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Balitsky-Fadin-Kuraev-Lipatov approximation versus O(n ) corrections
to large-rapidity dijet production
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We examine dijet production at large rapidity intervals at Fermilab Tevatron energies by com-
paring an exact O(n, ) calculation with the Balitsky-Fadin-Kuraev-Lipatov (BFKL) approximation,
which resums the leading powers of the rapidity interval y to all orders in 0, We analyze the
dependence of the exact O(n, ) calculation on the jet cone size as a function of y, and use this cross
section to define an "effective rapidity" y which reduces the error that the large-y approximation
induces on the kinematics. Using y in the BFKL resummation, we reexamine jet production at large
transverse momenta and the transverse momentum decorrelation of the tagging jets. We find less
dramatic, but still significant, effects than found previously using the large-y approximation.

PACS number(s): 13.87.Ce, 12.38.Bx, 13.85.Hd

I. INTRODUCTION

The state of the art in jet physics at hadron colliders
is described by next-to-leading-order @CD parton-level
calculations. These consist of O(o., ) + O(n, ) one-loop
2 -+ 2 parton scattering, combined with O(n, ) tree-level
2 ~ 3 parton scattering [1]. These perturbative calcula-
tions describe the hard part of the scattering, while non-
perturbative efFects are factorized into the parton struc-
ture functions. An advantage of going to next-to-leading
order is that it reduces the dependence on the arbitrary
scale associated with this factorization. In addition, the
inclusion of a third final-state parton allows a more de-
tailed description of the jet structure. These next-to-
leading-order calculations [2—4] appear to be in very good
agreement with the one- and two-jet inclusive distribu-
tions obtained &om the data of the Collider Detector at
Fermilab (CDF) experiment at the Fermilab Tevatron
collider [5, 6].

Despite these successes, it is possible to imagine kine-
matic configurations where this fixed-order analysis is
inadequate, even though the underlying process is still
perturbative in the usual sense. This could occur when
the cross section contains logarithms of large ratios of
kinematic invariants. Typical invariants are the hadron-
hadron center-of-mass energy v s, the parton-parton
center-of-mass energy v s = v'x~x~s, where x~ and
x~ are the momentum fractions of the partons originat-
ing the hard scattering, and the momentum transfer Q,
which is of the order of the transverse momentum of the
jets produced in the hard scattering. Large logarithms
will appear when v s » Q, in the semihard region of kine-
matic phase space. We can then avoid complications as-
sociated with the small-x behavior of the structure func-
tions by requiring that the parton momentum fractions
x~ and x~ be sufIiciently large, as originally suggested
by Mueller and Navelet [7]. In this case the large loga-
rithms In(s/Q2) factorize entirely into the partonic sub-

process cross section. These logarithms, which are of the
size of the rapidity interval in the scattering process, can
be resummed by using the techniques of Balitsky, Fadin,
Kuraev, and Lipatov (BFKL) [8]. For jet events with
a large rapidity interval, the amplitudes are dominated
by contributions &om multiple gluons that uniformly fill
the interval between the two extreme jets. BFKL the-
ory systematically resums these leading powers in the
rapidity interval, including both real and virtual gluon
corrections.

In a previous paper [9] we showed how to analyze dijet
production experimentally so that it most closely resem-
bles the configuration assumed in BFKL theory. The
main difFerence from the standard hadronic jet analysis
is that the jets are ordered first by their rapidity rather
than by their energy. Thus, we look at all the jets in
the event that are above a transverse momentum cut-
ofF p~;„, using some jet-definition algorithm, and rank
them by their rapidity. We then tag the two jets with
the largest and smallest rapidity and observe the distri-
butions as a function of these two tagging jets. The cross
section is inclusive so that the distributions are afFected
by the hadronic activity in the rapidity interval y between
the tagging jets, whether or not these hadrons pass the
jet-selection criteria. We will refer to these hadrons in
the rapidity interval as minijet8.

