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We derive a model-independent upper bound for the axial-vector form factor of the B — D*

transition at zero recoil, Fg_,p+.

The form factor turns out to be noticeably less than unity. The

deviation of Fg_, p+ from unity is larger than previously anticipated. Using our estimate we extract
|Ves| from the measured exclusive rate of B — D*lv extrapolated to the point of zero recoil. The
central “ exclusive” value of |V | is in agreement with the value obtained from the inclusive semilep-
tonic width I'(B — X_.lv). We argue that the theoretical uncertainty in determining |V.s| from the
total inclusive width is significantly reduced if a constraint on the quark mass difference m, — m.
stemming from the heavy quark expansion is taken into account.

PACS number(s): 12.15.Hh, 12.39.Hg, 13.20.He, 13.25.Hw

I. INTRODUCTION

The precision determination of |Vcp|, the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element, is one of the
most important practical applications of the heavy quark
expansions in B physics today. Two methods allowing
one to extract |Vi| from data are commonly used: the
inclusive approach (from the total semileptonic width of
the B meson) and the exclusive one (based on the decay
amplitude B — D*ev extrapolated to the point of zero
recoil). Both methods have their own advantages and
drawbacks, purely experimental and theoretical. In this
paper we address the problem of the theoretical uncer-
tainties unavoidable in obtaining |V.s| from experimental
data given the status of present-day QCD. The theoret-
ical uncertainty usually quoted for |V| dominates all
other error bars; see, e.g., [1,2]. Our task is to show that
it can be significantly reduced provided that full infor-
mation stemming from the fundamental QCD is properly
used. Both the “exclusive” and “inclusive” values of |Vep|
will be considered. The exclusive method has a larger
experimental error due to lower statistics and the need
of extrapolation to the point of zero recoil. The mea-
surements of the inclusive semileptonic rates are more
accurate.

On the theoretical side, the sources of uncertainty in
the two approaches above are different. In the inclu-
sive method the theoretical expression for the width de-
pends on the b and ¢ quark masses which are allowed to
vary independently within certain limits. In the exclu-
sive method the amplitude is expressed directly in terms
of known masses of B and D* mesons; however, it is the
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B — D* form factor at zero recoil, Fg_,p-, that is not
known exactly. According to the theorem of Ref. [3] (see
also [4]) in the limit mp . — oo (mp/m. fixed) the appro-
priately normalized form factor Fg_, p- is equal to unity.
For the actual values of the quark masses there exist cor-
rections in the inverse powers of the masses. Linear cor-
rections are absent at zero recoil 3, 5], and the leading
nonperturbative ones are quadratic in 1/mp.. So far,
they have not been calculated in a model-independent
way, although some estimates exist in the literature.

We go beyond the theorem of Refs. [3, 5] obtaining a
model-independent bound on the size of 1/ mz’c correc-
tions in terms of the expectation value of the chromo-
magnetic operator; see Eq. (5). The value of Fp_,p-
is certainly less than unity. The bound we get indicates
that the deviation of Fg_,p+ from unity [see Egs. (16a)
and (16b) below] is beyond previous estimates.

Moreover, under some very plausible additional as-
sumptions we are able to convert the bound in an esti-
mate of the actual value of Fg_,p~; see Eq. (16c). (The
size of the 1 /mg’C corrections to F'g_, p- at zero recoil has
been previously discussed in [6] with the conclusion that
the absolute value of this deviation is very small, less
than 0.03.' Another analysis of the 1/m  terms pub-
lished recently [8] also demonstrates that Fg_,p- < 1.)

Experimental determination of |V,3| from the measure-
ments of B — D*lv at maximal ¢ was carried out by
ARGUS [9] and CLEO [2]. The results obtained by a
linear extrapolation of the B — D* distribution to the
point of zero recoil are

_{0.040 +0.007 (Ref. [1]),
Fpp+[Ver| = {0.038 +0.006 (Ref. [2]) . )

LA. Falk suggested, however [7], that the estimate of Ref.
(6], |1 — FBp+| = £0.03, should be rather perceived as a
“l1o error bar,” and doubling the estimate to achieve the “20
confidence level” is welcome.
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The standard practice in analyzing the exclusive experi-
mental data is as follows: in extracting |V.,| one uses the
“reference” value, Fg_,p+ = 1; then the numbers in Eq.
(1) can be read as the results for |V.5|. The theoretical
uncertainty in Fg_,p+ is then added to the experimental
error bars quoted for |V|. If we use the exact bound
mentioned above as the actual value of Fg_, p~ the result
for |V.p| increases by 6%, at least; the actual increase is
expected to be even larger, from 8 to 14%.

