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We present the QCD corrections to Higgs boson self-energies for an arbitrary momentum transfer
and for difI'erent internal quark Inasses to treat the case of CP-even, t P-odd, and charged Higgs
bosons which appear in extensions of the standard model scalar sector. Using Ward identities, we
then relate these results obtained by directly evaluating the relevant two-loop Feynman diagrams to
the known expressions for the electroweak vector boson vacuum polarization functions. Finally, we
derive the exact analytical expressions for the QCD corrections to the decays of these Higgs particles
into quark pairs in the general case, and reproduce in a completely independent way known results
in some special cases.
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I. INTR.ODUCTIQN

One of the remaining enigmas in the modern formula-
tion of the theory of strong and electroweak interactions
is the mechanism of electroweak symmetry breaking. The
existence of at least one scalar particle, the Higgs boson,
is required to generate the masses of the other fundamen-
tal particles, leptons, quarks, and weak gauge bosons [1].
The discovery of this particle and the study of its funda-
mental properties will be the most important mission of
future high-energy colliders [2].

The phenomenological properties of the unique Higgs
particle of the standard model (SM) have been stud-
ied in great detail in the literature [1,2]. In fact, be-
cause the precise knowledge of the Higgs boson decay
widths, branching &actions, and production cross sec-
tions is mandatory, quantum corrections must be in-
cluded and this subject has received much attention re-
cently [3]. In particular, QCD corrections to Higgs boson
decay and production processes are of the utmost impor-
tance. For instance, the Higgs boson decays into quark
pairs and gluons, which together with the H —+ ~+~
decays, are the most important decay modes in the in-
termediate mass range M~ ( MH & 140 GeV, receive
very large QCD corrections. In the case of II -+ qq, they
are known exactly to O(n, ) [4—6] and up to O(n2) [7] in
the approximation mq (& MH' , in the case of the gluonic
decays, the QCD corrections are known up to next to
leading order [8].

The electroweak radiative corrections to Higgs boson
decays [10] are also of significance, since the leading con-
tribution is quadratically proportional to the mass of the
heavy top quark [ll]. In fact, a fourth generation of
heavy fermions, the existence of which is still allowed
by present experimental data with the proviso that the
associated neutrino is heavy enough [9], would have a
dramatic effect on the Higgs boson decay widths. Its
contribution is universal in the sense that it does not de-
pend on the final state particle, and will also increase

quadratically with the heavy fermion masses. The uni-
versal part of the two-loop mixed O(a, Cpm&) correc-
tions, which have been calculated very recently [12,13],
will screen the leading one-loop contributions by a non-
negligible amount.

This is how it is, so far, for the SM Higgs particle.
However, many extensions of the standard model predict
the existence of a larger Higgs sector. For instance su-
persymmetric (SUSY) theories, which are very attractive
since at low energies they provide a theoretical &ame-
work in which the problem of naturalness and hierarchy
in the Higgs sector is solved while retaining Higgs bosons
with moderate masses as elementary particles, require
the existence of at least two isodoublet scalar fields C q

and 42 to give masses separately to isospin up and down
particles, thus extending the physical spectrum of scalar
particles to five [1]. The physical Higgs bosons intro-
duced by the minimal supersymmetric extension of the
standard model (MSSM) are of the following type: two
CP even neutral b-osons h and H (where h will be the
lightest particle), a CP odd ne-utral boson A (usually
called pseudoscalar), and two charged Higgs bosons H+.
In addition to the four masses Mh, MH, M~, and MH+,
two additional parameters define the properties of the
scalar particles and their interactions with gauge bosons
and fermions: the ratio of the two vacuum expectation
values tanP = v2/vi and a mixing angle n in the neutral
CP-even sector. Note that, contrary to a general two-

Higgs doublet model where the six parameters are free,
supersymmetry leads to several relations among these pa-
rameters and, in fact, only two of them are independent.

Note that there are also large radiative corrections to the
supersymmetric Higgs boson masses and couplings [14]; these
corrections are beyond the scope of this paper and will not be
discussed here.
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In this paper we calculate, by directly evaluating the
relevant Feynam diagrams using dimensional regulariza-
tion, the fermionic contributions to the Higgs boson self-
energies at O(nn, ). To treat the case of scalar, pseu-
doscalar and charged Higgs particles on the same foot-
ing, we have considered the most general case where, in
addition to leaving the momentum transfer arbitrary, we
allow the internal quarks to be of different Bavors U g D
and therefore to have different masses mp g mp. Our
motivations for performing such a calculation are three-
fold.

