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Operator product expansion sum rules for heavy flavor transitions
and the determination of V,b
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We derive a model-independent upper bound for the axial-vector form factor of the H —+ D'
transition at zero recoil, I"&~~.. The form factor turns out to be noticeably less than unity. The
deviation of F&~&« from unity is larger than previously anticipated. Using our estimate we extract
~V, b~ from the measured exclusive rate of B —+ D'lv extrapolated to the point of zero recoil. The
central "exclusive" value of ~V b~ is in agreement with the value obtained from the inclusive semilep-
tonic width I'(B ~ X lv). We argue that the theoretical uncertainty in determining [V,b~ from the
total inclusive width is significantly reduced if a constraint on the quark mass difFerence mz —m
stemming from the heavy quark expansion is taken into account.

PACS number(s): 12.15.Hh, 12.39.Hg, 13.20.He, 13.25.Hw

I. INTRODUCTION

The precision determination of [V,b~, the Cabibbo-
Kobayashi-Maskawa (CKM) matrix element, is one of the
most important practical applications of the heavy quark
expansions in B physics today. Two methods allowing
one to extract ~V,b[ from data are commonly used: the
inclusive approach (&om the total semileptonic width of
the B meson) and the exclusive one (based on the decay
amplitude B ~ D*ev extrapolated to the point of zero
recoil). Both methods have their own advantages and
drawbacks, purely experimental and theoretical. In this
paper we address the problem of the theoretical uncer-
tainties unavoidable in obtaining ]V,b] from experimental
data given the status of present-day QCD. The theoret-
ical uncertainty usually quoted for [V,b] dominates all
other error bars; see, e.g. , [1,2]. Our task is to show that
it can be significantly reduced provided that full infor-
mation stemming &om the fundamental QCD is properly
used. Both the "exclusive" and "inclusive" values of

~

V,b[
will be considered. The exclusive method has a larger
experimental error due to lower statistics and the need
of extrapolation to the point of zero recoil. The mea-
surements of the inclusive semileptonic rates are more
accurate.

On the theoretical side, the sources of uncertainty in
the two approaches above are difFerent. In the inclu-
sive method the theoretical expression for the width de-
pends on the 6 and c quark masses which are allowed to
vary independently within certain limits. In the exclu-
sive method the amplitude is expressed directly in terms
of known masses of B and D* mesons; however, it is the

B ~ D* form factor at zero recoil, F~~D», that is not
known exactly. According to the theorem of Ref. [3] (see
also [4]) in the limit mb, -+ oo (mb/m, fixed) the appro-
priately normalized form factor F~~D. is equal to unity.
For the actual values of the quark masses there exist cor-
rections in the inverse powers of the masses. Linear cor-
rections are absent at zero recoil [3, 5], and the leading
nonperturbative ones are quadratic in 1/mb, . So far,
they have not been calculated in a model-independent
way, although some estimates exist in the literature.

We go beyond the theorem of Refs. [3, 5] obtaining a
model-independent bound on the size of 1/mb, correc-
tions in terms of the expectation value of the chromo-
magnetic operator; see Eq. (5). The value of F~~~.
is certainly less than unity. The bound we get indicates
that the deviation of F~~D. from unity [see Eqs. (16a)
and (16b) below] is beyond previous estimates.

Moreover, under some very plausible additional as-
sumptions we are able to convert the bound in an esti-
mate of the actual value of F~~D. , see Eq. (16c). (The
size of the 1/mb, corrections to F~~~. at zero recoil has
been previously discussed in [6] with the conclusion that
the absolute value of this deviation is very small, less
than 0.03.~ Another analysis of the 1/mb2, terms pub-
lished recently [8] also demonstrates that F~~D. ( 1.)