In Ref. [9] we showed that the exponential enhance-
ment with the rapidity interval y in dijet production at
fixed x~ and x~, which was originally suggested as a sig-
nature of the BFKL minijets by Mueller and Navelet, is
highly suppressed by the parton distribution functions
at Tevatron energies. However, other observables such
as the jet transverse momentum distribution, and the
jet-jet correlations in p~ and azimuthal angle are signif-
icantly afFected by the minijets. For instance, the trans-
verse momentum distribution was considerably enhanced
at large p~ and large y. This enhancement has been seen
in the CDF data [6], although the data analysis differs
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somewhat from that needed to compare directly with the
BFKL resummation. In addition, there should be some
dependence on the cutoff p~~;„, and we shall see here
that the p~ distributions should differ for the two tagging
jets if they are not symmetrically placed around zero ra-
pidity. Finally, we saw that the correlation in transverse
momentum and azimuthal angle of the tagging jets is not
a leading feature of the expansion in the rapidity inter-
val. Accordingly, it fades away as the rapidity interval
increases. The decorrelation in azimuthal angle has also
been noted by Stirling [10].

For the most part these effects at large y can be eas-
ily understood in terms of the sharing of the total p~
by the additional minijets, which the BFKL resumma-
tion automatically includes. In a Axed-order calculation
the effects arise first at O(o.s), where the introduction
of a third final-state parton removes some of the correla-
tions inherent at lowest order. Thus, it is interesting to
compare the BFKL resummation directly with the O(n, )
result. This was done for the case of the P distribution
in Ref. [10]. Here we shall extend this comparison, which
can be approached in two different ways. First, one can
truncate the BFKL solution at O(n, ) and compare this
with the exact O(o., ) result. The truncated O(n, ) BFKL
cross section is just the large-y limit of the complete
O(n, ) cross section, and so this comparison will indicate
how good the leading logarithm approximation is at the
different experiments. Second, one can compare the full
BFKL solution with its truncation to O(o.,). This should
give an indication of the size of the contributions &om
higher orders in o, In addition it will help to isolate
the distributions which are sensitive to the resummation
effects beyond next-to-leading order.

The remainder of this paper is as follows. In Sec. II we
discuss the BFKL solution and its truncation to O(a, ).
For illustrative purposes we also show how this second
cross section is obtained from the O(o.,) tree-level 2 ~ 3
cross section in the limit of large y. In Sec. III we dis-
cuss the infrared singularities that occur at O(o.s) in or-
der to further elucidate the approximations used in the
BFKL analysis. We also observe the dependence on the
jet cone size as a function of y. In Sec. IV we compare the
BFKL solution truncated to O(n, ) with the exact 2 ~ 3
O(n, ) cross section. We isolate the primary contribution
to the discrepancy between the two as arising from ap-
proximations used in the parton distribution functions.
In Sec. V we introduce an "effective rapidity" variable
to use in the BFKL formula which accounts for this dif-
ference. In particular, the effective rapidity is de6ned
so that the truncation of the BFKL solution to O(a, )
equals the exact 2 m 3 O(o., ) cross section. We use this
modified BFKL cross section to study the various dijet
distributions, which show less dramatic, but still notice-
able, effects than in Ref. [9]. In Sec. VI we present our
conclusions.

II. MINIJET RESUMMATION
AND O(ns) CROSS SECTION

AT LARGE RAPIDITIES
We are interested in the semi-inclusive production of

two jets in hard @CD scattering. For definiteness we

will consider the scattering process p~p~ ~ j&j2 + +
such as at the Tevatron, but the same analysis can also
be applied to photoproduction at the DESY ep collider
HERA [11]. We describe the two partonic tagging jets
by their transverse momenta and rapidities (pi~, yi) and
(p2&, y2), where we always take yi ) y2. For large ra-
pidity intervals, y = yi —y2, the cross section for this
process can be written

p piie"'
A

p P2J e
+B (2)

and p is the factorization and/or renormalization scale.
In this limit the amplitude is dominated by gg, qg, and
qq scattering diagrams with gluon exchange in the t
channel. The relative magnitude of the different sub-
processes is Gxed by the color strength of the respective
jet-production vertices, and so it sufBces to consider only
gg scattering and to include the other subprocesses by
means of the efFective parton distribution function [12]

In (3) the sum is over the quark flavors, C~ = N, = 3,
is the Casimir operator of the adjoint representation and
C~ = (1V2 —I)/2N, = 4/3 is the one of the fundamental
representation.