(i) As in the case of the SM Higgs boson, the strong
[4—6,15] and some of the electroweak [16] radiative cor-
rections to SUSY Higgs boson decays are known at the
one-loop level. In some limiting cases, as for the gluonic
corrections for nearly massless quarks, SM two-loop re-
sults can be adapted to the SUSY case [17]. Here, we
provide the necessary material which allows us to derive
the universal part of the mixed O(n, G~) radiative cor-
rections to these Higgs decays. This is a generalization to
a multi-Higgs-doublet model of the recent SM calculation
[12], which is just a special case [in the limit mp = mp
and when the Higgs boson is CP even] of the present
results.

(ii) The imaginary parts of the Higgs boson self-
energies are related, through the optical theorem, to the
hadronic partial decay widths of the Higgs bosons. We
give here the exact analytical expression of the QCD cor-
rections to the Higgs decay widths in the most general
case mp g mp which is not available in the literature.
In the special cases mp ——mD, we recover the known
results for the QCD corrections to CP even and C-P
odd [4—6] neutral Higgs bosons which have been obtained
by directly evaluating the relevant Feynman amplitudes.
Since our expressions have been obtained with a com-
pletely different method, this serves as an independent
check of these results.

(iii) The fermionic contributions to the transverse and
longitudinal components of the electroweak vector boson
self-energies at O(an, ) have been evaluated recently in
the general case [18]. It is known that the longitudinal
parts of the latter self-energies are directly related to the
corresponding Goldstone boson self-energies through a
Ward identity. Here, we will show explicitly that this is
indeed the case also for the Higgs bosons and therefore
provide a very powerful check of both calculations.

The paper is organized as follows. In the next section
we will 6rst set the notation and summarize the one-loop
results which will be relevant to our discussion. In Sec.
III we will give a few details on the calculation of the
two-loop Higgs boson self-energies and discuss the renor-

malization procedure. The complete results for the Higgs
boson two-point functions will be given in Sec. IV. In Sec.
V we will derive the imaginary parts of the two-loop self-
energies which correspond to the QCD corrections to the
decays of the Higgs bosons into quark-antiquark pairs.
Section VI will summarize our results. Finally, in the
Appendix, we discuss the Ward identity which allows us
to relate our results to the ones derived for the longitu-
dinal components of the electroweak vector bosons.

II. NOTATION AND ONE-LOOP RESULTS

g(H+UD) = i(G~/~2)'~ [hp(l —ps) + h~(1+ ps)],
(2.1)

where in a (type II) two-Higgs doublet model [1] such as
in the MSSM,

hp = mp/tanP, h~ = mD tanP . (2.2)

It is often convenient to use the scalar and pseudoscalar
components of this coupling:

v = hD + hU, a = hD —hp . (2.3)

The couplings of scalar, that we will denote by S, and
pseudoscalar A Higgs bosons take the general form

g(SQQ) = —i(Gp~2) ~ hg,

g(AQQ) = (GJ; V 2) pshg —.
(2.4)

In this section we will erst set the notation and for the
sake of completeness, we rederive some of the one-loop
results which will be relevant to our next discussion. We
will closely follow the notation of Refs. [18,19].

The contribution of a quark loop to the self-energy of
a scalar Higgs boson 4 will be denoted by II (s = q ),
where q is the four-momentum transfer. To treat the
cases of neutral CP-even, neutral CP-odd, and charged
Higgs bosons on the same footing, it is convenient to
work in the general situation where the internal quarks
in the loop are of different flavor, and thus have different
masses. This will correspond to the case of a charged
Higgs boson which couples to an up-type and down-type
quark, with masses m~ g mD g 0; the self-energies of
neutral scalar and pseudoscalar Higgs bosons will simply
be special cases of the previous one.

The coupling of charged Higgs bosons to fermions is a
P-violating mixture of scalar and pseudoscalar couplings,

By hadronic Higgs boson decays, we mean here the decays
into quark pairs; the QCD corrections to the gluonic neutral
Higgs boson decays have been evaluated in Ref. [8].

QCD corrections to the charged Higgs boson decay for
m~ g m~ have been calculated in Ref. [15], but not in a
full analytical form since the integrals for the real corrections
have been performed numerically.

In the SM, the reduced couplings hg are just the quark
masses; in the MSSM these couplings for 4 = S, A are
given in Table I for U and D quarks.

