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Experimental evidence for simple relations
between unpolarized and polarized parton distributions
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The Pauli exclusion principle is advocated for constructing the proton and neutron deep inelastic
structure functions in terms of Fermi-Dirac distributions that we parametrize with very few param-
eters. It allows a fair description of the recent NMC data on F2 (z, Q ) and F~ (z, Q ) at Q = 4
GeV, as well as the CCFR neutrino data at Q = 3 and 5 GeV . We also make some reason-
able and simple assumptions to relate unpolarized and polarized quark parton distributions and we
obtain, with no additional free parameters, the spin-dependent structure functions zg~ (z, Q ) and
zgr" (z, Q ). Using the correct Q evolution, we have checked that they are in excellent agreement
with the very recent SMC proton data at Q = 10 GeV and the SLAC neutron data at Q = 2

GeV .

PACS number(s): 13.60.Hb, 11.55.Hx, 13.88.+e

Many years ago Feynman and Field made the conjec-
ture [1] that the quark sea in the proton may not be
flavor symmetric, more precisely d & u, as a consequence
of Pauli principle which favors dd pairs with respect to uu
pairs because of the presence of two valence u quarks and
only one valence d quark in the proton. This idea was
con6rmed by the results of the New Muon Collaboration
(NMC) experiment [2] on the measurement of proton and
neutron unpolarized structure function F2(x). It yields
fair evidence for a defect in the Gottfried sum rule [3]
and one Ands

'd—[F."(*)—FZ (x)]

= 0.235 + 0.026

instead of the value 3 predicted with a flavor symmetric
sea, since we have, in fact,

~t, = ~+F,

1+F—D
2

1 —F+D
2

so by taking F =
2 and D =

4 (rather near to the
quoted values [7] 0.461+0.014 and 0.798+0.013) one has

u„& ——
2 and u

&

——
2 which is at the center of the rather3

narrow range (d"„&,d"„&) = ( —,—). The abundance of each
of these four valence quark species, denoted by p ~, is
given by Eq. (3) and we assume that the distributions
at high Q2 "keep a memory" of the properties of the
valence quarks, which is reasonable since for x ) 0.2 the
sea is rather small. So we may write, for the parton
distributions,

I~ = s(u+u —d —d) = s + s(u —d) . (2)

A crucial role of the Pauli principle may also be advo-
cated to explain the well-known dominance of n over d
quarks at high x [4], which explains the rapid decrease of
the ratio F2 (x)i' (x) in this region. Let us denote by
qt (q~), u or d quarks with helicity parallel (antiparal-
lel) to the proton helicity. The double-helicity asymme-
try measured in polarized-muon —(electron —) polarized-
proton deep-inelastic scattering allows the determination
of the quantity A~z(x) which increases towards one for
high x [5,6], suggesting that in this region ut dominates
over u~, a fortiori dominates over Z and d", and we will
see now how it is possible to make these considerations
more quantitative. Indeed at Q2 = 0 the first moments
of the valence quarks are related to the values of the axial
vector couplings

This leads to

Eu„)(x) = u~, (x) —u~, (x)

= u i(x) —d„ i(x) (6)

where F is an increasing function of p ~. The fact that
the dominant distribution at high x is just the one corre-
sponding to the highest value of p ~ gives the correlation
abundance shape suggested by the Pauli principle, so we
expect broader shapes for more abundant partons. If
F(x, Jr„~) is a smooth function of p„~, its value at the
center of a narrow range is given, to a good approxima-
tion, by half the sum of the values at the extrema, which
then implies [8]
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and, in order to generalize this relation to the whole u
quark distribution, we assume that Eq. (6) should also
hold for quark sea and antiquark distributions, so we have

Au„(x) = Au(x) = u(x) —d(x) .

x(u") = —z(u") = zo+z, ~~.

The d quarks and antiquarks are obtained by using Eqs.
(5) and (7) and concerning the strange quarks, we take,
in accordance with the data [12],

Moreover as a natural consequence of Eq. (3), we will
assume

}+d
(13)

Ad i(z) = (I' —D)d i(z) .

Finally we will suppose that the d sea quarks (and anti-
quarks) are not polarized, i.e.,

Ad„(x) = Ad(z) = 0

and similarly for the strange quarks,

As(x) = As(z) = 0 . (10)

xp(x) = apz '/(exp([z —x(p))/z) + 1) .

Here z(p) plays the role of the "thermodynamical poten-
tial" for the fermionic parton p and x is the "tempera-
ture" which is a universal constant. Since valence quarks
and sea quarks have very di8'erent x dependences, we ex-
pect 0 & b„& 1 for u~'t(x) and b„& 0 for u" "(x) More-.
over x(p) is a constant for u~'t(x), whereas for u" ~(z), it
has a smooth x dependence. This might reflect the fact
that parton distributions contain two phases: a gas con-
tributing to the nonsinglet part with a constant potential
and a liquid which prevails at low x, contributing to the
singlet part with a potential slowly varying in x, that
we take linear in ~z. In addition, in a statistical model
of the nucleon [11],we expect quarks and antiquarks to
have opposite potentials, consequently the gluon, which
produces qq pairs, will have a zero potential. Moreover
since in the process G —+ q, +q, q, and q have opposite
helicities, we expect the potentials for u"„(or u") and
u~ (or u,", ) to be opposite. So we take