The higher-order corrections to the gg subprocess cross
section in (1) can be expressed via the solution of the
BFKL equation [8], which is an all-order resummation in
a, of the leading powers of the rapidity interval,

~2 2dgg ~A~8 ~ in(p —~)
ply +2' ~ plJ p2J

x dve "'"l"cos
~

v ln
0 &2~)

with

(4)

ur(n, v) =

and @ the logarithmic derivative of the I' function. Equa-
tion (4) can be expanded order by order in n, and com-
pared with a Axed-order calculation of dijet production
at the same order of o.„in the large rapidity limit [10].
By expanding the exponential in (4) to zeroth order in
o;, we obtain the tree-level large-y cross section

dop o o 0 2 0 2= *&*aJ &(*x P )~ &(~a P )dP»dP2~dydy&dy2
GO gg

dpi~dp2~dg
'

where the parton momentum fractions are dominated by
the contribution from the two tagging jets,
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4
' ~(p» —p'~) ~(& —~) (6)

dp, ~dp2~dg 2pi~

At O(n, ) in the exponential we obtain

quarks being subleading. The squared scattering am-
plitude for this, summed (averaged) over final (initial)
colors and helicities, is given in Ref. [14] as

~M~ = 4 (era. CA)
g- (1) ~A~s ) in(P vr)—

P1J P2J ~ PlJ P2J
x) s,',

i)j
1

8A1 812823~3B~ AB
7 i )

(12)

('n+1 l ( p',
x

(

+iv
/

cos/ vln
P2~)

(7)

When pi~ g p2~ we can integrate out v and sum explic-
itly over n, by using the integral representation of the g
function:

&(2) = 1 —x
dx

1 —x

with the Euler constant p = 0.577215. . . . We obtain

do-gg CAo. , CAo. sy(1) 2 2

piJ dp2~dp 4~pi~ pe~ pi~ + pz~ + 2pi&p2~ cos p

(9)

When pi~ p2~ the cross section (7) is dominated by
configurations where the third parton is soft. These in-
frared singularities are regulated by the BFKL solution,
which includes both real and virtual corrections. To see
how this occurs we can integrate (7) over pz& in the in-
terval defined by ~pi&

—
pz&~ ( &pi&, for e sufficiently

small. The integrals over v and x can be performed, and
the series in n can be summed, giving a finite answer:

- (1) 2 2do.ss ~CAo, 2CAns
'rr y Ii e (io)

up to terms of O(e). For sufficiently small e this configu-
ration is ind. istinguishable &om a configuration with only
two final-state partons. Thus, for ~pi&

—
pz&~ ( epi& we

can write the cross section to O(ns) as

8Bi =—
'r

3

):pJp, J e"'
j=1

s;z. —2p;~pz~ [cosh(y; —yz) —cos(P; —P~. )] .

In the large-rapidity limit Eq. (12) becomes [15]
A2

~M~ = 128 (mn, CA)
~1J ~21 ~31

(14)

The large-rapidity limit of the phase space for three-
particle production is

where we have fixed the rapidities of the two gluons at
largest and smallest rapidity and y3 is the rapidity of
the third gluon. Using the amplitude (14), the phase
space (15), and the appropriate ffux factor, we obtain for
the dijet production cross section doss/dp2i&dp22&dg the
same expression as the one obtained in Eq. (9) via the
expansion of the BFKL solution. Note that the overall
factor of y in Eq. (9) comes from the integration of the
rapidity of the third final-state gluon over the interval
spanned by the tagging gluons.

with i, j = A, 1, 2, 3, B, and with the second sum over
the noncyclic permutations of the set [A, 1, 2, 3, B]. The
kinematic invariants are defined here by