In the one-loop approximation, the contribution of a
quark loop to the vacuum polarization amplitude of a
charged Higgs boson, II+(q2), will correspond to —i times
the standard Feynman amplitude of the diagram Fig.
1(a). For arbitrary fermion masses mp P mp g 0 and
momentum transfer q, this amplitude reads
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d k (g+ m~)(v —ass)(g —f+ m~)(v+ ass)
(2vr)" (k2 —m2~) [(k —q)2 —m2~]

(2.6)

where N~ ——3 is a color factor, p is the 't Hooft renormalization mass scale introduced to make the coupling constant
dimensionless in n = 4 —2e dimensions; we have also introduced an extra term (e~/4')' [p is the Euler constant] to
prevent uninteresting combinations of ln4vr, p, . . . , in the final result. After calculating the trace and integrating over
the loop momentum, one obtains

n (.) = 'G . s.n+(.)+s.n..(.)+2s.s.- n-(.),
S

(2.6)

where, in the general case m~ g mD g 0, II+(s) take the form

1 1 1 1 3 3II+ ( ) = —(1+2 +2P) ——(p + p )(1+ +P) —— p ——Pp +1+ — + —PU, D 4 2 2 2 2

+—(1+o. + p) [(~ —p + &'/') ln*. + (p —o. + A'/') ln xb],

11-(8) = ———2+ —(p + p, ) ——[(n —p+ p / ) ln x + (p —~+ p / ) ln x,]
1 1 1 1 2 1 2

2 2
(2.7)

2 2mU
) p~ =ln ) x~

p2

20!

1+n+ P+ A»' '

and where we use the variables [P = —mD/s, pg and xg
are de6ned in a similar way]

11 (.) = 3Gy

2 27r2

1 (1
x —

~

——p ~
(1+6o.) + 1 + 5o.

A = 1+2o + 2P+ (n —P)' . (2.8)
1+-(1+4~)'/' ln*
2

In the limit where one of the internal quarks is nearly
massless compared to its partner, as is the case for the
top-bottom isodoublet, the coefficients in front of II~(s)
and II (s) vanish and the expression of II&(s) simplifies
to

11~(.) = 3GF
sh

1 (1
x —

~

——p ~
(1+2n) f1+a

)
1 (1 3

11+( ) = —
i

——p- i
(1+ 2 ) +1+--

2 (e ) 2

1+—(1+n) ln
2 1+ o.

(2.9)

II'"( ) = S~[II~+(s) + (m~/s)II-(s)], (2.»)

leading to

TABLE I. Neutral Higgs couplings to up-type and
down-type fermions in the SM and MSSM.

4
IIsM

II,

H
A

h~/m~

cosA sin
sinn sin

1/tanP

ho/mo
1

—sin A cos
COSA COS

tan

The expressions of the self-energies for neutral scalar and
pseudoscalar Higgs bosons can simply be obtained by set-
ting m~ = m~ = mq in Eqs. (2.6), (2.7) and by using
the relevant couplings which are given in Table I. With
the help of the variable x = 4n/(1 + gl + 4a.) with
n = —m&/s, one has

1
+—(1 + 4n) '/ ln x

2
(2.11)

2mU

mD

1m4U+ m4D
ln

2 mU mD
1 mUmQII (s « mU ~) = ——+»

p2

1mU+ mD
lln

2 mU mD

2mU
2 )

mD
(2.12)

+ 1 1 —8
sII (s )) m~~) = ———ln + 1 .

26 2 p
(2.1a)

In all the previous expressions the momentum transfer

Note that Eq. (2.6) exhibits the fact that II+'s(s) can be
obtained from II '+(s) by simply making the substitution
mg(m~) -+ —m~( —m~) in II (s) as expected from p5
reHection symmetry.

Finally, in the limit where the momentum squared
is much larger or much smaller than the quark masses
squared, the self-energies read

sII (s « m~D) = —(m~+mD) ~

——ln
2 +1

I

+ 2 2 2 (1 mvmD

)
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m$

FIG. 1. Feynman diagrams
for the contribution of quark
pairs to the self-energy of a
Higgs boson at one-loup (a) and
two-loop (b).

kp —q

has been defined to be in the spacelike region, i.e., 8 ( 0.
When continued to the physical region above the thresh-
old for the production of two fermions, s ) (m~ + mD)
the Higgs boson self-energies acquire imaginary parts.
These imaginary parts are related to the decay widths of
the Higgs particles into quark-antiquark pairs. Adding a
small imaginary part —ie to the fermion masses squared,

the analytical continuation is consistently defined.
From expressions (2.7), the imaginary parts can be

straightforwardly obtained by making the substitution

lnx g -+ in ~x g~+ivr. (2.14)

One then has for the partial decay widths of a charged
Higgs boson H+ into UD quark pairs [s = MH+]

I'(JI+ -+ UD) = h&imil&(s) + hDImll&(s) + 2hrrhD ImII (s)
2 2~2 8

(2.i5)

with

ImII~D(s) = —A ~ (1+n+ P), ImII (s) = —ark ~

(2.i6)