Experimental determination of ]V,b] from the measure-
ments of B —+ D*lv at maximal q was carried out by
ARGUS [9] and CLEO [2]. The results obtained by a
linear extrapolation of the B ~ D* distribution to the
point of zero recoil are

0.040 + 0.007 (Ref. [1 ),
0.038 + 0.006 (Ref. [2]) .
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A. Falk suggested, however [7], that the estimate of Ref.
[6], ~1 —Fs~D

~

= +0.03, should be rather perceived as a
"lo error bar, " and doubling the estimate to achieve the "2o
confidence level" is welcome.
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The standard practice in analyzing the exclusive experi-
rnental data is as follows: in extracting

~
V,b~ one uses the

"reference" value, I"B~D = 1; then the numbers in Eq.
(1) can be read as the results for ~V,b~. The theoretical
uncertainty in I"B~D. is then added to the experimental
error bars quoted for ~V,b~. If we use the exact bound
mentioned above as the actual value of I"B~D. the result
for ~V b~ increases by 6%, at least; the actual increase is
expected to be even larger, from 8 to 14%.

Next we turn to the inclusive method and analyze the
uncertainty in the theoretical expression for the total in-
clusive decay rate in the 6 —+ c transition. Superficially,
the decay rate is proportional to mb (the quark masses
will be denoted by small m with the corresponding sub-
script), and even a modest error in the b quark mass,
say, 100 MeV, is translated in the +5% error in the nu-
merical value of ~V b~, coming on top of other theoretical
uncertainties. The total theoretical uncertainty is usu-
ally believed to lie in the 10% range. We observe that
a large fraction of the events is kinematically close to
the small velocity (SV) limit [3]. In the SV limit the
inclusive decay rate does not depend on mb and m in-
dividually, but rather on the mass difference mb —m
that is known to a much better accuracy [see Eq. (24)].
Although in the actual decays not all events occur in the
SV regime, the total inclusive probability is only weakly
sensitive to mb + m . Using the constraint on mb —m
we extract the inclusive value of ~Vb,

~

with the theoreti-
cal uncertainty close to +5%. The dominant part of this
uncertainty comes from our rather poor knowledge of p
the expectation value of the kinetic energy operator; see
Eq. (5). The latter is measurable, in principle, in the
very same semileptonic transitions (for more details see
Ref. [10]).

II. SUM RULES FOR THE FORM FACTORS
AT ZERO RECOIL

The prediction for I"B~D stems from the operator
product expansion (OPE) and/or heavy quark effective
theory (HQET) sum rules for the amplitudes at the point
of zero recoil. The main stages of our derivation are
outlined below.

The transitions we are interested in are B ~ D* and
B ~ vector excitations. These transitions are generated
by the axial-vector current A„= bp„p5e. If the momen-
tum carried by the lepton pair is denoted by q, the zero
recoil point is achieved if q = 0 and qo

——LM, where
AM = MB —MD . To obtain the sum rule we consider
the T product

b,„=i d xe '~ (H~T(At (x)A„(0))~E3),
1

(2)

assuming that q = 0 and qo is close to LM. The
hadronic tensor h„can be systematically expanded in
AQCD/mb, . For our purposes it is suKcient to keep
the terms quadratic in this parameter. In general, the
hadronic tensor 6& is decomposed in the sum of five
terms [ll]; in this way five structure functions hi to hs

are introduced. In the zero recoil point only two inde-
pendent structures survive. For the spatial components
of the axial-vector current we need to consider only 61
(we will systematically use the notation of Ref. [12]).

The O(1/mb, ) terms in h~„were calculated in Refs.
[12, 13]. It is convenient to introduce

MB —MD- —qo = aM —qo (3)

where p& and p parametrize the matrix elements of the
chromomagnetic and kinetic energy operators:

2MH, 2

P = (Hb~b (iD) b~Hb)
2M~,

(5)

To derive the desired sum rule we choose ~e~ )) AQCD
but, at the same time, ~e~ && mb, . Now we can expand
in AQCD/e and in e/mb „keeping only the term linear
in 1/e, and compare the theoretical expression obtained
in this way with the hadronic saturation of h,„.In the
derivation of our sum rule, to the accepted accuracy, one
can neglect the difference between AM = MB —M~ and
Lm = mb —m . The corresponding effect is inversely
proportional to the heavy quark mass and affects our
result only in a higher order in AQCD/mb, . We find in
this way

2+B—+0 + g +Bwexcit
i=1,2, ...