Next we turn to the inclusive method and analyze the
uncertainty in the theoretical expression for the total in-
clusive decay rate in the b — ¢ transition. Superficially,
the decay rate is proportional to m{ (the quark masses
will be denoted by small m with the corresponding sub-
script), and even a modest error in the b quark mass,
say, 100 MeV, is translated in the +5% error in the nu-
merical value of |V3|, coming on top of other theoretical
uncertainties. The total theoretical uncertainty is usu-
ally believed to lie in the 10% range. We observe that
a large fraction of the events is kinematically close to
the small velocity (SV) limit [3]. In the SV limit the
inclusive decay rate does not depend on m; and m, in-
dividually, but rather on the mass difference my — m,
that is known to a much better accuracy [see Eq. (24)].
Although in the actual decays not all events occur in the
SV regime, the total inclusive probability is only weakly
sensitive to my + m.. Using the constraint on my — m,
we extract the inclusive value of |Vp.| with the theoreti-
cal uncertainty close to +5%. The dominant part of this
uncertainty comes from our rather poor knowledge of u2,
the expectation value of the kinetic energy operator; see
Eq. (5). The latter is measurable, in principle, in the
very same semileptonic transitions (for more details see
Ref. [10]).

II. SUM RULES FOR THE FORM FACTORS
AT ZERO RECOIL

The prediction for Fg_,p« stems from the operator
product expansion (OPE) and/or heavy quark effective
theory (HQET) sum rules for the amplitudes at the point
of zero recoil. The main stages of our derivation are
outlined below.

The transitions we are interested in are B — D* and
B — vector excitations. These transitions are generated
by the axial-vector current A, = E'y”'ysc. If the momen-
tum carried by the lepton pair is denoted by ¢, the zero
recoil point is achieved if q = 0 and go = AM, where
AM = Mg — Mp+. To obtain the sum rule we consider
the T product

B = i / d4u—iqzml;l;<BlT{AL(m)Au(o>}lB> :

(2)

assuming that q = 0 and ¢o is close to AM. The
hadronic tensor h,, can be systematically expanded in
Aqcp/mp,.. For our purposes it is sufficient to keep
the terms quadratic in this parameter. In general, the
hadronic tensor h,, is decomposed in the sum of five
terms [11]; in this way five structure functions h; to hs
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are introduced. In the zero recoil point only two inde-
pendent structures survive. For the spatial components
of the axial-vector current we need to consider only h;
(we will systematically use the notation of Ref. [12]).

The O(1/m} ) terms in h,, were calculated in Refs.
[12,13]. It is convenient to introduce

e=Mp— Mp- —qo=AM —qo . (3)

Using Eq. (A1) of [12] one can write down the result in
the form

o= L ué—ui(l_@> 1
hy= - He (2

2my 3 mp /) e(2m.+€)
4 2 2 2y 90 1
—ps — — el Br w7 sasamm—— 4
+ |:3/-I‘G’ (MG Mo mb] 62(2mc +6) ( )

where u2 and p2 parametrize the matrix elements of the
chromomagnetic and kinetic energy operators:

1
2 = H Hy ),
[ 2] 2MH1, < b b>

1 _
2 = Hy|b (:D)? b|Hy) .
He = 3agy, (Holb (D)? b|H)

b 50, G*" b

(5)

To derive the desired sum rule we choose |¢] > Aqcp
but, at the same time, || € mp .. Now we can expand
in Aqcp/e and in €/mp ., keeping only the term linear
in 1/¢, and compare the theoretical expression obtained
in this way with the hadronic saturation of h,,. In the
derivation of our sum rule, to the accepted accuracy, one
can neglect the difference between AM = Mp — Mp and
Am = mp — m.. The corresponding effect is inversely
proportional to the heavy quark mass and affects our
result only in a higher order in Agcp/me,c. We find in
this way

2 2
FB—)D" + § FB—)excit

i=1,2,...
1 p2 2 _put (1 1 2
:1__“_G2_"_",_E — 5+ ), (®
3 ms 4 ms my Imc.my

where the sum on the left-hand side runs over all excited
states with the appropriate quantum numbers, and all
form factors are taken at the point of zero recoil. The
form factor B — D* at zero recoil is defined as

(B|Aq|D*)y = —v/4MpMp- Fp_,p- D}, ,
where D}, is the polarization vector of D*.
It is convenient to rewrite Eq. (6) in the form

1 p2 2 _ u2 1 1 2
1-F3p. = ;28 4 B kG MG(—+—2+

3 m?2 4 m2  mi  3mcmy
+ Z F123—>excit . (7)
1=1,2,...

