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Note on +ED with a magnetic field and chemical potential
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We obtain expressions for the fermion density and the +ED efFective Lagrangian for an external

magnetic Geld at Gnite chemical potential. The effective Lagrangian and the density are here written
in terms of elementary functions, summed over a finite number of Glled Landau levels.
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The study of finite temperature and density quan-
tum electrodynamics (QED) with a nonvanishing aver-
age magnetic field is of considerable interest as it may be
associated with the electron-positron plasma in compact
stellar objects where the fermion density and the mag-
nitude of the magnetic field may be extremely high (see,
e.g. , Refs. [1,2]).

The QED thermodynamical potential at finite temper-
ature and density with a static uniform magnetic field
was calculated already 25 years ago in Ref. [3], and us-

ing a generalization of the Fock-Schwinger proper-time
method for T, p, g 0 (where p is the chemical potential)
later in Ref. [4]. The interest in this problem was renewed
in Ref. [5], where an elegant generalization of the Fock-
Schwinger proper-time method in the case of a nonzero
magnetic field and chemical potential was made. Using a
real-time thermal formalism, the results of Ref. [5] were
completed and generalized to finite temperature in Ref.
[6]. The expressions obtained for the efFective action in
the above cited references were rather complicated and
did include some proper-time-like integrals and/or infi-
nite sums.

Here we want to demonstrate that we may move for-
ward and for the finite density QED with an external
magnetic field at zero temperature show that it is possi-
ble to obtain simple expressions for the fermion density
and the effective Lagrangian. The effective Lagrangian
is written here in terms of elementary functions as a sum
over a finite number of (partially) filled Landau levels,
and agrees with the zero-temperature limit of the fermion
partition function. As an application we confirm that the
magnetization obtained from this effective action does
exhibit the relativistic de Haas —van Alphen effect [3,6,7].

We shall here consider finite density QED with a non-
vanishing average magnetic field. Including the chemical

I

potential the corresponding Lagrangian reads

d xI' = i ln Det(—iP —e g —pop —m),
~ ~

we shall first evaluate the fermion density p = Ol /Bp.
We may then reconstruct the effective Lagrangian ac-
cording to

where

(»v) =& (B)+&' (B t) (2)

~' (»t) = p(»t ')ds'

is the contribution due to the finite density, and

g 1 d8
(B) = — —[eBs coth(eBs) —18~2 83

—-'(eBs) ]exp( —m s)

is the well-known vacuum part of the effective Lagrangian
in the purely magnetic case [8]. We may rewrite the
expression for the fermion density as

d4
p =i tr[poG(x = x')] =i tr[poG(B, p;p)], (5)

(2m) 4

where the trace is over spinor indices only, and G(x, x')
is the fermion Green's function in configuration space.
We shall use the expression obtained in Ref. [5] for the
Green's function in momentum space:

4F„—F""+g(i P —e g —pop —m)Q,
where we have chosen the gauge A„= (0, x2B, 0—, 0).

In order to calculate the one-loop correction to the
effective Lagrangian,

G(B,p; p) = —i0((pp + ti)sgnpp) 2 2 2 tan(eBs) 2ds exp is (po + p) —
p~~

—pz —m +iseB8

+ig( —(po+ p)sgnpp)

x 1+~1~2tan eB8 ~3pll ~0 po+ p —m + 1+ tan' eBS 71p1+~2p2

2 tan(eBs)ds exp is (po + p) —
p~~

—p~- —m —ie )0 eB8

x 1 —pip2 tan eB8 p3p~~
—po po+ p —m + 1+ tan eB8 p1p1+ p2p2 (6)
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where pII and p~ are the modulus of the momenta parallel
and perpendicular to the magnetic field, respectively. A
different is prescription here arises for ~p~ ) ~m~ as the
rules for passing poles in the fermion Green's function

I

are changing [5,9], since the Dirac sea is filled up to the
energy p.

