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I apply the Born-Oppenheimer approximation to a gauge theory and show how to reconcile it
with gauge invariance. Wave functionals used in the adiabatic approximation necessarily break gauge
invariance, but this symmetry can be restored after exploiting a novel local symmetry related to
transformations of the Berry phase. I then give sufficient conditions for gauge invariance of the adi-
abatic approximation for the Hamiltonian. As an example I construct a (3+1)-dimensional Abelian
theory with unusual propagation characteristics, corresponding to one gauge-invariant “massive”

and one “massless” mode.
PACS number(s): 11.15.Tk, 11.15.Kc

A useful strategy for studying complicated quantum-
mechanical systems is the adiabatic approximation. As
implemented with the Born-Oppenheimer ansatz (1], this
has proven to be a powerful technique when most details
about certain “fast” degrees of freedom are not wanted to
fix the overall structure of the “slow” degrees of freedom
of the system. Here I study how the Born-Oppenheimer
approximation would be realized in a gauge-field theory.
The approximation is a scheme to understand features of
selected quantum states, so validity has to be examined
on a case by case basis. There may be many applications,
from condensed matter to nuclear and particle physics.

Often it is a struggle to deal with physics involv-
ing widely disparate mass or momentum scales; the
Born-Oppenheimer approximation seems potentially use-
ful here. The problem of renormalization is intimately
related to this. It is physically reasonable to search for
adiabatic effects from nonperturbative renormalization
itself. I suspect that the results I present can be ob-
tained from a careful study of renormalization, but this
is not the approach taken here; the technical problems are
certainly beyond the scope of a single paper. Instead, I
consider the conceptual problem of maintaining gauge in-
variance of observables. Within the Born-Oppenheimer
approximation I find that a locally gauge invariant adia-
batic procedure can be constructed. It is widely believed
that local gauge symmetry is a sufficiently strong prop-
erty to practically define a theory, modulo details such as
representation structure, and higher derivative terms. In
this spirit I give examples in which I guess some crucial
steps on the basis of symmetry and without explicitly
deriving them from the fundamental theory.

First consider the adiabatic approximation in a non-
gauge-field theory. In the molecular Born-Oppenheimer
approximation [3], the dependence on fast degrees of free-
dom ¢q and their momenta p is eliminated to find an effec-
tive Hamiltonian for the slow degrees of freedom Q. Fol-
lowing this, I work in the Schrodinger picture. Consider
solving the field theory time-independent Schrédinger
equation, H|E,s) = E|E,s), where H is the Hamilto-
nian, a functional of the fundamental fields, and their
canonical momenta [4]. The state notation indicates that
certain operators such as spin, isospin, etc., commute
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with the Hamiltonian so that states have labels s. This
trivial observation will be important later. Another ob-
vious, but important consideration is that I study mea-
surable matrix elements between finite-energy physical
states rather than vacuum matrix elements, whose re-
lation to observables may be indirect. That is, the
approximation is done on a state-by-state basis: each
new state will have a new effective slow-mode Hamil-
tonian, labeled by parameters s. The full wave func-
tional ¥, is the overlap at fixed time of the abstract
state |E,s) onto field eigenstates: ¥,(g; Q) = (g; Q|E, s).
Let (s(¢; Q) be the wave functional for the fast modes
q solved as if Q were time-independent classical param-
eters, a background field. The Born-Oppenheimer state
wave-function ansatz for the full wave functional is one
that almost factorizes:

(4 QIE,s) = (s(0;Q)24(Q) - (1)
Then ®,(Q) is the slow modes’ wave functional, which
we wish to determine. The effective Hamiltonian oper-
ator Hg for the slow variables Q, and their canonical
momenta Ilg, is given by taking the expectation value of
the full Hamiltonian H(q,p; Q,IIg) in the fast variable
state (, and integrating over the fast variables:

Ho(Q,11g) = (Co(a; Q)| H(q,p; Q,110,) | (1;Q)) - (2)

Here the parentheses mean the functional integral [ d[q]
at fixed time. Once we know Hg, the energy Eq of the
slow variables is

Eq ={2,(Q)|HA(Q,119)|2:(Q)} , ()
where the curly brackets {...} mean the remaining fixed-
time functional integrals, namely, [ d[Q]. This functional
of ®,(Q) gives us the effective Hamiltonian sought; the
Schrédinger equation is

i(8/0t)®, — 6Eq/5®% =0 ,

which gives Hg(Q,Ilg)®, = i(8/0t)®,.