If terms O(AZQCD/sz) are neglected, then higher states
cannot be excited at zero recoil, only the elastic B — D*
transition survives in this approximation, and we recover
the prediction

Fp_,p+ =1 (zero recoil) ,
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the most well-known consequence of the heavy quark (or
the Isgur-Wise [14]) symmetry, a symmetry first observed
in the point of zero recoil in Refs. [3, 4].

At the level O(Adcp/md) excitation of higher states
already takes place; all transition form factors squared
are proportional to AZQCD / sz. Simultaneously the form
factor of the elastic transition shifts from unity by a sim-
ilar amount. (These facts have a transparent physical
interpretation; see [10].)

It is crucial that the contribution of the excited states
in the sum rule (7) is strictly positive. Therefore we
arrive at the inequality

1 "‘F123—+D'

1pg | pi—pd (1 1 2
il ( Bx"Hc (2 L . (8
>3m§+ 4 m§+m§+3mcmb (8)

For completeness, we quote here a similar zero recoil
sum rule for the vector form factor of the B — D transi-
tion Fg_,p:

2 2 pa —pg (1 1)*
FB—>D+ E FB—»excit = 1—'"T (a" — m—b)
i=1,2,... ¢

(9)

This transition is measurable (in principle) at zero recoil
in the B — D + Tv, decays. To derive Eq. (9) one must
consider the zero-zero component of the hadronic tensor
induced by the vector current V, = l-ry#c. Since pu2 > u%
(see below), Eq. (8) represents a lower bound on the
deviation of the form factor from unity at zero recoil.

III. NUMERICAL ESTIMATES
AND HIGHER EXCITATIONS

Thus, we found above that the lower bound for the
deviation of the elastic form factor Fig_,p+ from unity at
zero recoil is determined, nonperturbatively, by a local
contribution consisting of two terms. (The perturbative
correction will be included shortly.) The first parameter
uZ is expressed via the mass difference of B* and B:

3
p = Z(M,g. — M}) ~ 0.35 GeVZ. (10)

As far as p2 is concerned, it was pointed out recently [15]
that this parameter is bounded from below. An improved
lower bound

p > 1 (11)

was obtained in Ref. [16], using a quantum-mechanical
argument similar to that of Ref. [15] and, later, within
the sum rules themselves [10]. Quantum mechanically
Eq. (11) stems from the fact that the Pauli Hamiltonian
is positive definite.
Therefore, neglecting the second (positive) term in Eq.
(8) we arrive at a model-independent lower bound
1 M3. — M}
1— Fponeert 5 B B

=~ 0.035. 12
8 m2 (12)

A stronger result is obtained if one relies on the estimate

of p2 from the QCD sum rules [17]:?

p2 = (0.54+£0.12) GeV? . (13)
Then
1— F5st® > 0.05 — 0.07. (14)

On top of this nonperturbative correction it is neces-
sary to take into account radiative corrections due to the
hard gluon exchange. In terms of the hadronic states
these corrections correspond to the contribution of suffi-
ciently heavy excited states where the perturbative cal-
culation of inclusive transition rates is justified. The one-
loop correction has been found in [3]:

npert =1+ % <mb+mclnln‘é

8
— =] ~0.975, 15
A ™ \mp —m. M 3) ( )

where we used the one-loop value of Aqcp (for consis-
tency it is mandatory to use the one-loop value of Aqcp
in the one-loop calculations) and the subscript A marks
the axial-vector current.

The renormalization-group improvement (summation
of the terms a%In"my/m. and a;‘ln(n_l)mb/mc) has been
carried out in [22]; it leads to the result

75 = 0.985 .