In the limit mD ——0 this partial decay width reduces to
the more familiar form

~cQ~ ( mg)
I (S m QQ) = Mph~ 1 —4

i/2

I'(A m QQ) = M~h~ 1 —4
~~Qp 2 (

mph'

4 2vr i s

III. TWO-LOOP CALCULATION

(2.IS)

~2
4 2~ ( s)

In a similar manner, one also obtains the familiar ex-
pressions of the partial decay widths of neutral scalar and
pseudoscalar Higgs bosons into quark-antiquark pairs:

At O(nn, ), the two-loop diagrams contributing to the
Higgs boson self-energies II (q ) [up to a factor —ij are
shown in Fig. 1(b). In the 't Hooft —Feynman gauge,
using the routing of momenta shown in the figure and
following the notation introduced in the preceding sec-
tion, one can write the bare amplitude as
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26'

(3.1)

where, for mU g mD g 0, are given by

(ICi + m~)(v —ass)(gi —g+ m~)pg($2 —g+ m~)(v + ass)(Ic2 + mg)p
(ki —k2)'(ki —mr )(k2 ™U)[(ki —q)' —mD][(k2 —q)' —mD]

g T (I 1 + m&) (v a75)(l 1 4+ mD)(v + a'75)(gl + mv)px(!C2 + mv)p
(ki —k2) 2 (k2 —m~~) ~ (k22 —m~~) [(ki —q)

2 —m~~]
(3.2)

E'

d"k p" (gf g+ —mg)pp
(2m. )" [(p —k)2 —m2 ]Ic2

~ (3.3)

where p is the four-momentum of the quark and mq its
bare mass. This expression can be decomposed into a
piece proportional to (p —mg) which will enter the wave
function renormalization and another piece proportional
to mg which will give the mass counterterm. After in-

This bare amplitude has to be supplemented by coun-
terterms; these include the quark wave function and mass
counterterms as well as the Higgs-boson —quark vertex
counterterm. However, the renormalization of the Higgs-
boson —quark vertex is connected with the renormaliza-
tion of the quark masses and wave functions; because
the latter counterterms cancel, one only needs to include
quark mass renormalization and considers the diagrams
where the quark mass counterterms are inserted into the
one-loop Higgs boson self-energy [Figs. 2(b) and 2(c)).
The mass counterterm is obtained by evaluating the am-
plitude of the diagram shown in Fig. 2(a), which reads
in dimensional regularization

tegration over the loop momentum, the latter is given
by

n. m~ (e~p'& I' I+e
7r e ( mg j 1 2t

x[1+O(p /m~ —1)] . (3.4)

The mass counterterm will now depend on the renor-
malization procedure, i.e. , on the way the quark mass
is defined. In the on-shell scheme which is usually used
to calculate radiative corrections in the electroweak the-
ory [20], the fermion masses are defined at p = m&
and correspond to the position of the pole of the fermion
propagators; they are referred to as the on-shell masses
and the counterterm reads in this case

6mq = mq(m&) —mq

n, mg p' r' ir', ) 1 —2ej31+ —e
vr e ~m2+ ) ( 12 ) 1 —2e

One then inserts this mass counterterm in the one-loop
self-energies, as depicted in the diagrams of Fig. 2(a),
which is equivalent to calculate

(a)

n'(q')IcT = —Sm~ 1+
OmU

0—bmD
OmD

rr'(q') I, ...,
&'(q')

I -. (3.6)

where the one-loop vacuum polarization function is given
by Eqs. (2.6) and (2.7), up to O(e) terms which have to
be included. The renormalized two-loop self-energies will
then read

(b)

(c)

FIG. 2. Feynman diagrams for the (a) one-loop quark
self-energy and for the (b) mass and (c) vertex counterterms
contribution to the self-energies at the two-loop level.

Note that one can also employ a difFerent definition of the
quark masses; for instance one can use the modified minimal
subtraction scheme (MS) mass which is defined by just picking
the divergent term in the expression of Z(p ) in Eq. (3.4),
or the running mass where one evaluates Z(p ) at a scale

p = M@. Having at hand the expressions of the two-loop self-
energies in the on-shell scheme, the procedure for obtaining
the corresponding result in any other renormalization scheme
is straightforward and can be found, e.g. , in Ref. [18]. In
practice, however, it is sufBcient to replace in the one-loop
result, the on-shell mass by the MS or the running mass: the
difFerence between this result and the one obtained using the
procedure discussed in Ref. [18] is of higher order in n, .
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II'(v') = ll'(~') lb-. + 11'(~') ICT .