Now I examine how this might work in a gauge theory:
A will now denote the slow modes (Q’s) of the gauge
fields. Along with these there may be slow matter field
modes, e.g., from nonrelativistic fermions. There are an
infinite number of degrees of freedom in the field the-
ory and a likely infinity of hierarchies of fast and slow.
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The idea of controlling a large number of scales might
be studied after attacking the simpler one of a one-scale
separation, which is my approach here. My concerns are
mainly the symmetry problems presented by a gauge the-
ory. In molecules it is obvious that the nuclei are the
slow modes, and the electrons should be eliminated from
the problem. In a gauge theory the fundamental coordi-
nates, and therefore the Hamiltonian, are generally gauge
dependent. Certainly the time-dependent gauge trans-
formations should be excluded to formulate the concept
of fast and slow, so I set A° = 0. Generally one must
break the gauge symmetry to separate fast modes from
slow ones, or short from long wavelengths. The separa-
tion of fast and slow is arbitrary and then depends on
the gauge-fixing procedure. This arbitrariness is quite
serious and explains why I have not attempted to give a
final definition of fast and slow.

Closely related is the problem of ultraviolet regulariza-
tion, which also has an intrinsic arbitrariness and yet is
meaningful. The usual “UV cutoff” approach to regular-
ization consists of excluding selected degrees of freedom
from calculations. A more physical approach [2] is to in-
tegrate out modes above a separation scale A, resulting
in a “renormalized” Hamiltonian Hj, which depends on
the remaining modes and A in a proper way. Then the
wave functionals depend on the cutoff A, but physical ob-
servables should not; the time-independent Schrédinger
equation is Hp ,(A,II7A)®s , = E,®p,, with the energy
FE, independent of A.

Even within a perfectly gauge-invariant regularization
procedure, such as the lattice, it is inevitable that after
renormalizing to a larger spatial distance scale the faster
modes must affect the slower. This is not new. What I
wish to emphasize is that the hidden effects of adiabatic
changes cannot be escaped and might in fact be antic-
ipated. The discussion indicates that the renormalized
wave functional ®,, of the slow modes is not supposed
to be gauge invariant. Yet, in A° = 0 gauge the full wave
functional, described by the ansatz (1), must be gauge
invariant according to Gauss’ law. How, then, is this to
be arranged? I will proceed by seeking a self-consistent
procedure, and in full view of built in arbitrariness.

There is a subtlety because of the Berry phase [5].
When the fast fields move in the slowly varying back-
ground fields, their wave function develops a phase de-
pending on parameters A, and this phase is noninte-
grable: it depends on the history, rather than a value,
of the slow variables. Because of the path dependence,
the phase must be associated with a kind of mathemati-
cal vector potential. To keep this separated from the real
vector potential it will be called the adiabatic connection
(symbol I',). The adiabatic connection appears when one
takes derivatives. Inside the full Hamiltonian H there are
canonical momenta, represented in the quantized theory
as functional derivatives IIo = —:§/0A. When operat-
ing in (2) we have
(Cs(g; A)| —i6/6A (¢ (q; A) s (A)

=[-i6/6A —T,(A)]2,(A), (4)
T,(A) = (C(g; A)]id/6A[Ca(g; A)) -

I am suppressing dependence on the separation scale A.
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The formula for I'y is the usual definition for the adia-
batic connection: the Berry phase that is usually quoted
for the fast coordinates in the exponential of the line in-
tegral of I's, but when reflected down onto the slow coor-
dinates, its effects are that their canonical momenta have
been “gauged;” in a sense, the slow fields become “mag-
netized.” (Such a phenomenon has been observed before
in the context of anomalies [6]. Here we are not concerned
with primarily topological questions, but generic behav-
ior.) The practical advantage of the adiabatic treatment
is that only a small but essential remnant of the full com-
plexity of fast variables is kept. In addition to the shift of
the momenta, H4 also generally contains new functions
of the slow coordinates, denoted W (A), corresponding to
the “molecular potentials.” These come from the parts
of the fast variable Hamiltonian independent of II 5, and
correspond to the “time component” of the adiabatic po-
tential [7]. The rule, then, is

H(HA,A) — HA(HA — FS(A),A) + W(A) .

This is a direct transcription of the procedure used in
molecular physics [3].

I now discuss the question of maintaining gauge invari-
ance, and for this I use an Abelian gauge theory as an
illustration. The basic Hamiltonian of the photon sector
is

H =} [ @l + B2 @) +5- Al

where B(z) = V x A is the magnetic field and j is
the electromagnetic current. Suppose that through in-
teraction and renormalization this Hamiltonian is mod-
ified. Gauge invariance seems to be lost if we replace
IIo — IIo — I's(A), since from its definition (4) one
cannot argue that I's(A) is gauge invariant. However,
we have gained a different symmetry. Consider cer-
tain transformations V(©), which can be called adiabatic
gauge transformations of the generalized “first and sec-
ond” kind:

2,(A)  V(0)2,(A) = expliO(A)2,(A),

I's(A) > Ts(A) +60(A)/6A (
where ©(A) is some functional of A. Under these
transformations the gauge-covariant functional derivative
—i6/0A —T's(A) is invariant. This symmetry is a trivial
property of the factored ansatz (1) before the integration
over the fast variables; naturally, the same symmetry has
emerged after integrating. We can make, in the usual
way, the adiabatic connection’s invariant curvature 3%,
which I will call the adiabatic magnetic field, namely,

BY = (8/0A")Ti(A) - (8/8A7)T(4) .