3

~AB —~ —&A+B8 — P J Pj J e
i j=1

3

»;= —) p, ~p « '"' "'
j=1

(O+1)
~gg

dpi ~dp2~ df
vrC2 o.2

", ' ~(p» —p'~) ~(4 —~)
~1J

III. COLLINEAR SINGULARITIES
IN DIJET PRODUCTION

2CAn,x 1 + 'ylne
)

For ~p2i& —p22&~ ) ep2i& we can use Eq. (9). Combining
these two formulas (11) and (9), the dependence on the
unphysical variable e will vanish in any inclusive process
integrated over a range of momenta, for small enough ~.

It is also informative to derive the 2 ~ 3 cross sec-
tion (9) by taking the large-rapidity limit of the O(n, )
real corrections to gluon-gluon scattering, computed in
the conventional way [13]. First, note that in the large-
rapidity limit the leading contribution is given by the
gg ~ ggg subprocess, the diagrams with final-state

Before entering the details of a comparison between the
BFKL resummation and the complete O(n, ) result, it is
useful to consider the infrared singularities that occur in
the two approximations to dijet production. These singu-
larities depend on the geometry of the event and thus are
sensitive to how dijet production is defined. In the next-
to-leading-order (NLO) approximation the phase space
integration over the kinematic variables of the third (un-
resolved) parton generates infrared singularities when it
becomes soft and collinear singularities when it becomes
collinear either with the initial-state partons or with the
other final-state partons. In contrast, the BFKL approxi-
mation only contains the efFects of soft gluons. Because of
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IV. BFKI AND O(a.e) CORRECTIONS
TO THE pz DISTRIBUTIONS

In Sec. II we have shown that the truncated O(o., )
BFKL contribution to dijet production is the large-
rapidity limit of the complete O(n, ) corrections. Here
we want to see how well this works in practice in the
jet-jet p~ correlation case examined in Ref. [9]. In Fig. 2

we consider the contribution of the three-jet amplitudes
to the p~ correlation do/dydy dye~ dp2~, plotted as a
function of the transverse momentum pi~, at a fixed
value of @2~——50 GeV and at y = 2 and 6. The cus-
tomary value for the jet cone size B,„t——0.7 has been
used. As in Fig. 1, configurations where the distance B
between two partons on the lego plot is smaller than B,„q
are discarded, since they would be counted as a two-jet
event with pi~ = @2~. We go from the exact configura-
tions to the large-y approximation to them in three steps.
The dashed curves are computed through the exact 2~3
parton amplitudes [13] and kinematics (17), the dotted
curves through the large-y parton amplitudes (14) and
the exact kinematics (17), and the solid curves through
the large-y parton amplitudes (14) and kinematics (2).
As the plots show, the error in using the large-y approx-
imation grows with the imbalance in transverse momen-
tum of the tagging jets. While at small y's the error
is distributed between the approximation on the ampli-
tudes and the one on the parton distribution functions,
at large y's most of the error comes in using the large-y
approximation in the parton distribution functions. We
have also made this comparison for the larger rapidity
intervals obtainable at the CERN Large Hadron Collider
(LHC) and have found that this discrepancy, although
smaller, is not insignificant.

This discrepancy can be understood by recalling that
the rapidity y~ of the third. jet is integrated over the full
range of the interval from y2 to yi. If we neglect its con-
tribution to the momentum fractions as in (2), this just
multiplies the cross section by a factor of y as in Eq. (9).
However, Eq. (2) can be a bad approximation to the ex-

act kinematics (17) over much of the integral if ps~ is not
small. For y3 near the extremes, using the exact kinemat-
ics in the parton distribution functions produces a large
suppression, so that the "effective" rapidity range of y3
is reduced substantially. The truncated O(o., ) BFKL
(solid) curve neglects this effect, and so it overestimates
the cross section. Note, however, that near pi~ ——p2~
the transverse momentum of the third parton is small,
and so its contribution to the x's in (17) can be safely
neglected.