Similarly to the one-loop case, after calculating the
trace in Eqs. (3.2) and expressing the scalar products
of the momenta appearing in the numerators in terms
of combinations of the polynomials in the denominators,
one is led to the calculation of a set of scalar two-loop
integrals [21] which can also be found in Ref. [18]. In
the following we will not give any more details on the
cumbersome calculation: we will simply list our main
results in the next two sections.

two-point function at order O(na, ) in the general case
mar g m~ g 0. The result will be given in the on-shell
mass scheme; i.e. , m~ D will stand for the on-shell masses.
Using the same notations as in the one loop case [confu-
sion should be rare], the charged Higgs boson self-energy
II (q ) at the two-loop level is given by

II (s) = —'s h~llrr(s) + hDII+D(s) + 2hUhD
2 27r2 7r

IV. TVFO-LOOP SKI.F-ENEB.C IES
x II (s) (4.1)

We begin by giving the expression of the contribu-
tion of a (U, D) isodoublet to the charged Higgs boson

I

with II+(s) given by the relatively simple and compact
expressions

3 1 11
11+& —— (1 + 4o, + 4p) —— —+ 14o. + 14p —3p —12np —6pp —6ppb

11 (1
+(p. + pb) —+14~+148—3(p. +Pb) I

—+ ~+/1
l

—3(~ —P)(P Pb)(4
17 17 3

(P —Pb) 5 + —n + —p ——(1 + 2n + 2p) (p + pb) + —(n —p ) (p —pb)
2 2 2

3 53 3 12+———(n + p) ——(1 + 4n + 4p) + —A ~ (1 + n + p) (ln x + ln xb) (p —pb)8 2 4

+—lnx [31(n —p) + 9(l + o. + p)(n —p+ A )] + —ln x ((I —2n —2p)[—A+ 1+n+ p —(n —p)4~~2]
4 4

—3(o + p) + 3(o. —p)(o. —p+ A )j + —lnxb[31(p —o.) + 9(l + o. + p)(p —n + A ~ )]

+—ln xb((l —2n —2p)[—A+. 1+ o. + p+ (n —p)A'~ ]
—3(n+ p) + 3(n —p)(n —p —A ~ ))

+—lnx lnxb(A+ 2o. + 2p+ 6np) —(1+n+ p)~X —2(1+ n+ p)Z (4.2)

II+ =II+[m ~m ], {4.3)

II = —+ —(14 —6p —6pb) —14p —14pb + 3(p + pb) + 20 + 7r
6 1 2 2

—6 ln x (n —P + A ~ ) —ln x [A —1 —o. —P + (o. —P) A ~ ]

ln xb(P —n + A !) —ln xb [A —1 —o. —P + (P —n) A'/
]

—6 ln x ln xb(l + n + p) + 2(1 + n + p)X + 42' .

In these expressions, 2 and X' are given by

2 = F(1) + F(x xb) —F(x ) —F(xb),

r' = ~'~'G(x. x,) —-y — + ~'~')G( .) —-(~ —P+ ~'~')G(*,),2 2
(4'")

where in terms of the polylogarithmic functions [22] Li2(x) = —f y ln(1 —xy)dy and Lis(x) = —I y
~ lny ln(l-

xy)dy, the functions F and G are given by

F(x) = 6Lis(x) —4Li2{x) lnx —1n x ln(1 —x),
x

ln x.G(x) = 2Li2(x) + 2 ln x ln(1 —x) +
1 —x (4 6)

In the limit where one of the quarks is massless, mD ——0, the coefFicients of II& and II vanish while II& takes the
much simpler form [x = ct;/(I + n) with n = —m2&/s]
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3 1 11 1
2/2 (1 + 4a) —— —+ 14n —3p —12a.p + —p (ll + 56a.')

4 2

3 53 9—3p2(I + 4rr) + ———a. ——(1+4n) + —(1 —n) lnx
8 2 4 2

+—(1+n) (3+ 2n) ln x+ (1+n) [E(x) —E(1)]+ (1+n)G(x) .
2

(4.7)

Note that in this limit the expression of II&(s) is free of mass singularities as it should be.
As in the one-loop case, one can derive the expressions of the self-energies for neutral scalar and pseudoscalar

Higgs bosons from Eqs. (4.1)—(4.4) by setting mar ——mz& ——mg and using the proper coupling. One would have
[x = 4n/(I + v'I+ 4n)~ with n = —m~2/s]