1 pG=1 —
23 m.'

p& ~ 1 1
, + .+ -I (6)

4 (m, mb 3m mb)

where the sum on the left-hand side runs over all excited
states with the appropriate quantum numbers, and all
form factors are taken at the point of zero recoil. The
form factor B + D* at zero recoil is defined as

(B~A ~D*) = +4M~M~. F~—~D. D*

where D* is the polarization vector of D*.
It is convenient to rewrite Eq. (6) in the form

1 z — 1 1 2
1 —F = — + ]

+ +
3 mz 4 (mz mbz3m, mb)

) F (7)
i=1,2,

If terms O(AzQcD/mQ) are neglected, then higher states
cannot be excited at zero recoil, only the elastic B + D*
transition survives in this approximation, and we recover
the prediction

F~~~. = 1 (zero recoil)

Using Eq. (Al) of [12] one can write down the result in
the form

p' —p' (1
2mb (3 mb) e(2m, + e)
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(1
, + [,+, +

[
. (8)3m 4 (m mi, 3m mbj

For completeness, we quote here a similar zero recoil
sum rule for the vector form factor of the B ~ D transi-
tion EB~D'.

i m. mb)

(9)

This transition is measurable (in principle) at zero recoil
in the B ~ D+wv decays. To derive Eq. (9) one must
consider the zero-zero component of the hadronic tensor
induced by the vector current V„= bp„c. Since p ) p&
(see below), Eq. (8) represents a lower bound on the
deviation of the form factor from unity at zero recoil.

III. NUMERICAL ESTIMATES
AND HIGHER EXCITATIONS

Thus, we found above that the lower bound for the
deviation of the elastic form factor EB~~- from unity at
zero recoil is determined, nonperturbatively, by a local
contribution consisting of two terms. (The perturbative
correction will be included shortly. ) The first parameter
p, ~& is expressed via the mass difference of B* and B:

2 3
p~ ———(M~. —M~) = 0.35 GeV .

4
(10)

As far as p2 is concerned, it was pointed out recently [15]
that this parameter is bounded &om below. An improved
lower bound

P~ &Pa
was obtained in Ref. [16], using a quantum-mechanical
argument similar to that of Ref. [15] and, later, within
the sum rules themselves [10]. Quantum mechanically
Eq. (11) stems from the fact that the Pauli Hamiltonian
is positive definite.

Therefore, neglecting the second (positive) term in Eq.
(8) we arrive at a model-independent lower bound

1 M' —M'EnonPert
BmD 8 m 2

A stronger result is obtained if one relies on the estimate

the most well-known consequence of the heavy quark (or
the Isgur-Wise [14]) symmetry, a symmetry first observed
in the point of zero recoil in Refs. [3, 4].

At the level O(Ac2lcD/m&) excitation of higher states
already takes place; all transition form factors squared
are proportional to A&&D/m&. Simultaneously the form
factor of the elastic transition shifts from unity by a sim-
ilar amount. (These facts have a transparent physical
interpretation; see [10].)

It is crucial that the contribution of the excited states
in the sum rule (7) is strictly positive. Therefore we
arrive at the inequality

21 EB~Dy

of y,„ from the QCD sum rules [17]:2

p = (0.54+ 0.12) GeV

Then

1 —EB "D.' & 0.05 —0.07.

(13)

(14)

On top of this nonperturbative correction it is neces-
sary to take into account radiative corrections due to the
hard gluon exchange. In terms of the hadronic states
these corrections correspond to the contribution of suK-
ciently heavy excited states where the perturbative cal-
culation of inclusive transition rates is justified. The one-
loop correction has been found in [3]:

=1 —'
~

'l ——
[

0975,
vr pm' —m, m, 3)

where we used the one-loop value of AcicD (for consis-
tency it is mandatory to use the one-loop value of A@CD
in the one-loop calculations) and the subscript A marks
the axial-vector current.

The renormalization-group improvement (summation
of the terms n, ln mg/m, and a, in' imp/m ) has been
carried out in [22]; it leads to the result

g~P
' = 0.985

Earlier estimates are also available [18, 19]. Note that the
author of Ref. [18] essentially revoked his result in a later
publication [20], where it is claimed that the value of p
is dramatically smaller, even smaller than the lower bound

(11) [21].