Using Eq. (6) in Eq. (5), the identity 0(x) = 1 —0(—x),
and performing a trivial change of variables, we get

p(»s) =—1 4 2 tan(eBs)
4~4

d p ds po exp is po —
pII

—p& eBs
—m +iE:

1 "
s ( . 2 2 2 tan(eBs)+ ppdpp d p ds

I
exp zs po

II4~4 o eBs
—m + zE'

2 tan(eBs)
+exp —is po —

pII
—p& —m —is

where the first term on the right-hand side is vanishing,
due to antisymmetric integration in po. Performing the
momentum integration in Eq. (7), we get

2 2 2 tan(eBs)
I(p) = ds exp is po —

p~~
—p~ eBs

e3in. /4
p(B, p) = 2Re (eBs)cot(eBs)8~3/2 s5/2

—m +ze (10)

xexp («z(p* —m + «e)) ) (8)
For m ) p —p we may close the integration contour

II

in the lower half-plane:

p= ppdpo d pI p +I* p
0

(9)

that may be obtained &om the expression for the effec-
tive Lagrangian in Ref. [5], keeping the is prescription.
This ic prescription tells us that the proper-time inte-
gral actually is to be performed slightly below the real
axis. When closing the contour to obtain an exponen-
tially decreasing integrand instead of an oscillating one,
the poles of cot(eBs) will thus be encircled when the con-
tour is closed in the upper half-plane for p ) m . The
sum over the residues at these poles will form the van-
ishing temperature limit of the "oscillating" part of the
efFective Lagrangian, in agreement with Ref. [6].

The proper-time integration in Eq. (8), or the corre-
sponding integral after the above-described Wick rota-
tion, cannot be performed analytically. Instead, we shall
here perform the proper-time integration in Eq. (7) be-
fore the integration over the momentum. This equation
may be rewritten as [10]

OO

I(p) = —i ds exp —s m po+ p
0

2 tanh(eBs)
+p~ —i c'

eBs

I(p) = — d.(1 —z) '~(1+.) ' ~
eB o

x exp — z (i2)

that has a singularity at z = 1. Prom the left-
and right-hand sides of Eq. (12) one may now ex-
tract the first A, terms of the Taylor expansion of (1 +
z) i & exp ( p~&z/eB j arou—nd z = 1 (Cauchy method):

The integral in Eq. (11) is diverging as s -+ oo for
m & po —

pII. Changing the variable of integration to
z = tanh(eBs) (eB ) 0), and defining Q = (m2 + p~~~—

po —ie')/2eB, we may rewrite Eq. (11) as [11]

k

I(p) d-
' ) f dza„(p)(1 —z)"+

eB o
~ 1 2 A:

dz (1+ z) ' exp — z —) a„(p)(1 —z)")(1—z)eB o eB n=o

where we have defined

a„(p) —=
, (1 + z) ' exp (—p~z/eB)] i,(—1)" d"

(14)

Performing the trivial integration in the left-hand side of
Eq. (13), still under the assumption that Q ) 0, we get

- ~-(p)

dz 1+z exp — z

—) a-(p)(1 —«)")(1—«) "~
n=O

(15)
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The integral on the right-hand side of Eq. (15) is conver-
gent in the half-plane Re(q) ) —(I(,'+ 1). Taking limit
k ~ oo we see that Eq. (15) is an analytical continuation
of I(p) on the whole complex plane pp —

p~~, excluding the

points pp —
p~~

—m + 2eBn, n = 0, 1, 2, . . . , where I(p)
has simple poles (these poles are nothing but the familiar
relativistic Landau levels).

Substituting the expression for I(p) rewritten as in
Eq. (15) into Eq. (9) we see that the regular parts of
I(p) and I'(p) cancel, and thus

ip(ev)=2 po&pof&p
0

~o o
II

(p —p —m2 —2eBn+ is

(16)
p —p —m2 —2eBn —ie)

II

P OO

p(» p) = — po"po "p) (p)/i(po —
p~~

Q n=p
—m —2eBn)

1 OO

d(R. ) ).u-(p( ))0(u' —
p~~—OO 0 n=p

—m —2eBn), (17)

where p~„~ denotes the four-momentum, such that

(pp( ) ) = m +p + 2eBn. The Heavyside step function
here describes the number of (partially) filled Landau lev-
els. The general expression for the fermion density is a
static uniform magnetic Geld B may thus be written as
a sum over a Gnite number of occupied Landau levels:

[(p2 —m2)/2eB]

p(»/) = ). p-(»~) (18)

where the square brackets denote the integral part. The
contribution &om the nth Landau level is

p„(B,p) = b„A@2—m2 —2eBn, (19)

Using the identity (x 6 ie) = p(x ) ~ ivrh(x), we see
that also the principal values cancel since a' (p) = a (p)+
O(e), and the only nonvanishing contribution comes from
the poles

2 2
1

p(p) = dx(y, —m —x)'/20(p2 —m2)
271 Q

1
(

2 2)3/20( 2 2)
37r2

which is the familiar expression for the fermion density.
In Fig. 1 we show the density as a function of the chem-

ical potential for fixed magnetic field, and in Fig. 2 the
density is given as a function of the magnetic field for
Gxed chemical potential. We see that the density is show-
ing an oscillating behavior as consecutive Landau levels
are passing the Fermi level.