It is not quite clear, though, whether one can trust
this apparent reduction of the perturbative correction.
Indeed, for the actual values of the quark masses
Inmy/m,. =~ 1.3 can hardly be considered as a large pa-
rameter. Therefore, the exact calculation of the O(a?)
term makes much more sense than the summation of
the leading and the next-to-leading logs, and will ensure
a more reliable and accurate prediction than the above
renormalization-group improvement. Note that keeping
only the Inmy/m. term in the one-loop calculation re-
sults in a dramatically wrong estimate [cf. Eq. (15)].
For practical purposes we will use for the gluon radiative
correction to Fg_,p» the factor nff't =0.98.

Accounting for the hard-gluon radiative corrections
makes the matrix elements p2 and p2 renormalization-
scale dependent; in particular, the first one gets some-
what enhanced due to the anomalous dimension of the
chromomagnetic operator [23]. These effects can be read-
ily accounted for and do not produce a noticeable change
even if the normalization point is chosen at 1 ~ 1 GeV.

To get an idea of the contribution of the inelastic chan-
nels one may accept that their joint effect varies between
0 and 100% of the nonperturbative correction in Eq. (7).
Then assembling all these numbers together we finally
arrive at

2Earlier estimates are also available [18,19]. Note that the
author of Ref. [18] essentially revoked his result in a later
publication [20], where it is claimed that the value of 754
is dramatically smaller, even smaller than the lower bound
(11) [21].
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< 0.94 model-independent bound, (16a)
Fp_p- =< <0.92, p2=0.54 GeV?, (16b)
0.89 £0.03 educated guess, (16¢)

where the last entry assumes our educated guess on the
excited state contribution and the central value for the
kinetic energy operator, Eq. (13).

To substantiate this estimate of the inelastic contribu-
tion let us consider a subclass of possible inelastic contri-
butions in the sum rule (7) due to the final states of the
type Dm with |pr| < ihadr- The soft-pion corrections
in the elastic transition B — D™ were studied previously
in Ref. [24]. We follow the same pattern but calculate,
instead, the inelastic D7 contribution in the sum rule.

For soft pions the amplitude (Dx|A;|B) is given by the
diagrams of Fig. 1 and is reliably calculable:

B . (1 1
(D™n*|A|BY) = —A\\/4MpMp Py (; - +A>, (17)

where € is defined in Eq. (3), pr is the pion momentum,

A= Mpg. — Mg+ Mp- — Mp,

and A is the heavy-meson-pion constant,
Ling = 2Mp AD;,Do%m + 2Mp AB;, Bo"n

(for D**D~7nt). The D*Dw and B*B7 constants are
related by the heavy quark plus chiral symmetry [25];
1/my . deviations from the heavy quark symmetry in the
vertices are inessential for the infrared part we are inter-
ested in. In Eq. (17) we also neglected some other irrel-
evant terms of higher order in 1/my, .. Equation (17) ex-
plicitly shows cancellation of two graphs of Fig. 1 in the
limit of the heavy quark symmetry, when A — 0, € > A.
This cancellation is just a manifestation of the fact that
Fp_,p-~ at zero recoil must be equal to unity up to l/mg’C
corrections [3,5]. At € < A no trace of the heavy quark
symmetry is left and no cancellation occurs; diagram 1(a)
is much smaller than that of Fig. 1(b). The absence of
the heavy quark symmetry in similar kinematical condi-
tions has been noted previously in Ref. {26].
The D7 production threshold is situated at

€0 = —(MD- — MD — M.,r),

i.e., at a small negative value of . The pole at ¢ = 0 in
Eq. (17) evidently corresponds to the actual production
of D* with the subsequent decay into Dw. The second
singularity, the B* meson pole (¢ + A)™! [see Fig. 1(a)],
lies outside the physical domain € > €p.

The amplitude (17) implies the hadronic tensor

FIG.1. The graphs determining the amplitude (D= |A;|B)
in the soft-pion limit.
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A2
€2(e + A2)2’
Here we also added the channel D°x°. Integrating this
expression over € we get the contribution to the sum rule
(6) sought for; cf. Eq. (4).
To make the integral

1 /deImhl (19)
™

well defined, the factor e~2 has to be replaced by [€2 +
(T'2/4)]1, where I is the pion width of D*. Then in-
tegration near ¢ = 0 yields unity — this is nothing else
than the leading elastic contribution to the sum rule (6),
which has to be unity in the calculation at hand. It
must be removed from our inelastic part. To this end the
lower limit of integration in Eq. (19) must be chosen at
some €nin > I'. The upper limit of integration is also
needed, since the integral (19) is logarithmically diver-
gent at large e. This is a standard situation with the
soft-pion amplitudes containing chiral logarithms. We
will cut off the integral at € = pnaar ~ 1 GeV, so that the
expression (17) for the amplitude stays valid inside the
integration range. Notice that not only is the coefficient
in front of the chiral logarithm reliably calculable, but
the constant term from the domain € ~ A also comes out
correctly.
Doing the integration, we find that