The crucial points come from the following observa-
tions. First, the full exact wave function is strictly gauge
invariant, but the separate factors ®, and {, cannot be.
Second, the result of the approximation after the fast
variables have been eliminated has a gigantic local sym-
metry (5), which was never a part of the original theory.
Then, can the system be invariant under the joint ac-
tion of both transformations? If so, the effects of the
real gauge transformations must be compensated by the
adiabatic gauge transformations.

Let the real gauge transformation be represented by an



2020

operator U(0); U(6)AU1(6) = A + V0. Suppose there
is a subspace of the transformations made jointly by the
U(6) and V(O) operators under which ®, is invariant.
Then ¢, and I'y, must also be invariant. That is,

Ts(A) - Ts(A + V6) + 60(A)/6A = T, (A) .

If this is true, then calculating the curvature g;; it follows
that 3;;(A) = 8;; (A +V8): a sufficient condition is that
the invariant curvature (;; be gauge invariant. Next,
there is a second condition from the definition of I's(A)
(4), assuming that it is space translationally invariant.
Applying the space divergence V - T's(A) gives
(G A)|V - i8/6A1C, (45 A)) |

which is the expectation value of V - E, where E is the
electric field. By Gauss’ law this is the charge density,
which is the local gauge generator,! which necessarily
commutes with a gauge transform U(f) acting on (,.
Then V - T (A) is also gauge invariant. Furthermore,
it is easy to see that the two conditions are compatible:
if I's is divergence free under the space derivative, then
adding a functional gradient 6@(A)/JA preserves it as
divergence free. If we make the usual demand that the
potential W(A) is gauge invariant, then we have suffi-
cient conditions for maintaining gauge invariance of the
approximation. (They are not necessary conditions: it is

not clear how to list all gauge-invariant operators.)
|
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I now propose directions for further investigation. (1)
One could solve for the wave functions (,, insert them
into the recipe, and proceed with an adiabatic approxi-
mation for certain states. (2) One can view the results
as heuristically useful, for cases in which the (, are too
difficult to obtain. This is the usually (if not inevitable)
case: the fast variables are practically impossible to fol-
low. Remarkably, we see that from {, we want only a
connection I'y, and what is really important are the in-
variants V - T'5(A) and the curvature 8. One can try
to guess these invariants on the basis of symmetry and
simplicity and what is already known about the state.

The second approach seems more practical: it has the
potential to turn ignorance of unimportant variables into
a virtue. It will be illustrated with a concrete example.

Assume there is a single pseudovector, time reversal
odd-parameter s associated with the state in question.
This quantity s could be a spin, or a background mag-
netic field, for example. Then, by symmetry the possible
adiabatic curvature tensors are B;; = 0;4; — 9;A; and
Bij = me,-jksk, where m is a constant with the dimensions
of mass/hc. Symmetry is not sufficient to determine the
dependence on the cutoff A,m = m(A). Symmetry never
determines the curvature uniquely, since the tensors can
be multiplied by any gauge-invariant scalar function of
the A’s:

Bi; = 2ms,-jksk[1 +a1(B)?/m* + az(B)*/m® + .- + (0:A; — 0 A;)[1 + b1(B)?/m* + by(B)*/m® + .. J4---, (6)

where the a’s and b’s are constants. Respecting the in-
variance of V-IT'5(A), such an expansion can be converted
into corresponding terms for the adiabatic connection.
One finds a large number of candidate effective Hamilto-
nians. Extra information must be supplied to lfmit these.

The last requirements is to make sure that the slow
modes have been treated self-consistently. For self-
consistency in terms of a local derivative expansion, I
keep terms in the Hamiltonian, which produce leading
effects in the infrared and are negligible (or at most
renormalizable) in the ultraviolet. By power counting,
the first term in the expansion given in (6), which corre-
sponds to I's = ms X A, gives contributions suppressed
by one power of momentum in the ultraviolet, so with it
the fast modes are reasonably decoupled. It is not stan-
dard because it is not gauge invariant; it corresponds to
a “constant adiabatic magnetic field.” Next, considera-
tion of the molecular potential function W(A) leads to a
standard derivative expansion in powers of B:

W(A) = coms - B + (c? — 1)(B)?/2 + c%(s - B)?/2
+ - - - higher derivative terms . )

Of these, the first term is a pure divergence; the second
two are the unique functionals which could be important
in the infrared and which are “good” in the ultraviolet.
With this choice, the effective Hamiltonian for the A
fields is found to be

!In the non-Abelian case, V - I', is gauge covariant, rather
than gauge invariant.