II~( )(s) = —'sh~Sg(Ag)
2 27r2 7r

(4 8)

with Sg = II&+(s) —a.II (s) and Ag = II&(s) + nII (s) given by

3 1 (11
Sg = — (1+12n) ——

l

——3p +42n —36ap
l
+ —p —3p +84np —36a.p26

a
2

n a a a

+——73n ——(1+ 12n) + —(1+4n) (14cr+ 3) lilx+
l

—+ 14n+ 29&
l

ln x
3 3 1 2 (3
8 2

—(1+2 ) (1+4 )[E(1)+ E( ') —2E(*)]—2(1+ 4 )"[G( ') —G(*)]
3 1 (ll ll

Aq = — (1+4n) ——
l

——3p + 14m —12np
l
+ —p —3p' + 28np —12np'

2E' 4 cl
2

A a a

3 rr 3 i (3+——33ar. ——(1+4n) + —(1 + 4a) (3 —2a) lnx+
l

—+ 2n —3n
l

ln
8 )

—(1+2a.)[E(1)+ E(x ) —2E(x)] —2(1+ 4n) i [G(x ) —G(x)] . (4.9)

The expressions of II& has been derived very recently [12] in the case of the standard model Higgs boson; we have
verified. that both results are in agreement with each other.

Finally, in the limit where the momentum squared is much smaller than the internal quark masses squared, the
components II and II read

6 1 3m+2 3 +2 2
3 2

sII = —m+ + —(14m+ —3m+p —3m p —6m+p+) —— p + — p + rr m+Q 4m

2— 9,+m+
I 3p+ 14p+ 7p —+ 3p+p —+ p —+ 30

I
+ m —p —7p + 3p+p4 4

6 1 m+ 2
2

2 2 3 2II = —+ —(14 —6p+) —— p + 30 —14p+ + 3p + rr + —p
E' 2m2 + 2

(4.10)

with p~ ——lnm2&/p2 + lnm2~ jp and m~ = mv + m&. In the opposite limit, i.e. , when the masses are very small
compared to the momentum transfer squared, the coefficient of II vanishes and II& will read [g(3) = E(l)/6 = 1.202]

We have also found that the leading O(Gp a.,m, ) universal radiative correction factor to the Higgs boson fermionic decay
widths, for mt )) mr„ is indeed [1 —r(1 + vr /9) —'], in accord with Ref. [12]. In the case of the pseudoscalar Higgs boson
with tanP = 1, the correction factor in the limit mz )) mr, is found to be [1 —&~(3+ vr )—']; this is just the well-known QCD
correction to the p parameter [19]. This result is not surprising if one recalls that the pseudoscalar Higgs boson couples like
the longitudinal conipanent of the Z boson [see Appendix] which, in turn, is the same as the transverse component for q = G.
Note, however, that this contribution is the full O(Gs a.,m, ) radiative correction only for the leptonic Higgs boson decays: for
decays inta quark pairs [and not only in the case of the b quark] additional diagrams have to be considered; see also Ref. [13].
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3 1( my mg 9 —8 3 mq
sII+ = — + —

~
3 ln ——

l + ————6((3) + 10 ln ——3 ln ——ln + —ln
2E e ( p 4) 8 4 p p 2 p 2 —8

(4.11)

V. HADRONIC DECAY WIDTHS

%e now turn to the discussion of the partial decay widths of these various Higgs bosons in quark-antiquark pairs.
At O(n, ), the partial decay width of a charged Higgs boson into UD pairs is given by [s = M~+]

I'(H+ m UD) = '
hrrlmll+~(s) + hz)lmIID+(s) + 2hrrh~

U ImII (s)
2 2~3 8

(5.1)

The imaginary parts of II& D and II can be derived along the same lines as discussed previously in the one-loop
case. Using the fact that

Im lnx b = 7r, Im ln x,b = 27r ln ~x,b~,

Ixz&' = ~Q' = vr 4A ) ln(l —x xb) + ln[x xb~ —(p —n+ A ~ )»(1 —x )1 —xaxb

ln ~x
~

—(n —P+ A'~') ln(l —xb) + ln ~xb~1 XQ 1 xb

ImZ = ~g = —2~[4Li2(x xb) —2Li2(x ) —2Li2(xb) + 2~x xb~

x ln(1 —x xb) —ln [x ~(1 —x ) —ln ~xb~ ln(1 —xb)],

one obtains, for ImII+ in the general case mrs g mD g 0,

1 3), , I'3—lmII+~(s) = (1+n+ p) ~

n —p+ —
~

A'~'+
~

—+ n+ p
~

A+ 5np in~x.
~)

31 , , f3(1+n+p)
~ p —n —— ~A ~ +

~

—+n+p ~A+5np
2) k2 )

+—(1+n + p) A')' —(1+n + p)'& —2(1+ n+ p)&',
2

(5.2)

(5 3)

Imll+~ (s) = Imli~+(s) [mU ++ mD],

—ImII (s) = —2[A+ 2(1+ n + P) + (n —P)A )
] lnlx

I
2[A+ 2(1+ n+ P) + (P n)A ~

] lnixbl
1

—12A')'+ 2(1+ a+ p)&+ 4&' .