V. EFFECTIVE RAPIDITY INTERVAL

We have just seen in the previous section that the
large-y approximation used in the BFKL resummation
seriously overestimates the cross section when the two
tagging jets have unequal energies, even for rapidity in-
tervals as large as y = 6. This occurs because the large-y
cross section (9) assumes that the third (minijet) parton
can be produced anywhere within the rapidity interval
[y2, yq] with equal probability, whereas in the full 2 —+ 3
cross section the probability is highly suppressed by the
structure functions when the third jet strays too far Rom
the center of this interval. In this section we will attempt
to 6.x this problem by including this suppression effect di-
rectly into the BFKI equation.

The BFKL solution as presented in Eq. (4) is an all-
orders resummation in o,,y where y is the kinematic ra-
pidity interval defined by the tagging jets. However, to
be completely precise, the rapidity variable which is re-
summed by BFKL is only defined. up to transformations
y ~ y + X where X is subleading at large rapidities.
This is analogous to a change in the scale Q in the stan-
dard o., ln(Q ) resummation, and in the same way that
one chooses a physical value of Q to lessen the effects
of nonleading terms in this resummation, one can choose
a more physical rapidity variable in the BFKL resum-
mation. From the results of the previous section we see
that a better rapidity variable would be one that reQects
the range in rapidity spanned by the minijets, which is
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FIG. 2. pz distribution of jet 1 with the
jet 2 transverse momentum fixed at 50 GeV,
at y = 0 and at y = 2 and 6. The jet cone
size is fixed at 0.7. The dashed curves are
computed through the exact 2~3 parton am-
plitudes and kinematics, the dotted curves
through the large-y parton amplitudes and
the exact kinematics, and the solid curves
through the large-y parton amplitudes and
kinematics.
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FIG. 3. y as a function of pi& for fixed
p2~ ——50 GeV and n = 0, y = 0. The curves
from bottom to top are for y = 2, 3, 4, 5, and
6. The jet cone size is fixed at 0.7. The upper
end of the curve y = 6 is cut o8' because pz&
reaches the kinematic limit.

20 40
pi (Gev)

80 100

typically less than the kinematic rapidity interval y. Let
us define an "effective rapidity" y(n, pi~, p2~, y, y) by

d/ cos(nP) (der/dydydpi~dp2~dp)

~ dP cos(nP) (doe/dydydpi~dp2~dg)

where n is the Fourier series index of Eq. (4). The cross
section in the numerator is that of Eq. (16) and is coin-
puted using the exact kinematics (17), while the cross
section in the denominator is that of Eq. (1) and is com-
puted using the large-y kinematics (2). The denominator
can easily be computed analytically using the large-y so-
lution (9). Note that y is defined so that if we replace
y ~ y in the BFKL solution (4) and truncate to O(a, )
we recover the exact 2 —+ 3 cross section. Also note that
asymptotically for large y, the difference y—y is nonlead-
ing. Thus, we can use y in (4) and obtain a quantitatively
more reliable solution.

In Fig. 3 we plot y as a function of pq~ for n = 0,
p2~ ——50 GeV, y = 0, and y = 2, 3, 4, 5, 6 with B,„t ——

0.7. For y = 2 and 6 this is just given by the ratio of the
dashed curves to the solid curves in Fig. 2, multiplied by
y. Near p~~ ——@2~, y approaches the kinematic rapid-
ity y, especially for large y, but it falls quickly as the
two jets move apart in transverse momentum. Thus, we
would expect the efFects of the resummation to be most
important near pi~ ——p2~. We can see this clearly in
the jet-jet p~ correlation plot of Fig. 4, where we com-
pare the exact 2 I 3 O(cI, ) cross section (dashed curve)
with the BFKL resummation using y (solid curve). As in
Fig. 2 we fix p2~ ——50 GeV, y = 0, and plot as a function
of pq~ for y = 2 and 6, using a jet cone size of B,„t ——0.7.
In this and in the plots that follow, y is Axed at n = 0
by the integration over the azimuthal angle P. As ex-
pected, for y = 2 there is little difference between the
two approximations. For y = 6 the higher orders of the
BFKL resummation are very important near p~~ = pq~,
but have less of an eKect when the jets are mismatched
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10—3
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FIG. 4. pz distribution of jet 1 with the
jet 2 transverse momentum fixed at 50 GeV,
at y = 0 and at y = 2 and 6. The jet cone
size is fixed at 0.7. The dashed curves are
computed through the exact 2~3 parton am-
plitudes and kinematics; the solid curves are
computed from the full BFKL solution using
y.
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FIG. 5. p& distribution of jet 1 at y = 0
and y = 4 and 6. The dashed curves are the
exact Born-level p~ distributions. The solid
curves are the p~ distributions computed us-

