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Determination of V„b from inclusive semileptonic decay spectra
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We discuss the possibility of a model-independent method to determine ~V„q~ from appropriately
constructed moments of the energy spectrum of the charged lepton in inclusive semileptonic B
decays. The method includes perturbative +CD corrections as well as nonperturbative ones.
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I. INTRODUCTION

Recently the inclusive decay spectra of heavy hadrons
have attracted renewed attention. It has been shown that
by a combination of heavy quark efFective theory and the
operator product expansion one may perform a system-
atic 1/my expansion of the charged-lepton spectrum in
inclusive heavy-hadron decays [1—9]. However, it turns
out that an adequate description of the end-point region,
where the charged-lepton energy Eg E, requires a
partial resummation of the operator product expansion,
yielding a result analogous to the leading-twist terms in
deep inelastic scattering. In particular, it involves the
analogue of the parton distribution function, which in
the present case describes the end-point region of the
lepton spectrum. While in most of the phase space the
nonperturbative corrections may be described in terms of
a few parameters, the end-point region needs the input of
a nonperturbative function [10—12]. These recent ideas
constitute a substantial conceptual progress towards a
model-independent description of inclusive decay spec-
tra, including the end-point region.

However, aside from the nonperturbative efFects one
has to include also QCD radiative corrections before one
may confront the theory with data. These corrections
have been calculated [13—17] and are knomn to be small
for b ~ t" transitions over the whole phase space. This
is also true for the b ~ u case, as long as one is not too
close to the end point Eg E ~ . Neglecting the mass
of the u quark one finds Sudakov-like double logarithms
of the form ln (E „—Et) as mell as single logarithms
ln(E „—Et), indicating a breakdown of perturbation
theory close to the end point.

In the present context the QCD radiative corrections
have been studied by Falk et al. [18] and Bigi et al. [11].
Falk et al. arrive at the conclusion that the end-point
region of the 6 ~ u decays is strongly affected by QCD
radiative corrections and in principle a resummation to
all orders becomes necessary. The conclusion of [18] is
that the extraction of the nonperturbative efFects be-
comes practically impossible due to large and mainly un-
controllable perturbative efFects.

In [11]the Sudakov logarithms are exponentiated, lead-

ing to a strong modification of the end-point region. The
authors of [ll] suggest that uncontrollable radiative cor-
rections discussed in [18] may be eliminated by the appro-
priate choice of the scale p entering the strong coupling.
They use p v'Amp, where A is the characteristic mo-
mentum of light degrees of freedom in the heavy meson.
However, this leads to a strong modification of the shape
of the spectrum near the end point, and the reliability of
the calculation becomes questionable.

Unfortunately, it is only the end-point region of charm-
less B decays that is not buried in the huge background
of the charmed decays. The kinematic end point of
the charmed B decays is (m& —mD)/(2m') ~ 2.3
GeV, while for the charmless semileptonic decay it is

(m& —m )/(2m~) 2.6 GeV. Hence there is only a
window of at most 300 MeV, which may be attributed
solely to the transition b ~ uEv. The size of this win-
dow is of the order of the mass difFerence of the heavy
meson and the heavy quark, A = m~ —mg, and thus
it is not dominated by a few resonances. This would be
the case in a smaller region of the size A(A/mb), which
is of the order of tens of MeV, and in which the meth-
ods mentioned above would fail, since they are based on
parton-hadron duality.

This paper is an attempt to define quantities which, on
the one hand, are experimentally accessible and, on the
other hand, allow us to disentangle perturbative and non-
perturbative efFects. Our suggestion is to calculate ap-
propriate moments JM of the measured spectrum, which
are defined in such a way that they allow an expansion in
both n, (mb) and A/mb, at least for some range of indices
n.

Similar ideas have previously been put forward in [10,
11]. However, in these papers there was no detailed nu-
merical study of such moments, including both radiative
and nonperturbative efFects.