1
ZFE—mxcit - ; /de Im h‘1|D7r

’\2A2 HMhadr
= —— (In —— 20
82 (n A +C)’ (20)

1 A2
“Imhi|pr = —|px|?
SImh|ps = o5 [Pl (18)

C~3at A/M, = 14.

Parametrically the right-hand side of Eq. (20) is pro-
portional to 1/m? . (through A?), as it should be, of
course. Moreover, the D7 inelastic contribution is addi-
tionally suppressed by 1/N. (through A?), where N, is
the number of colors.

Substituting the existing upper bound for A2 [25] (A% <
0.5f,\,_2) as the actual value of A2 and pipagr ~ 1 GeV, we
find that the inelastic contribution in the sum rule (6) due
to the channel D plus the soft pion is close to 7%. Ap-
proximately one-third comes from the logarithmic term
and two-thirds from the constant.

Thus, if A2 is close to its upper bound, this inelastic
channel alone produces the same effect on Fg_,p+ as the
pZ term in Eq. (7), i.e., decreases Fp_,p- by 0.035.
Thus, we conclude that it is perfectly reasonable and safe
to assume the inelastic effect to vary between zero and
100% of the nonperturbative terms in Eq. (7), and our
educated guess is fully substantiated.

Comparing our result with the renormalization of
Fg_,p- due to the soft-pion exchange considered in [24]
we observe, with satisfaction, that the elastic renormal-
ization of Ref. [24] is exactly the same (parametrically)
and has the opposite sign, so that the combined effect
of the soft pions in the integral (19) vanishes, and this
integral remains equal to unity, as it should if we limit
ourselves to the infrared contributions and thus neglect
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the nonperturbative corrections in Eq. (6). Numerically
our estimate of Eq. (20) is higher, by a factor of ~2,
since in Ref. [24] 1/Mp was set equal to zero and A was
approximated by Mp« — Mp.

IV. DETERMINATION OF |V,|
FROM THE INCLUSIVE RATE

The CKM matrix element |V.| can be alterna-
tively determined from the inclusive semileptonic width
I'B — X_ lv. The theoretical expression for the widths is
known in the literature including the o, and the leading
nonperturbative correction,

GFmy
19273

x {(zo(a:) - 23‘7’: (n? — 25 /4)z,§1>(x))

2 2 2
Hr — Hg [ate)
X 1 —_ - "~ = —_ =

+O(af,a,/mg,l/mg)} s (21)

I'(B - lvX,) =

[Ves|?

where the phase space factors z account for the mass of
the final quark:

2o(z) = 1 — 8z + 82% — 2* — 122%Inz, 2, (z) = (1 — z)*,
29(0) = 1,289 (1) = 3/(2n? — 25/2) =~ 041,
xr = (mc/mb)z. (22)

The function z{" can be found in Ref. [27). The non-
perturbative terms proportional to u% and p2 were first
found in Ref. [28]; all corrections together are compiled
in Refs. [29, 30].

The explicit form of the perturbative correction here
refers to the one-loop value of the so-called pole mass;
see, e.g., [31]. Theoretically this object is ill defined [32].
Generally speaking, if the result for the decay rate is ex-
pressed in terms of the pole mass, one should expect large
(factorially divergent) coefficients in the a, expansion. If
nonperturbative terms are included, it is necessary to ex-
press the result in terms of a Euclidean mass normalized
appropriately.? Transition from the pole mass to the Eu-
clidean mass might change the coefficient of the a, cor-
rection. We do not need to do that, however. Indeed,
our point is that the decay rate (21) depends essentially
on the difference of the quark masses, m; — m., and in
this difference all uncertainties and definition dependence
cancel. The residual weak dependence on the individual
masses is reflected in the error bars we will ascribe to our
result.

31t was shown in Ref. [32] that the b quark mass that enters
the expressions for inclusive widths at the level of nonpertur-
bative corrections is a well-defined running mass normalized
at a sufficiently high momentum scale that per se does not
have any intrinsic theoretical uncertainty. It can be deter-
mined to a very good accuracy from the spectra of quarkonia.