It is not quite clear, though, whether one can trust
this apparent reduction of the perturbative correction.
Indeed, for the actual values of the quark masses
1nmb/m, 1.3 can hardly be considered as a large pa-
rameter. Therefore, the exact calculation of the O(n2)
term makes much more sense than the summation of
the leading and the next-to-leading logs, and will ensure
a more reliable and accurate prediction than the above
renormalization-group improvement. Note that keeping
only the lnmb/m, term in the one-loop calculation re-
sults in a dramatically wrong estimate [cf. Eq. (15)].
For practical purposes we will use for the gluon radiative
correction to EB~D the factor g&" ——0.98.

Accounting for the hard-gluon radiative corrections
makes the matrix elements p& and p renormalization-
scale dependent; in particular, the first one gets some-
what enhanced due to the anomalous dimension of the
chromomagnetic operator [23]. These effects can be read-
ily accounted for and do not produce a noticeable change
even if the normalization point is chosen at p 1 GeV.

To get an idea of the contribution of the inelastic chan-
nels one may accept that their joint eKect varies between
0 and 100%%uo of the nonperturbative correction in Eq. (7).
Then assembling all these numbers together we finally
arrive at
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' ( 0.94 model-independent bound, (16a)
(092, p =054 GeV (16b)

, 0.89 6 0.03 educated guess, (16c)

where the last entry assumes our educated guess on the
excited state contribution and the central value for the
kinetic energy operator, Eq. (13).

To substantiate this estimate of the inelastic contribu-
tion let us consider a subclass of possible inelastic contri-
butions in the sum rule (7) due to the final states of the
type D7r with ~p ~

&( ph ~, . The soft-pion corrections
in the elastic transition B ~ D* were studied previously
in Ref. [24]. We follow the same pattern but calculate,
instead, the inelastic Dm contribution in the sum rule.

For soft pions the amplitude (D7r~A; ~B) is given by the
diagrams of Fig. 1 and is reliably calculable:

~;„,= 2M& AD*DO ~+ 2M~ Aa ay~&

(for D* D 7r+). The D*D7r and B*B7r constants are
related by the heavy quark plus chiral symmetry [25];
I/m~, deviations Rom the heavy quark symmetry in the
vertices are inessential for the infrared part we are inter-
ested in. In Eq. (17) we also neglected some other irrel-
evant terms of higher order in 1/m&, . Equation (17) ex-
plicitly shows cancellation of two graphs of Fig. 1 in the
limit of the heavy quark symmetry, when 6 ~ 0,
This cancellation is just a manifestation of the fact that
I' ~~~. at zero recoil must be equal to unity up to 1/m&,
corrections [3, 5]. At e ( A no trace of the heavy quark
symmetry is left and no cancellation occurs; diagram 1(a)
is much smaller than that of Fig. 1(b). The absence of
the heavy quark symmetry in similar kinematical condi-
tions has been noted previously in Ref. [26].

The Dm production threshold is situated at

eo = —(Ma. —Ma —M ),

i.e. , at a small negative value of e. The pole at e = 0 in
Eq. (17) evidently corresponds to the actual production
of D* with the subsequent decay into D7t. The second
singularity, the B' meson pole (e+ A) [see Fig. 1(a)],
lies outside the physical domain e ) eo.

The amplitude (17) implies the hadronic tensor

B B D B D D

FIG. 1. The graphs determining the amplitude (Dvr ~A, ~B)
in the soft-pion limit.

(D ~+~A~B+) = A/4M—~M~ p ~

——,(17)
e E+4)

where e is defined in Eq. (3), p is the pion momentum,

4 = Mgg- —M~ + M~- —Mz),

and A is the heavy-meson-pion constant,

1 A~—Im hi ~ii = ~p„~ . (18)

Here we also added the channel D vr . Integrating this
expression over e we get the contribution to the sum rule

(6) sought for; cf. Eq. (4).
To make the integral

1
d~ Im h~ (19)

well defined, the factor e has to be replaced by [e +
(I' /4)], where I' is the pion width of D*. Then in-
tegration near e = 0 yields unity —this is nothing else
than the leading elastic contribution to the sum rule (6),
which has to be unity in the calculation at hand. It
must be removed from our inelastic part. To this end the
lower limit of integration in Eq. (19) must be chosen at
some e;„» I'. The upper limit of integration is also
needed, since the integral (19) is logarithmically diver-
gent at large e. This is a standard situation with the
soft-pion amplitudes containing chiral logarithms. We
will cut ofF the integral at e = ph g, 1 GeV, so that the
expression (17) for the amplitude stays valid inside the
integration range. Notice that not only is the coeKcient
in front of the chiral logarithm reliably calculable, but
the constant term from the domain e L also comes out
correctly.