In the next section we shall reconsider the perturbative
and nonperturbative contributions to the decay spectrum
of inclusive semileptonic charmless B decays and give
the definition of the moments. In Sec. III, we perform a
numerical study from which we obtain constraints on the
range of the index n of the moments. Finally we give our
conclusions and comment on the extraction of V„b.
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II. PERTURBATIVE AND NONPERTURBATIVE
CONTRIBUTIONS TO THE SPECTRUM

(B(v) ~& (iD)'h ~B(v)) = 2m+~/,

(B(v) ~h„(—i)o~ (iD~)(iD")h„~B(v)) = 6mgyA2.

(1)
(2)

The parameter A2 is given in terms of the 0 —1 mass
splitting A2 ——(m&. —m&)/4 0.12 GeV . The matrix
element A» is not as easily accessible, in particular it has
not yet been determined experimentally. The theoretical
estimates vary over a broad range [19,20] of about Aq
—(0.3 —0.6) GeV2; thus we shall consider below a typical
"small" value A» ———0.3 GeV and a "large" one, A» ——

—0.6 GeV2.
The result for the spectrum of the inclusive decay B ~

X„Ev, neglecting the mass of the u quark, is given by

It has been shown in [1—9] that one may obtain a sys-
tematic 1/mb expansion for inclusive decay rates and the
corresponding spectra. The leading term in this expan-
sion is the free-quark decay, and the first nonvanishing
corrections appear formally at order I/m&2. These are
genuinely nonperturbative corrections, which are given
in terms of two matrix elements

where D+ ——nD, n = O, no ) 0 is the positive light cone
component of the covariant derivative and A = mph'

—mb,
where m~ is the mass of the B meson. This function has
support only in a region of x 1. In particular, the
function E leads to some "smearing" of the end-point
region, with the e8'ect that the end point of the spec-
trum is shifted from the parton-model end point mg/2 to
the physical end point mz/2. Below we shall use some
model input for E to estimate the size of the higher-order
corrections close to the end point.

Aside &om these nonperturbative corrections, there
are also perturbative ones, which have been calculated
some time ago. The order-o. , corrections are known for
all values of the lepton energy [13—17]; however, since we
are interested only in the behavior close to the end point,
we shall consider here only the contributions relevant in
this region. It turns out that the order-o, , corrections
exhibit doubly and singly logarithmic divergences at the
end point. Up to terms vanishing at the end point, the
result reads [17]

dr dry'l 2n.
dy dy 3m'

1 dI'
2 10y A

2y'(3 —2y) + 2 + 2y'(6+ 5y)
A2

I'b dy 3 mb mb

A» + 33A2x 8(1 —y) — b(1 —y)
3mb

, ~ (1 —y)
A»

3mb

+ ~,' ln(1 —y) + 4 + vr']

where at the end point

1 dr~o~ = 2y (3 —2y)8(1 —y) + 28(1 —y).
rb dy

(7)

where

2&e GF I& ~I sand I'b —— mb ~

mb 192vr3 (4)

dr a 1 n —»=lb 28(1 —y) + ) " —hi" 'l(1 —y)
dy -m" nt

n=»

The b-function singularities at the parton-model end
point y = 1 indicate a breakdown of the operator product
expansion. In fact, it has been pointed out in [4—6] that,
for the decay spectra, the expansion parameter is in fact
A/[mg(1 —y)], which becomes large close to the end point.
Still these terms have an interpretation as being the first
few terms of a moment expansion of a nonperturbative
function describing the behavior of the spectrum close to
the end point [10—12]:

dr draco~
exp

dy dy

2o.s ln (1 —y)
37r

Again the problem arises of the scale of o., and we shall
compare below two choices. Using the one-loop expres-
sion for o.„

The scale p of the strong coupling is not yet fixed in
this expression; any scale choice will formally only acct
subleading terms. However, from physical considerations
one may be led to choose p m&~(1 —y), as was done
in [11], leading to an even more singular behavior with

y —+ 1. In any case, a resummation of the singular terms
becomes mandatory in order to describe the spectrum
close to the end point.