Integrating Eq. (18) with respect to the chemical po-
tential, we find the part of the effective Lagrangian due
to the finite density as

[(p. —m )/2eB]

l (B, /i) = ) Z„(B,/i), (22)

where the contribution from the nth Landau level is

l:„(B,/i) = b 2 pi//J2 —m2 —2eBn —(m + 2eBn)
eB 2

I'/ + gp2 —m2 —2eBnl
xln

~m2+ 2.Bn )
(23)

Here we have used the zero-temperature proper-time
method to calculate the fermion density and effective
Lagrangian. It is noteworthy to compare with the ap-
proach of quantum statistical mechanics. By compar-
ing the generating functional for fermionic Green's func-
tions in imaginary time [13], with the partition func-
tion in the grand canonical ensemble (Z), we find that
l:e = (1/PV) lnZ. The relativistic fermion energy levels
in a static uniform magnetic field are found as [14]

We have thus found an expression for the fermion den-
sity in a nonvanishing average magnetic 6eld, in terms of
elementary functions in a discrete Gnite sum over flied
Landau levels. This result may be well understood from
the index theorem approach [12]. The density (fermion
number) depends on the difference of numbers of filled
positive- and negative-energy levels, which in this case
is the (seinidescrete) number of Landau levels in the in-
terval [0, p]. In the limit eB + 0, the Riemann sum of
Eq. (19) may be rewritten as an integral:

where we have defined

OO

b„=— d(p~) an (p(n) )eB 0

(—I) d" (I+a)" i)2 . d.- z
z=1

=2 —b„p. (20)
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The value of b is due to that the lowest Landau level
(n = 0) unlike the higher levels, only contains fermions
with one projection of the spin, cf. Eq. (24).

p/m
2 4 6 8 10

FIG. 1. The fermion density as a function of the chemical
potential for a fixed magnetic field, eB/m = 5.
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FIG. 2. The fermion density as a function of the magnetic
field for fixed chemical potential, y/m = 5.

FIG. 3. The total magnetization as a function of the mag-
netic field for fixed chemical potential, p/m = 5.

pll) + pll + 2eB(k + A —I),

where k = 0, 1, 2, . . . corresponds to the quantized orbital
I

angular momentum, and A = 1, 2 describes the projection
of spin. Using the ordinary relativistic dispersion law
to reintroduce the momenta orthogonal to the magnetic
fiel, we find the density of states VeB/(27r), and obtain

(s, p. , r) = — ) ) egg�(lnjy ~~ 0( '"(~a) "&I yl~jl y~ &( . (vp)+v)l)1 eB
(2 )

(25)

Integrating by parts with respect to pll in Eq. (25) we
And

e
M (B,p) = b pgp2 —m2 —2eBn —(m + 4eBn)

C (B, /J, , T) = eB
(2~)2 )~)~

I =o A=i

2
~ll

&II Ek,A(Pll)

x ln~
t' p+ V'p2 —m2 —2eBn)

Qm' + 2eBn ) (2S)

(
1

X 1+eO(~. .(P[[)—~)

1+
1 + eP(&~, ~(P[])+P) (26)

[(p m)/2eB]—
M(B, tt) = ) M„(B,p),

n=o
(27)

where the contribution from the nth Landau level is

Using 1/(1+ e~& '"("~~&+"))m 0[+@—Eq ~(pll)] as p -+
oo, we may in the limit of vanishing temperature perform
the momentum integration and arrive at Eq. (22).

The magnetization of the fermion gas is now easily
found by performing the derivative with respect to the
magnetic field, M = (8/BB)C', with the result

We notice that lim(~2 2 2 B ~p+)C (B,p, ) = 0 and
iim(„. . 2.B„~p+)M„(B,p) = 0, so that the La-
grangian density as well as the magnetization are con-
tinuous. Figure 3 shows the total magnetization,
M (B,p) = (0/BB)C (B,p) [6], as a function of the
magnetic field for fixed chemical potential [however, the
vacuum contribution (0/M) C' (B) is small in this range
of parameters]. In agreement with Refs. [3,6,7], we see
that for low temperatures (here T = 0), the relativistic
fermion gas exhibits the de Haas —van Alphen efFect.
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