ing y in the BFKL resummation, with two
diferent cutouts for jet 2, the upper curve
with p2~;„——10 GeV and the lower curve
with p2~;„——20 GeV. The dotted curves are
the p& distributions at y = 4 only, com-
puted using the kinematic rapidity y in the
BFKL resummation, with pq~;„——10 GeV
and 20 GeV.

20 40 60 80
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100 120 140

in transverse momentum.
Next, in Fig. 5 we plot the transverse momentum dis-

tribution da/dydydp1~ of jet 1 at y = 4 and 6 and

y = 0. The dashed curves are computed through the
exact Born-level matrix elements and the solid curves
using y in the BFKL resummation and two different cut-
offs for jet 2 transverse momentum, p2~;„——10 GeV and
20 GeV. The effect of the radiative corrections is to re-
lease the p~ distribution from the Born-level requirement
that pq~ ——p2~. At a fixed order of o., and for a given

pi~, jet 2 and the minijets try to have p~ as small as
possible in order to minimize their contribution to the
x's (17) and thus maximize the value of the parton dis-
tribution functions. They are only constrained by the
overall transverse momentum conservation. Eventually
when the number of minijets is very high, or virtually
infinite as in the BFKL resummation, the smallest value
of p2~ is not fixed arsy more by transverse momentum
conservation but by the minimum p~ experimentally at-
tainable [9]. This explains the strong sensitivity of the
curves in Fig. 5 to the value of p2J ~j„The crossing of
the curves with p2~;„——20 GeV below the Born curves
for small values of pq~ is a further manifestation of this
decorrelation in transverse momentum. For pq~ 20
GeV, jet 2 very often radiates away enough energy so that
p2~ ( p2~;„. Thus, events that; would have been kept
at the Born level are now discarded when higher orders
are included. Finally, for sake of comparison, we replot in
the dotted curves the p~ distribution computed at y = 4
using y in the BFKL resummation, with p2~;„——10 GeV
and 20 GeV [9]. We note that, using the effective rapid-
ity y rather than the kinematic rapidity y in the BFKL

On the other hand, light-cone momentum conservation re-
quires that pzz ( v s exp( —yq), so that at large-rapidity inter-
vals the maximum value of p&z does not appreciably change
going from the Born level to higher-order corrections.

resummation, the enhancement in the p~ distribution is
considerably reduced.

To examine further the kinematic effects on dijet pro-
duction we plot in Fig. 6 the p~ distribution at ~y~

= 2

and y = 4 as a function of the transverse momentum of
the jets at largest (~yy~ = 4) and smallest (~y~~ = 0) ab-
solute rapidities, which we call the forward jet and the
central jet, respectively. As in Fig. 5 we use two different
cutoffs p~;„——10 GeV and 20 GeV for the transverse
momentum integrated out. Since we only have changed
y with respect to Fig. 5 the contribution of the parton
subprocess to the p~ distribution will be the same as in
Fig. 5, but the contribution of the parton distribution
functions will change. The dashed curve is computed
through the exact Born-level matrix elements and the
dotted and solid curves using y in the BFKL resumma-
tion. At the Born level the transverse momentum dis-
tributions of the forward and central jets are the same
since py~ ——p ~, but they become starkly different when
higher orders are included. The dotted curves are the
distributions of the forward jet. They do not apprecia-
bly differ from the Born-level curve because the upper
bound py~ ( ~sexp( —