The common folklore is that the doubly logarithmic
terms in (7) exponentiate, and at the level of the Sudakov
logarithms the radiative corrections become

»

= 2I'b E(x)dx,
(y —»)VnI, /A

12'
(33 —2nf ) ln(p2/A2qcD)

' (10)

where b~ ~ denotes the kth derivative of the b function.
Note that aq vanishes and a2 may be read off from (3) to
be a2 = —2Ag/3.

The function E(x) may be written formally as

we will compare the results obtained for p = mb and
)M m&(1 —y), the latter expression leading to

+(&) = &(~)~lh b
I

~ —
I
&.~~B[v))

1 iD+ l
2m+ A ) (6)

where D+ ——nD, n = 0, no ) 0 is the positive light cone
component of the covariant derivative and A = m~ —mb,

Actually, the scale chosen in [11] is p, Am. )„but this is
equivalent to p mz(1 —y), since in the end-point region
1 —y A/mp.
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dI'

lg
dl (o) 8 ln (1 —y)

dy 25 ln[(m~2/A2qcD) (1 —y)]

tive expansion; the problems present in the spectrum will
reappear in the behavior of the moments JH for large
n.

In the end-point region one obtains qualitatively a be-
havior of the form [ll]

dl' dI'( )

( )(„)
dg dg

where

(12)

8 ln(1 —y)
25 ln[(mt,

/A&CD�

) (1 —y) ]

dr aI'~'~ 12~(e, —1)const x exp
dg dg 25

1
~ f(~i/~qcD) (~ —u)) ) '

which in this form looks like a nonperturbative contribu-
tion.

The above discussion shows that the end-point region
is in fact difFicult to describe. On the one hand there are
large nonperturbative contributions, on the other hand
there are perturbative contributions, becoming large in
the end-point region. These remarks, however, apply
only to the spectrum itself. It has already been shown in
[10, 11] that it may be helpful to consider appropriately
defined moments of the spectrum, e.g. , those taken with
respect to the parton-model end point are related to the
coefBcients of the most singular b-function-like singulari-
ties at the end point, in each order in the I/mg expansion.

Here we propose to consider a slightly different set of
moments: namely,

behaves approximately like a constant in the region of
interest [11]. However, after such a resummation to all
orders of perturbation theory, it is no longer obvious how
to disentangle perturbative &om nonperturbative contri-
butions. This becomes clear if one really treats eo as a
constant, in which case one may rewrite (12):

In fact, &om order-of-magnitude considerations one
would expect that there is no such range in n, where
n is large enough to be sensitive to the end point, and in
which nonperturbative and radiative effects still remain
under control. However, it turns out &om the more de-
tailed study presented below that there might be such a
window in n.

In the next section we shall perform a numerical study
for the radiative corrections and the nonperturbative con-
tributions, in order to find a range in n where one may
reliably calculate the moments M„.

III. NUMERICAL DISCUSSION

~(0) —I' 'n+1 (i6)

In Fig. 1 we plot the moments obtained &om the full
parton-model rate versus the approximation (16). The
comparison between the two sets gives some impression
of the value of n at which there is sensitivity only to
the end-point region; &om the figure one reads off that
already at n 4 one mainly obtains information on the
end point.

On the other hand, data will be available in the near
future only for lepton energies above 2.3 GeV. Thus we

We shall first consider the moments of the differen-
tial distribution in the na'ive parton model, without any
corrections. The spectrum is given by the parton-model
expression and one obtains, for the moments to zeroth
order,

(o) 2(n+ 6)
(n+ 3)(n+ 4)

However, we are mainly interested in the end-point re-
gion, where the parton-model spectrum may be approxi-
mated by (8), and the moments obtained in this approx-
imation are

1+4june,

Clg g )
0 Ig (14)

which may be rewritten in terms of the moments as de-
fined in [10]. As we shall discuss in detail below, these
moments have, for some range of n, a simultaneous ex-
pansion in oI, (m~) and A/mb

This range of n is specified by two requirements. Ex-
perimental information will be available only close to the
end-point region, and thus n has to be large enough to be
sensitive to this region. On the other hand, the larger n,
the stronger the sensitivity to the details of the end-point
region. In other words, only for not too large n may one
perform the simultaneous perturbative and nonperturba-

C3

0. 8

0. 6

0. 2

0 I I

I 10

This is, however, a very rough approximation; between y =
0.9 and y = 0.98 (@II —1) varies between 0.2 and 0.6.