Doing the integration, we And that

) Ii~ .„,„m —f deImh, ~~~

Phadr
(20)

C=3 at A/M = 1.4.

Parametrically the right-hand side of Eq. (20) is pro-
portional to 1/m& (through A2), as it should be, of
course. Moreover, the Dm inelastic contribution is addi-
tionally suppressed by 1/N, (through A2), where N, is
the number of colors.

Substituting the existing upper bound for A [25] (A
0.5f ) as the actual value of A and @hing, 1 GeV, we

find that the inelastic contribution in the sum rule (6) due
to the channel D plus the soft pion is close to 7%. Ap-
proximately one-third comes from the logarithmic term
and two-thirds from the constant.

Thus, if A is close to its upper bound, this inelastic
channel alone produces the same effect on I'~~~. as the

pG term in Eq. (7), i.e. , decreases F~~ri by 0.035.
Thus, we conclude that it is perfectly reasonable and safe
to assume the inelastic effect to vary between zero and
100% of the nonperturbative terms in Eq. (7), and our
educated guess is fully substantiated.

Comparing our result with the renormalization of
I"~~~. due to the soft-pion exchange considered in [24]
we observe, with satisfaction, that the elastic renormal-
ization of Ref. [24] is exactly the same (parametrically)
and has the opposite sign, so that the combined efFect
of the soft pions in the integral (19) vanishes, and this
integral remains equal to unity, as it should if we limit
ourselves to the infrared contributions and thus neglect
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the nonperturbative corrections in Eq. (6). Numerically
our estimate of Eq. (20) is higher, by a factor of 2,
since in Ref. [24] 1/M& was set equal to zero and 4 was
approximated by MD —MD.

I&. DETERMINATION OF ~Vbi
PROM THE INCLUSIVE RATE

The CKM matrix element
~
V,b~ can be alterna-

tively determined from the inclusive semileptonic width
I B ~ X lv. The theoretical expression for the widths is
known in the literature including the o., and the leading
nonperturbative correction,

zo(x) = 1 —8x+ 8x —x —12x lnx, zi(x) = (1 —x)

zo( l(0) = 1, zo (1) =- 3/(2vr —25/2) 0.41,

x = mc mb (22)

The function zo can be found in Ref. [27]. The non-
perturbative terms proportional to p& and p were first
found in Ref. [28]; all corrections together are compiled
in Refs. [29, 30].

The explicit form of the perturbative correction here
refers to the one-loop value of the so-called pole mass;
see, e.g. , [31]. Theoretically this object is ill defined [32].
Generally speaking, if the result for the decay rate is ex-
pressed in terms of the pole mass, one should expect large
(factorially divergent) coefficients in the n, expansion. If
nonperturbative terms are included, it is necessary to ex-
press the result in terms of a Euclidean mass normalized
appropriately. Transition from the pole mass to the Eu-
clidean mass might change the coefficient of the a, cor-
rection. We do not need to do that, however. Indeed,
our point is that the decay rate (21) depends essentially
on the difference of the quark masses, mb —m„and in
this difference all uncertainties and definition dependence
cancel. The residual weak dependence on the individual
masses is rejected in the error bars we will ascribe to our
result.

It was shown in Ref. [32] that the 6 quark mass that enters
the expressions for inclusive widths at the level of nonpertur-
bative corrections is a well-defined running mass normalized
at a suKciently high momentum scale that per se does not
have any intrinsic theoretical uncertainty. It can be deter-
mined to a very good accuracy from the spectra of quarkonia.

r (a -+ &~X.) = ~,b ~V.b~'

x
~

z (x) — (7r —25/4)z (x)
~

20!8 (i)
)

( 2 2 ) 2
P~ Pa

i ( )Pa

+O(n.', n. /mb, I/mb) ),
where the phase space factors z account for the mass of
the final quark:

, (
+p m

+ 0(1/m, 1/mb )2mb )
(24)

This relation holds for the masses normalized at the scale
below the mass of the c quark. However, the infrared
renormalon singularities cancel in this difference, and it
is free of intrinsic theoretical uncertainties at any nor-
malization point.