~yy~) from light-cone momentum
conservation is very restrictive and the phase space of
the forward jet does not basically change going from LO
to higher-order corrections. On the other hand the solid
curves, which represent the distributions of the central
jet, show a huge enhancement and very different slopes
as compared to the Born level. To understand this, we
have to look at the kinematics of the higher-order cor-
rections. At O(n, ) it is possible to let p,~ grow by
taking the third jet at small absolute rapidity and al-
most back to back with the central jet, p3~ —p ~
and y3 0, while taking the forward jet as slim as pos-
sible, py~ p~;„. Then &om light-cone momentum
conservation p~~~~„[v s —p~~;„exp([yy])] /2, which
is much bigger than the Born-level upper bound. This
picture generalizes to higher orders with the transverse
momentum of the minijets balancing that of the central
jet, while the forward jet is produced near p~;„. In order
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FIG. 6. p~ distribution at ~y~
= 2 and

y = 4. The dashed curve is the exact Born-
level p~ distribution. The dotted (solid)
curves are the p~ distributions of the for-
ward (central) jet computed using y in the
BFKL resummation, with two di8'erent cut-
ofFs for the transverse momentum integrated
out, the upper curve with p~;„——10 GeV
and the lower curve with p~;„——20 GeV.
The dot-dashed curve is the exact Born-level
p~ distribution at ~y~

= 0.5 and y = 1.
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to test this picture we consider in the dot-dashed curve
the transverse momentum distribution for the Born-level
production of two jets in the central region [y[ = 0.5
and y= 1. The slope of this curve is similar to that of
the solid curves, suggesting that the p,~ distribution is
dominated by events with two central jets and one soft
forward jet, where we tag on the forward jet and one of
the central jets. In the BFKL resummation the second
hard central jet is presumably replaced by a succession
of minijets. Thus, it is misleading to compare the BFKL
resummation to the Born level (dashed curve) for the p, ~
distribution, since it is dominated by events with more
than two jets. A better comparison in this case would be
between the BFKL resummation and a NLO calculation.

VI. CONCLUSIONS

In this paper we have attempted to better grasp the
range of validity of the BFKL resummation by compar-
ing it with an exact 2 -+ 3 O(o., ) calculation. We saw
that the dependence on the jet cone size quickly becomes
insignificant for moderate rapidities, just as is assumed.
in the BFKL formalism. However, the approximation to
the kinematics in the parton momentum fractions causes
a serious error in the BFKL predictions when the tag-
ging jets are not back to back in p~ and P. In order to
account for this error we introduced an effective rapidity
y which restricts the phase space of the minijets in such
a way that the truncation of the BFKL resummation to
O(o., ) agrees with the exact 2 -+ 3 O(n, ) calculation.

Using the BFKL resummation with the effective ra-

pidity y we have seen that the effects on the p~ spec-
trum are not as dramatic as we had predicted previ-
ously. The difFiculty in detecting these deviations from
the Born-level computation are compounded by renor-
malization and/or factorization scale ambiguities, which
are at least as problematic here as at the Born level. Be-
cause of the two scales defined by the tagging jets we
could let p = Cpq~pz~, Cmax(p~&, pzz), or some other
choice where C is some constant of order 1. Because of
the relatively small deviations of the BFKL resummation
with the effective rapidity y from the Born-level calcula-
tion, and the sizable renormalization and/or factorization
scale ambiguities in the BFKL approximation, we expect
that a complete NLO calculation could give a more re-
liable estimate to the raw p~ spectra. However, we do
note that much of the uncertainties due to the renormal-
ization and/or factorization scale drop out in the ratios
of cross sections so that, for instance, the predictions of
the ratio of the pi ~ spectra with different p2~;„cutoffs
are probably reliable to 15%. In addition, the large
corrections in the p~ correlation and P correlation plots
suggest that a NLO calculation would be inadequate in
these cases, and that the BFKL resummation using the
effective rapidity y should do a better job here.
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