FIG. 1. Comparison of the parton model moments for the
full y dependence (solid dots) vs the end-point approximation
(8) (open circles).
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shall in the following consider also moments in which
the integration over n is restricted to a range yo ( y (
1+.A/mg. .

Here the parameter a3 is related to the matrix element
(B(v) I h„(iD„)(iv D) (iD")h„

I B(v)), whose moment gives
a contribution quadratic in n:

&+A.jmI, dl
M„(yo) = dyy"

dy
(17)

G3M„- r,n(n —1)
mQ

(21)

where realistic values for yo will be in the region of yo ——

0.9 or even higher. Introducing such a lower cut will
change (16) to

ml'l = r (I —,"+'),2
'n+1

&om which we estimate that the sixth moment will re-
ceive about 52% for yo

——0.9, the tenth moment already
about 70% contribution &om the region yo ( y ( 1, at
least in the naive parton model. For even higher values,
say yo ——0.95, the sensitivity to the end-point region be-
comes less; in this case the tenth moment still has 43%
contribution from this region. On the other hand, an
upper limit of n is given by the experimental resolution.
If data on 6 —+ u semileptonic transitions are available
only in the small window between 2.3 GeV and 2.6 GeV,
not enough data may be expected to extract moments
higher than about n = 10. In what follows we shall thus
concentrate on moments with n less than 10.

Next we turn to the nonperturbative corrections. They
have been been given in (3) to order 1/m&~. Taking the
moments of (3) one obtains, in the end-point approxima-
tion (8),

Neglecting the higher orders in the I/mg expansion of
the moments is only justified if

n(n —1) (n 2 orn(a, 3IA,
I IA, Im, + 1.

mg mQ 3Q3
(22)

Depending on the values of IAil and as this limit ranges
between 4 (for as~ ——IAil ~ = 500 MeV) and 10 (for
as ——350 MeV, IAil ~ = 500 MeV). Consequently, it
depends on the size of the coefFicients of the higher-order
terms, whether one may obtain moments suFiciently high
to be sensitive to the end point.

In order to estimate this one has to perform a resum-
mation of the most singular terms at the end point, to
all orders in 1/mg, in other words one has to include
these efFects using the nonperturbative function E(x) de-
fined in (6). In terms of this the rate is given by (5),
which describes the behavior of the lepton spectrum close
to the end point, namely over a region of the order of
1 —y QIAiI/ms There i.s, however, an even smaller
region 1 —y (QIAiI/mi, ), the resonance region, in
which only a few resonances contribute to the spectrum.
This region will start to contribute significantly to the
moments for

lAi / 10m„=m~'l+ r, —1 —n
I

3m~ (n+ 1 )
mQ

100,
q v'IAil)

(23)

A2 f 22+ —11
ms2 (n+ 1 (19)

s
h" (1 —y).

The dependence on n of the various terms in M reHects
how singular the contribution is at the end point of the
lepton spectrum. The most singular term is the one with
the derivative of the b function; this leads to a linear
dependence in n. The terms behaving like a b function
yield constant terms in the moments, while terms with
step functions will decrease as 1/n if n becomes large.

In a similar way as for the parton model we may esti-
mate the effects of a lower cut ofF yo according to (17).
For the terms involving a step function, the result is qual-
itatively the same as for the parton model, while for the
contributions with b-function-like singularities there is no
dependence on the lower cut, since these are concentrated
aty= 1.