The expression for the width has such a structure that
for the given fixed value of mb —m the variation of the
individual masses inside the allowed interval affects the
theoretical prediction at a much weaker level than one
gets in the standard approach, with both masses chang-
ing independently. This observation noted long ago in
phenomenological studies has a reason: in the semilep-
tonic decays in a large part of the phase space, effectively
we are not far from the SV limit, i.e. , ~q~ ( Mii. Exactly
in this limit, at ~q~/M~ —+ 0, the semileptonic transi-
tion would depend only on the quark mass difference.
The most clear-cut manifestation of the proximity to the
SV limit is the fact that about 60% of the semileptonic
decay rate is due to the "elastic" channels, B' ~ Dlv

For the pole mass of the 6 quark (or for the mass nor-
malized not far from the would-be mass shell) it is rea-
sonable to accept

mb ——4.8 + 0.1 GeV.

The central value, 4.8 GeV, follows from the @CD sum
rule analysis of the T system [33]. To be on the safe
side, we multiplied the original error bars by a factor of
4. It is worth noting that it is very difficult, practically
impossible, to go outside the indicated limits given the
constraint on mb —m, to be discussed below. Indeed the
central value of mb above implies m, = 1.30 GeV [pro-
vided we accept the estimate (13) for p, ], which matches
very well with an independent determination of the c
quark pole mass [31]. Plus or minus 100 MeV in mb is
translated in +100 MeV in m . It seems perfectly safe
to say that m lies between 1.20 and 1.40 GeV; one can
hardly imagine that the one-loop pole c quark mass is
less than 1.20 or larger than 1.40. Thus, we believe that
allowing rnb to vary in the interval (23) we fully cover
the existing uncertainty in this parameter. We will not
allow m to change independently, however; this param-
eter will be tied to mb. This simple step dramatically
reduces the uncertainty in the theoretical prediction for
I'(B -+ A.tv).

At first sight it might seem that the fifth power of the
6 quark mass in Eq. (21) strongly magnifies the uncer-
tainty in mb. It is possible to check, however, that the
perturbative expression for the width, mbzo(m, /mb), be-
ing a rather sophisticated function of both masses mb
and m is sensitive mostly to the quark mass difFerence.
Moreover, even though each mass individually has a no-
ticeable scatter around the canonical central values (+2%
for 6 and +6% for c), the quark mass difference is known
to a much better accuracy within HABET [34, 35]:

MB + 3MB MD + 3MD'
mb m
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and B ~ D*lv; in the SV limit these two channels com-
pletely saturate the probability (up to nonperturbative
corrections of order A&cD/mb, ). This reason explains

7

why we expect the higher-order perturbative corrections
to behave in the same manner.

In this way we get numerically

0.106

where we used the central value 4.80 GeV (Ref. [33]) for
the one-loop pole mass of the 6 quark, and the value of
the strong coupling o., = 0.22. The expectation value of
the kinetic energy is also set equal to its central value,
p2 = 0.54 GeV .

Let us discuss which error bars in Eq. (25) theory is re-
sponsible for. First, the variation of mb (or, alternatively,
m,,) in the range +100 MeV results only in a ~1.6% rel-
ative variation of ~V, b~ if other parameters are kept fixed.
The most sizable uncertainty arises in this approach due
to dependence of mg —m on the value of p . Again,
to be on the safe side, we double the original theoretical
error bars [17] in this parameter and allow the value to
vary within the limits

&&2 &08GeV (26)
This uncertainty leads to the change in ~V,b~ of p2.8%,
with practically linear dependence. It seems obvious that
the interval (26) overestimates the existing uncertainty in

p . It is worth notjng that the value of p can, and wjll,
be measured soon via the shape of the lepton spectrum
in b —+ clv inclusive decays [10] with theoretical accuracy
of at least 0.1 GeV .