For the pole mass of the b quark (or for the mass nor-
malized not far from the would-be mass shell) it is rea-
sonable to accept

mp = 4.8 £ 0.1 GeV. (23)

The central value, 4.8 GeV, follows from the QCD sum
rule analysis of the Y system [33]. To be on the safe
side, we multiplied the original error bars by a factor of
4. It is worth noting that it is very difficult, practically
impossible, to go outside the indicated limits given the
constraint on my — m. to be discussed below. Indeed the
central value of m; above implies m. = 1.30 GeV [pro-
vided we accept the estimate (13) for p2], which matches
very well with an independent determination of the c
quark pole mass [31]. Plus or minus 100 MeV in mg is
translated in £100 MeV in m.. It seems perfectly safe
to say that m. lies between 1.20 and 1.40 GeV; one can
hardly imagine that the one-loop pole ¢ quark mass is
less than 1.20 or larger than 1.40. Thus, we believe that
allowing m; to vary in the interval (23) we fully cover
the existing uncertainty in this parameter. We will not
allow m, to change independently, however; this param-
eter will be tied to mp. This simple step dramatically
reduces the uncertainty in the theoretical prediction for
(B — X lv).

At first sight it might seem that the fifth power of the
b quark mass in Eq. (21) strongly magnifies the uncer-
tainty in ms. It is possible to check, however, that the
perturbative expression for the width, m{zo(m2/m), be-
ing a rather sophisticated function of both masses my
and m, is sensitive mostly to the quark mass difference.
Moreover, even though each mass individually has a no-
ticeable scatter around the canonical central values (£2%
for b and 6% for c), the quark mass difference is known
to a much better accuracy within HQET [34, 35]:

Mpg + 3Mp- B Mp + 3Mp-
4 4

mp — Me =

+ui( ! —i) + O(1/md, 1/m3) .

2m,.  2my
(24)

This relation holds for the masses normalized at the scale
below the mass of the ¢ quark. However, the infrared
renormalon singularities cancel in this difference, and it
is free of intrinsic theoretical uncertainties at any nor-
malization point.

The expression for the width has such a structure that
for the given fixed value of my — m, the variation of the
individual masses inside the allowed interval affects the
theoretical prediction at a much weaker level than one
gets in the standard approach, with both masses chang-
ing independently. This observation noted long ago in
phenomenological studies has a reason: in the semilep-
tonic decays in a large part of the phase space, effectively
we are not far from the SV limit, i.e., |q] < Mp. Exactly
in this limit, at |q|/Mp — 0, the semileptonic transi-
tion would depend only on the quark mass difference.
The most clear-cut manifestation of the proximity to the
SV limit is the fact that about 60% of the semileptonic
decay rate is due to the “elastic” channels, B — Dlv
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and B — D*lv; in the SV limit these two channels com-
pletely saturate the probability (up to nonperturbative
corrections of order A%op/mj ). This reason explains
why we expect the higher-order perturbative corrections
to behave in the same manner.

In this way we get numerically

1.49 ps 1/2 BRy(B) 1/2
V.| = 0.0415 :
[Ver| ( B ) 0.106 (25)

where we used the central value 4.80 GeV (Ref. [33]) for
the one-loop pole mass of the b quark, and the value of
the strong coupling a, = 0.22. The expectation value of
the kinetic energy is also set equal to its central value,
p2 = 0.54 GeV2.

Let us discuss which error bars in Eq. (25) theory is re-
sponsible for. First, the variation of m, (or, alternatively,
m,.) in the range +100 MeV results only in a F1.6% rel-
ative variation of |V,| if other parameters are kept fixed.
The most sizable uncertainty arises in this approach due
to dependence of mp — m. on the value of u2. Again,
to be on the safe side, we double the original theoretical
error bars [17] in this parameter and allow the value to
vary within the limits

0.35 GeV? < u2 < 0.8 GeV?Z. (26)

This uncertainty leads to the change in |Vep| of F2.8%,
with practically linear dependence. It seems obvious that
the interval (26) overestimates the existing uncertainty in
u?. It is worth noting that the value of 2 can, and will,
be measured soon via the shape of the lepton spectrum
in b — clv inclusive decays [10] with theoretical accuracy
of at least 0.1 GeV?.