Higher moments will become more and more sensitive
to what happens in the end-point region. Thus (19) is
not valid for n becoming too large. In order to estimate
the value of n, where the expansion breaks down, we have
to consider an even more singular contribution. This is
contained in the next order of the I/mg expansion, and
has the form

p~ pe&&~'l X,(p/2)
(25)

where Kq is a modified Bessel function.
The model, as given in [21], has only one parame-

ter p which has a physical interpretation, namely, p =
m2 „& ~, /p&2. One may also relate the model parame-
ters to the @CD matrix element Ai, since appropriate
moments of F are related to matrix elements of powers

which means that moments with n ) 100 will be de-
termined &om the contributions of only very few light
resonances.

The function E is genuinely nonperturbative and it has
been considered using several models. One frequently
used model is the one of Altarelli et al. [15], which has
been rewritten in terms of the nonperturbative function
E(x) [21] given by

/' 1 ( p~pE(x) = exp ——
I

— (1 —x) I

E
4,A(l-x) p~, )

(24)

Here A = m~ —mg, and p~ is the so-called Fermi mo-
mentum, which corresponds to the motion of the heavy
quark inside the heavy meson; see [21] for a precise defi-
nition. Finally, p is implicitly given in terms of the other
two parameters by
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of covariant derivatives between heavy-meson states. In
this way one obtains the relation 0. 04—

1 — =m e (26)
3A p K (p/2)

which may be used to determine the value of the model
parameter p in terms of A and Aq, it has been pointed out
in [21] that only the combination ( = —Ai/(3A ) enters
the model. In particular, Eq. (26) has no solution if (
is larger than 0.57. For a value of A of 500 MeV, this
means that the model cannot accommodate a value —Ai
of more than 0.42 GeV . For this value we have p = 0,
and the nonperturbative function simplifies

0.02—

—0. 04-

( I I I ( I

6 8 10

(27) 0. 06

We shall use this model to estimate the eKects of the most
singular terms occurring in higher orders in the 1/mb
expansion.

The value of Az is not yet known accurately. We shall
consider below a "small" value, Ai ———0.3 GeV, as well
as the largest value possible in the above model, Ai ——

—0.43 GeV . The first value of Ai corresponds to p =
0.35, while the large one is the limiting case p = 0. In
our final result we shall also consider a "large" value Ai ——

—0.6 GeV . Furthermore, we will use mg ——4.78 GeV and
A 500 MeV in the following numerical analysis.

In Fig. 2 we plot the nonperturbative corrections
bM„" to the moments, b~~ " = ~ " —M„. The
upper plot corresponds to Aq ———0.3 GeV, and the
lower one to the maximal value for A~ that can be ac-
commodated in the model (24), Ai —0.43 GeV . The
solid dots are the nonperturbative corrections according
to (19), while the solid triangles are the corrections using
the model (24) for the nonperturbative function E.

We have also plotted separately the contributions to
the moments originating &om the term linear in n, of
(19) (open circles) and the rest, i.e., the constant terms
and terms decreasing with n (open squares).

In both cases, small and large Aq, one finds a substan-
tial contribution &om the chromomagnetic-moment term
A2, at least for small moments. The term Rom the kinetic
energy operator has a linear dependence on n [cf. (19)]
while the chromomagnetic term behaves like a constant
for large n The linea.r terms of (19) are well reproduced
by the model for the nonperturbative function; this is
to be expected, since the nonperturbative function con-
tains only the most singular contribution in each order of
the 1/ms expansion, i e , the le.ad. ing twist term On the.
other hand, &om the fact that the linear term in n &om
(19) already approximates the nonperturbative function
quite well, one may conclude that the expansion (19) is
in fact sufBcient for the range of n we are considering.
In other words, the leading-twist contribution modeled
by the ansatz (24) may be replaced by the term propor-
tional to Ai/m(, in the 1/m(, expansion of the moments
with high accuracy. In particular this means that the
most singular contribution of order 1/m(, remains small
for the moments we consider.

