —— M

"' ——0.1 . We see that the ratio of the
radiative decays to the two-body decays are reasonably
large ( 10% ). Once these particles are discovered, it is
possible to study the RAZ phenomena.

III. CASES WITH THE EMISSION
OF A CLUON

Ctpjp]pt —Agq~ (1 + +5)qjHA e+ H.c ~ (29)

In this section we study the RAZ phenomena in scalar
particle decay processes with the emission of a gluon. We
shall find in this case that a zero does not appear in the
differential decay rate, while the amplitude clearly shows
the factorization property and reveals the color charge-
dependent factor which is responsible for the zero. The
reason is as follows: When we calculate the differential
decay rate from the given amplitude, we should sum over
all color indices of the final particles, because we cannot
detect each color state in experiment. The summation
over all color indices of the product particles washes away
the zero which at least formally appears in the amplitude.

Now, we investigate this phenomenon specifically. As
we can see in Table I, only three types of decay processes
may be possible: SU(3)c triplet, sextet, and octet types.

The Yukawa couplings of the scalar particles to quarks
can be written as follows.

SU(3)c triplet case (Hs, H4, Hs, Hs, Hy, Hs, HQ, Hrq,
H131 H15) ~

SU(3)~ sextet case (Hqo, Hq2, Hq4, Hqs):

0.09- Zse„t, t ——A, q; (1 + ps)q H, + H.c. (H'~ = —H~') .

0.OS5-
I

0.08-

CQ

0.075

0.07-

SU(3)c octet case (H2):

&-t.t = Aoq'T, ', (I+vs)q, H +H .

(3o)

(H*=H ).
0 50 100 150 200 250 300

M(GeV)

FIG. 5. B(H ~ —+ envy) versus M with x ) 0.1.
Here Aq, A„and A denote the Yukawa couplings for
triplet, sextet, and octet cases, respectively. q and q'
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may denote the different quark Havors each other. The
indices i, j, and II: correspond to the quark color and run
&om 1 to 3, and a corresponds to the gluon color and
runs &om 1 to 8. T; is the ij component of SU(3)c
color matrices T satisfying

g(

ga

q.

[T,T ] =if s,T', (32)
Cq.
,

where f s, are the antisymmetric SU(3)c structure con-
stants. Here the summation over the repeated indices are
assumed.

We consider the three-body decays of the scalar par-
ticles defined by Eqs. (29), (30), and (31) into a quark-
antiquark pair (or two antiquarks) and a gluon. The
Feynman graphs for the triplet case are shown in Fig. 7.
For the sextet and the octet cases the Feynman graphs
are similar, except that the decaying scalars have differ-
ent structure of indices such as H,.z for the sextet and H
for the octet.

The amplitudes in each case have the same form except
for "the color charge-dependent factor" as follows:

q.

C

q.

FIG. 7. Tree level diagrams for the triplet case
0& —+ q, q~g where g denotes a gluon with color index a.

M = ig, A x ( color charge-dependent factor ) x q, (pi)(1 + ps)ll„qz (p2)e ~,

where A corresponds to Aq, A„or A in each case and in the octet case q,'. (pi) is replaced by q;(pi). e is the
I

polarization vector of gluon and II„ is the one defined by Eq. (16). The color charge-dependent factors are given by

@AD rpQ

(
' ' —" ' *) for the decay of a triplet scalar Hi,

color charge- &
~ ~~i T,b j(

"' „—' „"') for the decay of a sextet scalar H
q dependent factor

p
g&(

"
&' + " &') for the decay of an octet scalar Hs.

(34)

As we have mentioned, the amplitudes clearly reveal the factorization property and the color charge-dependent
factors are responsible for the RAZ phenomena. However, to obtain the differential decay rates, we should sum
over all color indices of the final particles. For example, in the case of an SU(3)c triplet scalar decay, the color
charge-dependent factor which is now multipled by the complex conjugate of itself and summed over all color indices
gives

Ta&lim Tm j
p2. A;ijma

8 1 1 1

3 (p k)2 (p . k)2 (p k)(p . k)

128 y + 3
3M4~2 (] y2) 2 (35)

where i,j, and m run from 1 to 3 and a runs from 1 to 8, and we have used the variables z and y defined by Eqs. (17)
and (18). We note that comparing Eq. (33) with Eq. (15), the differential decay rates obtained from the amplitudes
of Eq. (33) have the same form as Eq. (23), except for the color charge-dependent factors multiplied by the complex
conjugates of themselves and summed over all color indices, such as Eq. (35). However, since (y2 + 3)/(1 —y2) 2 & 0,
it is obvious that no RAZ phenomena occurs in this case.

The cases of an SU(3)~ sextet and an octet scalar decay show the same phenomena. Explicitly, after being multiplied
by the complex conjugates of themselves and summing over all color indices, the color charge-dependent factors give

E;,.I „;.g'

ijla pq A;

8 9 7+ i*', „"I' ( ) = sM', , (i" y+, ), & 0

for the sextet case,

for the octet case,
(36)
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25 '

CV

20 ~

15 ~

+
CV 10-

5-

are washed away, the differential decay. rates have the
characteristic property —the plot of the differential decay
rates versus y behaves like the curve of (ay +b)/(1 —y )
with constants a, b ) 0 and so has the minimum only at
y = 0 which is independent of x, the particle masses, and
the various couplings.

IV. CONCLUSIONS

0-
-0.75 -0.5 -0.25 0.25

k

0.5
k

0.75

FIG. 8. The plot of &" +~&, versus y. The minimum ap-
pears at y = O.

withi, j, and/ = 1, 2, 3anda = 1, 2, . . . , 8. Fig-
ure 8 shows the characteristic curve of the function
(ayz + b)/(1 —y )2 (a, b ) 0) with a = 1 and b = 3. The
minimum of the function occurs at y = 0, independent
of a and b.

Therefore, we find that in the cases of the decay along
with the emission of a gluon, even though the RAZ's

tA'e have studied the amplitude zeros in the radiative
decay processes (along with the emission of a photon or
a gluon) for all possible scalar particles which may inter-
act with the standard fermions at the tree level. For the
decays with a photon emission, we have shown that the
amplitudes exhibit the expected factorization property
and the differential decay rates in the variables x and y
vanish at y = Q which is independent of x, the parti-
cle masses, and the various couplings A. The branching
ratios versus various leptoquark masses were calculated
and plotted for the scalar leptoquark decays.

For the decays with a gluon emission, we have found
that even though the RAZ's are washed away, the difFer-
ential decay rates still have the characteristic property
that there is a minimum at y = 0 independent of x, the
particle masses, and the various couplings.
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