(5.4)

(5.5)

From these formulas one can derive again the expressions of the hadronic decay widths in the previous special
situations of physical relevance. In the limit where one of the quark is nearly massless, mo ~ 0, one has, for
ImIIU+(s),

C~ = —ImII+(s) = —(1 + a) + (1 + n) (3 + 7n + 2n ) ln —2(1 + n)
z 1+0!

ln(l + n) . / a
X + 2Li2

~ ~

—ln(1 + n) ln1+0,' +1) 1+a
In the case of scalar and pseudoscalar Higgs bosons, the partial decay widths I (S, A -+ QQ) will be given by

I' [S(A) + QQ) = —'h~Ms(~)Sg(Ag),
2 27r 7r

where Sg/Ag = Imll&+(s, P = n)/vr ~ n ImII (s, P = n)/vr are given by

Sg = —(1+4n) ~ (14n+ 3) + (58n + 28n+ 3) ln ~x~
—4(1+ 4n) J,

2

Ag = —(1 + 4n) ) (3 —2a) + (3 + 4n 6n ) ln Ixl —4J
2

(5.6)

(5.8)
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where

J = -(1+2~)[2Li2(x ) —21i2(x) +»nlxiin(1 —*') —» lxl »(1 —x)]
x(3x —1)+2+1+4' 2 ln(1 —*') —ln(1 —*)+

1 —x2 (5.9)

Finally, let us note that in the limit where the quark
masses are much smaller than the Higgs boson masses,
the QCD corrections to the decay widths will exhibit the
well known logarithmic behavior [4,5] which, because of
chiral symmetry, is the same for the scalar, pseudoscalar
and charged Higgs boson:

9 mg
Sg, Ag, Cg m —+ 3 ln (5.10)

2

One has therefore to sum these potentially large log-
arithmic terms; this is equivalent to replace the on-shell
quark masses by the running masses defined at p = M+
when renormalizing the 4QQ vertex.

Analytical results for ImIIs(s) [4—6] and ImII (s) [5,6]
have been obtained in the past by a number of authors
by directly calculating the QCD corrections to the decay
of a scalar Higgs boson into quark pairs. The results that
we obtain here using a completely different method agree
with the previous ones; this serves as check of our full cal-
culation in the general case. Note also that for the value
tanP = 1, we recover the expression of the imaginary
part for the longitudinal component of the electroweak
vector bosons in the general case, which is given in Refs.
[6,18,23]. Indeed, because of a Ward identity which will
be discussed in the Appendix, the imaginary part of the
longitudinal component of the vector boson self-energy
is the same as the one for the Higgs boson self-energy
for this value of tanP. This feature provides also a very
powerful check of the calculation presented here.

VI. SUMMARY

In this paper, the contribution of heavy quarks to the
Higgs boson self-energies was calculated at first order in
the strong interaction. We have considered the most gen-
eral case: finite momentum transfer and arbitrary masses
for the internal quarks to treat on the same footing the
case of scalar, pseudoscalar and charged Higgs bosons;
these particles appear in many extensions of the stan-
dard model scalar sector such as two-Higgs doublet mod-
els and in particular, supersymmetric theories. Full an-
alytical formulas for the real parts of the self-energies at
O(a, ) were presented in the on-shell quark mass scheme.

We have also given the expressions of the self-energies
in some situations of physical interest: the case where
the two quarks have equal masses which corresponds to
neutral scalar and pseudoscalar Higgs bosons, the case
where one of the quarks has a negligible mass with re-
spect to the other which would correspond to the ap-
proximate contribution of the top-bottom isodoublet to
the charged Higgs boson self-energy, and finally the case
where the momentum transfer squared is much larger or
much smaller than the quark masses squared.

By analytical continuation, we have then derived the

imaginary part of the Higgs boson self-energies in the
general case mU g m~ P 0; this imaginary part corre-
sponds to the QCD correction to the partial decay width
of the Higgs bosons into quark-antiquark pairs. In the
special case mU ——m~ these corrections have been ob-
tained by several authors in a full analytical form. In
these limits, the results that we obtain here using a com-
pletely diferent method provide independent checks of
these calculations.