However, the result (19) difFers &om what the non-
perturbative function gives, mainly because of the

0. 04

0. 02

—0. 04—

6 8 10

FIG. 2. The nonperturbative corrections to the moments
for Ai ———0.3 GeV (upper figure) and Ai = —0.43 GeV
(lower figure). The solid dots are the corrections using the
lowest nontrivial contributions (19), the solid triangles are
the corrections from the nonperturbative function as given in
(27), the open circles are the contributions from the nAi alone
in (19), and the open boxes are the contributions except the
nAg term.

chromomagnetic-moment term and the constant terms
proportional to Aq. These terms are less singular than
the contribution of nAi, but they contribute substantially
to the moments n & 10. On the other hand, the leading-
twist terms indicate that the 1/mb expansion is satisfac-
tory for n ( 10 and we conclude that the expansion (19)

0. 06—

0.04—

Z
0.02—

jo

FIG. 3. The nonperturbative corrections to the moments,
including a lower cut of yo in the integration as ln (17). We
use p = 0, corresponding to Aq

———0.43 GeV .
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TABLE I. Numerical values for the functions A(l, n) for 0 ( n ( 10 and 1 ( l ( 6.

0
1
2
3

5
6
7
8
9
10

A(l = 6, n)
720.0
714.4
709.1
704.1
699.3
694.8
690.4
686.3
682.3
678.4
674.7

h. (l = 5, n)
—120.0
—118.1
—116.4
—114.8
—113.4
—112.0
—110.7
—109.5
—108.4
—107.3
—106.3

h, (l = 4, n)
24.00
23.25
22.60
22.02
21.51
21.04
20.61
20.22
19.85
19.51
19.19

b. (l = 3, n)
—6.000
—5.625
—5.324
—5.073
—4.860
—4.675
—4.511
—4.365
—4.233
—4.114
—4.005

A(l = 2, n)
2.000
1.750
1.574
1.441
1.335
1.249
1.176
1.114
1.060
1.013
0.971

b, (l = I, n)
—1.000
—0.750
—0.611
—0.521
—0.457
—0.408
—0.370
—0.340
—0.314
—0.293
—0.274

Furthermore, the fact that data will be available only for
y ) yo 0.9 has a small effect on the moments in the
range of n considered; the moments including a lower cut
yo may still be treated in the combined expansion.

The final result for the moments is plotted in Fig. 6,
where those obtained &om the combined expansion in
n, (mb) and A/mb according to (32) are shown. The solid
dots are the result for "small" A~ ———0.3 GeV, and the
solid boxes are for "large" A~ ———0.6 GeV .

To summarize, one may analyze the moments up to 12
before the corrections become too big, of order 100%%uo. We
also see that nonperturbative corrections are very small
for small values of A&, and that the key role is played

by the radiative ones. The reason for the smallness of
nonperturbative corrections is an almost complete can-
cellation between the terms proportional to Aq and A2.
For the case Aq

———0.6 GeV the cancellation is only
partial and the nonperturbative corrections are sizable
and positive. This indicates that higher-twist effects may
play an important role also in the end-point region, and
taking into account only the leading-twist contribution,
corresponding to the function E, is not enough. This
remark, however, applies to a precise description of the
spectrum in the end-point region, while for the moments
with su%ciently small n it is safe to use the combined
expansion in n, (mb) and A/mb, which contains pieces of
nonleading twist in the constant terms and the contribu-
tions decreasing with n.
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Since data on b —+ u transitions will be restricted to
a small window between 2.3 and 2.6 GeV, it is mainly
the end point of the spectrum that will be accessible to
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FIG. 5. The efFect of a lower cutoff yo [cf. (17)j on the
radiative corrections to the moments. The upper figure is the
moments obtained from (7) with lower cutofF, while the lower
plot is obtained from (9).