[
Ha= ;/d%[(m +ms x A)? + (2)B?(x)

+C§(s : B)2 + Jstow A] ’ (8)
where jsiow is any residual current from remaining slow
matter fields. This result has a formal similarity to the
Maxwell Chern-Simons (MCS) theory [8,9], made more
clearly by setting coefficients ¢; = 1 and c; = 0 from now
on, but even then it differs substantially. There is an
irreconcilable difference because the (3 + 1)-dimensional
theory has two dynamical degrees of freedom, while there
is only“one dynamical degree of freedom in (2+1) dimen-
sions.

This theory is interesting. As an exercise, I calcu-
lated the electrostatic field due to a point charge of mag-
nitude @ located at the origin. This is a case where
Gauss’ law determines the boundary conditions at the
point charge unambiguously. The electrostatic field fol-
lows [9] from the static solutions to the constraint and
variational Maxwell equations? generated by (8), which
are gauge invariant:

VxB=-msxE+0E/0t+j, V-E=ms-B+p,
VxE=-B/ot, V-B=0.
The new Gauss’ law must be inserted into the new Am-
pere’s law. After considerable algebra I find
B3k kzeik~x
E =-QV
©=-0V [ Gy - o

?In the A° = 0 formulation Gauss law is a constraint
equation.
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B(z) = mQ(sV?: —s-VV)

d3k eik‘x

(2m)® (k)2 + m?[k? — (k- 5)?]
One sees that the short-distance (k > m) behavior of
the electric field is exactly the usual one, confirming the
power counting quoted earlier. At long distances the
fields fall off more quickly than the usual Coulomb case
and are complicated functions of direction. This occurs
because Gauss’ law in the new theory couples the lon-
gitudinal and transverse modes, allowing electric flux to
disappear into the magnetic field, which tends to screen.
This is more like a non-Abelian theory than an Abelian
one.

It is well known that the (2+1)-dimensional MCS the-
ory exhibits massive propagation. After more algebra,
I find the dispersion relation between the angular fre-
quencies w+ and wave number k for the above (3+1)-
dimensional theory to be

wi =k?+m?/2+ (m?/2)/1+ 4k -s2/m? . (9)

These frequencies are always real-there are no tachyons.
There are indeed “massive” modes with a gap, but also
other modes with no gap, called “massless.” This result
is gauge invariant: it is a relation for transverse com-
ponents of the vector potential after longitudinal modes
are eliminated using Gauss’ law. The speed of propa-
gation depends on the polarization eigenvector and the
direction; the medium is anisotropic and optically ac-
tive. For reference, for k > m, both modes approach
w = k (in units where ¢ = 1); for k£ < m the massive and
massless modes approach w = m and w = k2?/m, respec-
tively. The massless modes propagate nonrelativistically
for sufficiently small k; they are certainly “slow.” The
low-energy dispersion in this case is characteristic of a
ferromagnet,® as one finds the magnetized A field ro-
tates almost collectively and in phase. Dynamically, the
“mass” is not so much a mass as the result of a magnetic
force pushing the modes toward the region of small field.

31 thank Steven Girvin for discussion on this point.

The usual (2+1)-dimensional MCS theory is finally ob-
tained by restricting the wave vector k to lie in the plane
strictly perpendicular to s, and ignoring the massless po-
larization.

Would this theory reasonably have been guessed on
the basis of symmetry alone, without the adiabatic pro-
cedure? The answer seems to be no. In the A° = 0
gauge, the states of the theory are gauge invariant, as
mentioned before. If we began with this theory as a fun-
damental one, the states could not be gauge invariant,
since they transform with a phase. This is not a mat-
ter of the usual gauge fixing because the phase occurs
from the functional gauge transformation, as mentioned
earlier. The symmetry of this theory is sufficiently non-
standard that one should be cautious. Although usually
a formal gauge invariance is enough to indicate that a
theory is not pathological, I have not proven that the
predictions of the theory can be extracted independently
of the gauge-fixing method.

It remains to be seen whether there are realistic ap-
plications for this particular theory. My main goal has
been to show that a procedure with considerable heuristic
value can be formulated. The case of a non-Abelian the-
ory is quite interesting, and while it is more complicated,
much the same arguments can be carried through [9].
However, a full exploration of non-Abelian theories with
similar symmetry seems to be an immensely challenging
technical task. If the relation to renormalizing the theory
can be clarified, then the Born-Oppenheimer approxima-
tion may lead to new nonperturbative renormalization-
group equations. Further specific examples that I have
considered [9] include the possibility of a cosmologically
massive photon, and models for gluon spin dependence
and confinement in QCD.
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