Finally there is some dependence on the value of the
strong coupling in Eq. (21). Numerically the uncertainty
constitutes about +1%when n, is varied between 0.2 and
0.25 ~ This must and will be reduced by explicit calcula-
tion of the next loop correction, which is straightforward
(though somewhat tedious in practice). All perturbative
@CD corrections are well behaved here: no logarithms
of the mass ratio can appear, at least if the result is ex-
pressed in terms of the quark masses and o., normalized
at a proper Euclidean scale.

Therefore, the above numerical estimates imply that
already at present the theoretical uncertainty in the in-
clusive value of ~V,b~ does not exceed +5% and is quite
competitive with the existing experimental uncertainties
in this quantity. It seems possible to further reduce this
error to 4% or even 3% by measuring p and calculating
the two-loop perturbative correction to the width. The
inclusive method, thus, is not only more accurate exper-
imentally (due to higher statistics than in the exclusive
case) but it also seems more promising from the side of
both the theoretical uncertainties as they exist now and
their future possible reduction.

V. CONCLUSIONS

Let us summarize our findings. From the OPE sum
rules, we obtained a lower bound on the deviation of

from unity from from fundamental @CD. Sup-
plementing this result by a plausible estimate of the con-
tribution due to higher excitations we are able to estimate

the actual value of F~~D. , which turns out substantially
lower than unity, in drastic contrast to previous expecta-
tions. Then we argued that the proper use of the heavy
quark expansion allows one to extract

~
V~b

~

from the total
inclusive rate with much higher accuracy than is usually
stated.

The value of
~
V,b

~

determined from the inclusive
semileptonic width combined with our estimates of the
I"~~D., Eq. (16a), implies a prediction for the extrapo-
lation of the exclusive decay rate to zero recoil. Alterna-
tively, one can express the same result by explicitly in-
troducing the correction due to the fact that I'~~~. g 1
in Eq. (1). Assuming F~~~. = 0.89 and using the value
from Eq. (1) one obtains, e.g. , from the CLEO data

iv.bi
= o.o43 + o.oo7 .

The agreement with the inclusive result (25) seems to be
even too good, taking into consideration the experimental
uncertainties and the theoretical assumptions involved in
the estimates of F~~D. .

It is instructive to make a brief comparative analy-
sis of the theoretical uncertainties in the two methods:
inclusive versus exclusive. In the both cases there are
no nonperturbative corrections at the level 1/mb, . The
main difference, however, is that the leading 1/m2b, non-

perturbative corrections can be, and have been fully cal-
culated for the inclusive widths, whereas they cannot be
determined in a model-independent way for the exclusive
R ~ D* form factor even at zero recoil (see, e.g. , [8]).
Either we have a contamination due to the contribution
from higher states (in our approach), or nonlocal con-
tributions within the more traditional approach of Refs.
[6, 8]. The latter are poorly controllable. It is fortunate
that in our approach the p& and p terms make I"IB~D.
smaller than unity; the contamination due to the higher
states, being positive-definite, works in the same direc-
tion.

The exclusive approach has certain conceptual advan-
tages: apart from the form factor itself, the measured
rate is given in terms of the masses of real B and D*
mesons, whereas in calculating the inclusive widths one
uses, though well defined theoretically, but still uncertain
at some level, quark masses. On the other hand, the total
semileptonic width, in turn, has a theoretical advantage
over the exclusive predictions: in the inclusive approach,
determination of the CKM matrix elements is meaning-
ful even in the limit of the light final quark (i.e. , for the
b ~ u transition), whereas the exclusive approach be-
comes useless due to our ignorance of the heavy-to-light
form factors even at zero recoil. (In the opposite limit
when m, , increases approaching mg, the gold-plated situ-
ation for exclusive form factors, the OPE-based analysis
of the inclusive transitions automatically reproduces all
results of HABET [10].)

The perturbative corrections have been calculated in
both cases to one loop. The one-loop gluon correction
turns out to be somewhat smaller for the exclusive tran-
sition due to numerical cancellations. Although some
higher-order logarithmic summation has been performed
in the exclusive case, it does not seem to be very use-
ful for mb/m, 3. Logarithmic terms of this type do
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not appear at all in the inclusive widths due to the in-
&ared stability of the latter. The real improvement of
the perturbative estimates can be achieved only by the
exact two-loop calculation of the o., terms in both cases.
Summarizing, numerically and statistically the inclusive
approach seems best.
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