Finally, in the Appendix, we relate the results for the
two-loop Higgs boson self-energies that we obtained here
by directly evaluating the relevant Feynman amplitudes,
to the results for the longitudinal components of the
electroweak vector boson vacuum polarization functions
which are available in the literature. This provides a
consistency check of both calculations.
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APPENDIX: WARD IDENTITIES
AND COLDSTONE BOSON SELF-ENERGIES

As is well known, there are Ward identities relating
the longitudinal components of the electroweak vector
bosons and the corresponding Goldstone bosons [24]. In
this Appendix, we use the current algebra of the stan-
dard model to derive these Ward identities; we will then
briefly show how to relate the Higgs boson self-energies
calculated in the preceding sections to the longitudinal
parts of the electroweak vector boson self-energies, the
expressions of which have been derived up to O(nn, ) in
the general case in Ref. [18].

Define the fermionic contribution to the vacuum polar-
ization function of the W boson and of the corresponding
Goldstone boson 4 as [g is the SU(2) r. coupling constant]

2

II~~(~') = —i— d"xe-*'*(olr*Jw'"(x) J~(0)10)
2

IIc@(q2) = +i d"xe '~ (OiT'St(x)S(0)i0),
2M~2

(A2)
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(a) io 0 o o o 0 o Ill (b)
I

FIG. 3. Tadpole diagrams relating the
Higgs boson self-energies to the vector boson
self-energies (a) at one-loop, (b) at two-loop,
and (c) mass counterterm contributing at the
two-loop level.

where J~(m) and S(x) are the charged fermionic cur-
rents coupled to the W and to the C bosons and T'
denotes the covariant time ordering product; for the no-
tation and normalization of the currents, we will follow
Ref. [25]. Contracting II~+~ with the tensor q"q, one
obtains

q"q d"xe '~ p T*J~~" x J~ p p

and

~ Jfv(*) = S(*)

[J~(*) S'(~)l* =y =+2~'(x —y)[S~(*) —t'S. (*)]

(A5)

where S2 is the current coupled to the neutral Goldstone
boson. This, in turn, can be written as

2

9'11~~(~') = —M' 11~~(Q') ——(oIS (0) Io) . (A6)
4

This equation relates the longitudinal part of the vac-
uum polarization function of the W boson to the self-
energy of the corresponding unphysical charged boson.
One can see that the subtraction term (OISIN(0) IO) [a tad-
pole] is needed to cancel a spurious quartic dependence
on the mass of the fermions.

Even though the previous derivation was at the one-
loop level in the electroweak interactions, it is valid at
any order in the strong interactions as the @CD gener-
ators commute with the ones of the electroweak group.
To derive the self-energy of the charged Goldstone boson
at O(n) and O(nn, ), we therefore need only the expres-
sions of the electroweak vector boson self-energies given
in Ref. [18] in the general case and the one of the tad-
pole diagrams of Fig. 3 where both the two quarks of

d"xe '~ pT*St x Sp p

(0IS,(0)lo)
2

with S~ the current coupled to the standard model Higgs
boson and where we have used

the same weak isodoublet are running in the loop. Using
the same notation as in the main text, and for a single
quark of mass mg [which is renormalized "on-shell" ], we

obtain, for the tadpole amplitude up to order o.„
(ols (o)Io) = 3m@ mQ—+ 1 —ln

7t-2 E p2

n. 6 1 ( m~1
14 —12 ln

37K e e ( p

—30 —vr + 28 ln
p2

—i2 ln'
p2

(A7)

v llzz(v ) = z @ C. (& ) (0IS (0)10)

(A8)

which allows us to check the expressions of the self-
energies of the pseudoscalar Higgs boson which, again
for tanP = 1, has exactly the same couplings as the neu-
tral standard model Goldstone up to, again, a relative
minus sign for isospin up and down quarks.

This provides a powerful consistency check of both the
calculation of the electroweak vector boson self-energies
performed in Ref. [18] and the one of the neutral pseu-
doscalar and charged Higgs boson self-energies presented
here.

This equation, added to the one- and two-loop ex-
pressions for the longitudinal part of the W boson self-
energies in the general case mU g mD g 0 given in Ref
[18] [Eqs. (2.5), (2.8) and (4.1), (4.2) of that paper, re-
spectively] leads to the one- and two-loop expressions of
the charged Higgs boson self-energy given in Eqs. (2.6)
and (2.7) and (4.1)—(4.4) of the present paper. This is
just because for tanP = 1, the charged Higgs boson cou-
ples to fermions exactly like the charged Goldstone of the
standard model, up to a relative minus sign for up-type
and down-type quarks.

In a completely analogous manner, one can derive the
Ward identity in the case of the neutral Goldstone boson
C2, which writes
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