Finally there is some dependence on the value of the
strong coupling in Eq. (21). Numerically the uncertainty
constitutes about +1% when «, is varied between 0.2 and
0.25. This must and will be reduced by explicit calcula-
tion of the next loop correction, which is straightforward
(though somewhat tedious in practice). All perturbative
QCD corrections are well behaved here: no logarithms
of the mass ratio can appear, at least if the result is ex-
pressed in terms of the quark masses and a; normalized
at a proper Euclidean scale.

Therefore, the above numerical estimates imply that
already at present the theoretical uncertainty in the in-
clusive value of |V,| does not exceed ~ £5% and is quite
competitive with the existing experimental uncertainties
in this quantity. It seems possible to further reduce this
error to 4% or even 3% by measuring p2 and calculating
the two-loop perturbative correction to the width. The
inclusive method, thus, is not only more accurate exper-
imentally (due to higher statistics than in the exclusive
case) but it also seems more promising from the side of
both the theoretical uncertainties as they exist now and
their future possible reduction.

V. CONCLUSIONS

Let us summarize our findings. From the OPE sum
rules, we obtained a lower bound on the deviation of
Fp_,p+ from unity from from fundamental QCD. Sup-
plementing this result by a plausible estimate of the con-
tribution due to higher excitations we are able to estimate
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the actual value of Fg_,p-, which turns out substantially
lower than unity, in drastic contrast to previous expecta-
tions. Then we argued that the proper use of the heavy
quark expansion allows one to extract |Vp| from the total
inclusive rate with much higher accuracy than is usually
stated.

The value of |V| determined from the inclusive
semileptonic width combined with our estimates of the
Fg_,p-, Eq. (16a), implies a prediction for the extrapo-
lation of the exclusive decay rate to zero recoil. Alterna-
tively, one can express the same result by explicitly in-
troducing the correction due to the fact that Fp_,p+ # 1
in Eq. (1). Assuming F_,p- = 0.89 and using the value
from Eq. (1) one obtains, e.g., from the CLEO data

|Ves| = 0.043 £ 0.007 . (27)

The agreement with the inclusive result (25) seems to be
even too good, taking into consideration the experimental
uncertainties and the theoretical assumptions involved in
the estimates of Fig_,p-~.

It is instructive to make a brief comparative analy-
sis of the theoretical uncertainties in the two methods:
inclusive versus exclusive. In the both cases there are
no nonperturbative corrections at the level 1/my .. The
main difference, however, is that the leading 1/ mg, . hon-
perturbative corrections can be, and have been fully cal-
culated for the inclusive widths, whereas they cannot be
determined in a model-independent way for the exclusive
B — D* form factor even at zero recoil (see, e.g., [8]).
Either we have a contamination due to the contribution
from higher states (in our approach), or nonlocal con-
tributions within the more traditional approach of Refs.
[6,8]. The latter are poorly controllable. It is fortunate
that in our approach the pZ and p2 terms make Fp_,p-
smaller than unity; the contamination due to the higher
states, being positive-definite, works in the same direc-
tion.

The exclusive approach has certain conceptual advan-
tages: apart from the form factor itself, the measured
rate is given in terms of the masses of real B and D*
mesons, whereas in calculating the inclusive widths one
uses, though well defined theoretically, but still uncertain
at some level, quark masses. On the other hand, the total
semileptonic width, in turn, has a theoretical advantage
over the exclusive predictions: in the inclusive approach,
determination of the CKM matrix elements is meaning-
ful even in the limit of the light final quark (i.e., for the
b — wu transition), whereas the exclusive approach be-
comes useless due to our ignorance of the heavy-to-light
form factors even at zero recoil. (In the opposite limit
when m. increases approaching my, the gold-plated situ-
ation for exclusive form factors, the OPE-based analysis
of the inclusive transitions automatically reproduces all
results of HQET [10].)

The perturbative corrections have been calculated in
both cases to one loop. The one-loop gluon correction
turns out to be somewhat smaller for the exclusive tran-
sition due to numerical cancellations. Although some
higher-order logarithmic summation has been performed
in the exclusive case, it does not seem to be very use-
ful for mpy/m. ~ 3. Logarithmic terms of this type do
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not appear at all in the inclusive widths due to the in-
frared stability of the latter. The real improvement of
the perturbative estimates can be achieved only by the
exact two-loop calculation of the o terms in both cases.
Summarizing, numerically and statistically the inclusive
approach seems best.
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