Clearly the above simple relations (6)—(10) are enough
for Axing the determination of the spin-dependent struc-
ture functions xgi' (x, Q ), in terms of the spin-average
quark-parton distributions. 1A'e now proceed to present
our approach for constructing the nucleon structure func-
tions I"2'"(x,Q ), zI"& (x, Q ), etc. , in terms of Fermi-
Dirac distributions which is motivated by the importance
of the Pauli exclusion principle, as we stressed above. A
first attempt for such a construction was made in [10],
but here, as we shall see, our method is slightly di8'er-
ent and leads to significant improvements. Let us con-
sider u quarks and antiquarks only, and let us assume
that at fixed Q, u~ i(x), u~ i(x), u g (x), and u" (x) are
expressed in terms of Fermi-Dirac distributions, in the
scaling variable x, of the form

Finally for the gluon distribution, for the sake of consis-
tency, we take a Bose-Einstein expression given by

a xb~
zG(x) = (14)

with the same temperature x and a vanishing potential,
as discussed above. Since it is reasonable to assume
that for very small x, xG(x} has the same dependence
as zq(z), we will take b~ = 1 + b, where b is bz for the
antiquarks. So, except for the overall normalization at-,
xG(x) has no free parameter.

To determine our parameters we have used the most re-
cent NMC data [2] on Ef(x) and F2 (x) at Q = 4 GeV
together with the most accurate neutrino data from the
Chicago-Columbia-Fermilab-Rochester (CCRF) Collabo-
ration [12,13] on zI's ~(z) and the antiquark distribution
xq(x) [12].

The universal temperature is found to be

x = 0.120 (15}

and for valence quarks we get the three free parameters

b(u"„,) = —,'b(u~, ) = 0.417,
x(u i) = 0.442,
x(u",) = 0.128 .

(16)

6 = —0.S58,
a~ = 0.024,
xp ——0.215,

and

xg ———0.388 for u~ . (17)

This relation between the 6's is imposed by the small-x
behavior of zFs ~(z), a" and a" are not free parameters,
but two normalization constants which are Axed from the
obvious requirements to have the correct number of va-
lence quarks in the proton. As we noticed before ut i(x)
dominates, so it is not surprising to 6nd that it has a
larger potential than u &(z).

For antiquarks we have four additional free parameters

It is amusing to remark that with the values of I" and D
quoted above, we have in fact Ad„~(x) = —sd ~(x) which
coincides with the so-called conservative SU(6) model [9].

In a statistical model of the nucleon [11], the potentials
associated with u and d quarks are taken in the ratio 2
which is much smaller than the value of x(u„" &)/x(u &) 3
we have found.
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6 is the same for ut and u~.
YVhen x —+ 0, from Pomeron universality, one expects

xu(x) = xd(x) g 0, so a~ is determined by this con-
straint.

We shower the results of our fit for E2 (x) —E2 (x) and
E2 (x)/Ez (x) by the solid lines in Figs. 1(a) and 1(b) and

for xEs"~(x) and xq(x) in Figs. 2(a) and 2(b). The ac-
curacy of these neutrino data gives strong constraints on
both valence and sea quark distributions. The descrip-
tion of the data is very satisfactory, taking into account
the fact that we only have eight &ee parameters and this
certainly speaks for Fermi-Dirac distributions. Note that
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FIG. 1. (a) The difference F2~(x) —F2"(x) at Q = 4 GeV
vs x. Data are from [2] and the solid line is the result of our
fit. The dashed line is the theoretical result after evolution at
Q = 10 GeV . (b) The ratio Pz (x)/E~ (x) at Q = 4 GeV
vs x. Data are from [2] and the solid line is the result of our
fit. The dashed line is the theoretical result after evolution at
Q =10GeV.

FIG. 2. (a) The structure function xEs" (x) vs x.
Data are from [13] at Q =3 GeV and the solid line
is the result of our Bt. (b) The antiquark contribution
xq(x) = xu(x) + xd(x) + xs(x) at Q = 3 GeV (solid cir-
cles) and Q = 5 GeV (solid triangles) vs x. Data are from
[12] and solid line is the result of our fit.
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FIG. 4. xg~ (x) at (Q ) = 10 GeV vs x. Data are from [5]
(solid squares) and [6] (solid circles) together with our predic-
tions at Q = 10 GeV . [The dotted line is the contribution
of Au &(x) only, the dashed line is the contribution of Au(x)
and Au(x), and the solid line is the contribution of Au(x),
Au(x), and Ad ((x).]

with the data. However by including the d valence quark
polarization according to Eq. (8), we obtain the solid
line in perfect agreement with the data and we And for
Q =2 GeV

~ ~

1

g~ (x)dx = —0.020 .
0

To summarize we have given an accurate description
of deep-inelastic-scattering data at low q in terms of
Fermi-Dirac distributions parametrized. with only eight
free parameters for quarks and antiquarks. Although we
have some understanding of their meaning, much remains
to be done for a more fundamental theoretical interpreta-
tion, in terms of new information for the nucleon struc-
ture. We have proposed a set of simple relations be-

X

FIG. 5. xgz (x) at (Q ) = 2 GeV vs x. Data are from [18]
together with our predictions at Q = 2 GeV . [The dashed
line is the contribution of Au(x) and Au(x) only and the solid
line is the contribution of Au(x), Au(x), and Ad ~(x).]

tween unpolarized and polarized quark (antiquark) dis-
tributions for which, so far, there is a striking experimen-
tal evidence. Of course our approach has to be further
tested with more accurate deep-inelastic-scattering data
and in particular the important issue of the validity of
the Bjorken sum rule [25]. Polarized proton collisions at
high energies will also provide independent tests which
will be most welcome in the near future [26].
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