FIG. 6. The final result for the moments, including both
radiative and nonperturbative corrections according to (32).
The solid dots are the result for Aq ———0.3 GeV, the solid
boxes are for A~ ———0.6 GeV . For comparison we also plot
the parton model result (open circles).
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view, since here large radiative corrections are entangled
with large nonperturbative efFects. In fact, it is not even
obvious whether and how the two sources of corrections
may be distinguished close to the end. point.

The main result of this paper is that one may de6ne
suitable averages of the inclusive decay distribution of
semileptonic b ~ u transitions, which, on the one hand,
may be calculated reliably, and which, on the other hand,
are mainly sensitive in the window between the kinematic
end points of b ~ c and b —+ u semileptonic decays. We
have concentrated on moments of the energy spectrum
of the charged lepton and have performed a detailed nu-
merical analysis, which shows that moments for n & 10
may be systematically calculated in a combined n, (mb)
and A/mb expansion; both types of corrections may be
studied systematically. Furthermore, the moments with
n ) 4 are sensitive mainly in the experimentally acces-
sible window. Thus there is indeed a region 4 & n & 10
for which the moments de6ned above may be useful to
perform a determination of ~V„s~.

In fact, such a combined expansion is even valid for
moments defined with a lower cutofF yo, as given in (17)
as long as y0 is not too close to 1. Furthermore, for a
realistic value y0 ——0.9 the deviations of the moments
including a cut &om the full ones are small in the region
of n considered. Thus for an experimental analysis one
may as well deal with the moments including a cut.

In order to extract ~V„i, ] &om these moments one has
to know the two matrix elements Aq and A2. While A2

is known &om the hadron spectrum, Aq is still uncer-
tain; we have used typical "large" and "small" values,
but one may hope to extract this parameter &om ex-
periment eventually. Furthermore a comparison to the
structure function approach shows that the most singu-
lar terms of order 1/m&~ and higher remain small for the
range of moments under consideration.

One possibility to perform a determination of Aq is in
fact to use the moments de6ned above. The ratio of two
moments will depend only on Ai/m&, A2/m& and n, (ms).
The strong coupling and A2 are known, and one may in
principle extract Aq and mg &om two ratios of moments.
After having done this, one may use any one of the mo-
ments to obtain I'~ and hence ~V„i,~. To proceed along
these lines one needs a measurement of three moments
in the range 4 & n & 10; any measurement of additional
moments may be used to cross-check the n dependence
of the moments.

We have discussed how sensitive the moments are to

1+A/mg dI'
dy X„(y)

0 dy
(33)

where T is some set of functions. A good choice of
may possibly allow a more reliable calculation of the

corresponding moments W, and, on the other hand, be
more sensitive to the experimentally accessible region.
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the end-point region. From this point of view, one has
to have n as large as possible; the fourth moment re-
ceives about 50% &om the end-point region (y ) 0.9),
while for n = 10 one has already 70% contribution &om
this region. Using this method to determine V g the sen-
sitivity to the end-point region translates into an error
in this kind of analysis. However, a detailed analysis of
the errors is very much connected to the question of how
much of the end-point region is accessible in the exper-
iment. The applicability of our method (as well as its
error) may then be estimated by comparing the n depen-
dence of the measured moments to the n dependence as
predicted in (32). A realistic error of this method is some-
where in the range 20—30%, if only the end-point region
is experimentally accessible and no further (in general
model-dependent) assumptions are made.

The idea presented here may be reined in various as-
pects, and we consider this paper as a erst try to study
whether one may extract ~V„i, ] using the moments of the
decay distributions. As far as the radiative corrections
are concerned, we have only considered the singular and
nonvanishing terms close to the end point. In this point
one may refine the analysis by taking into account the
complete corrections, which may be found in the litera-
ture Fiirt. hermore, also the corrections of order (A/mb)
have been considered [23] and also may be included in the
analysis. However, we do not expect that any of these
higher-order corrections will change any of our conclu-
sions.

Finally, one may also think of considering other aver-
ages of decay distributions and generalize the moments
according to
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